
Direct Operated 2 Port Solenoid Valve New US te) For air and water only **Process Valves** RoHS Air Medium Water Oil Steam Can be used with vacuum heated water. Lightweight Large flow rate Compact VX2 Weight Height Flow rate VXD % Smaller* % Lighter* % More flow VXZ (Size 1) (Size 1, Aluminum body) VXS (Size 1) NewVX * Comparison with SMC conventional VXF2 Conventional model model Body **SX10** 63 material Air Enclosure Aluminum, Resin Water/Oil/ e IP65* Medium vacuum/Steam C37 (Brass), Electrical entry Flat terminal type Stainless steel terminal is IP40. With One-touch fittings mm mm (Resin body) Power 000 consumption <u></u> 4.5 w (Size 1) 7 W (Size 2) 10.5 w (Size 3) (DC/N.C. valve) racket andard equipment Manifold Solenoid coil type Valve type N.C. N.O. Material • Body/PPS Insulation type Class B/H Base/Aluminum Fluid temperature Seal/NBR, FKM Class B/Max. 60°C Class H/Max. 183°C Class B Class H

SMC

Series VX21/22/23

INDEX

Direct Operated 2 Port Solenoid Valve

Full-wave rectifier type (AC specification: Insulation type Class B/H)

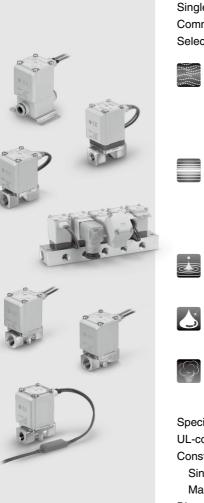
- Improved durability Service life is extended by the special construction. (compared with current shading coil)
- Reduced buzz noise Rectified to DC by the full-wave rectifier, resulting in a buzz noise reduction.
- Improved OFF response Specially constructed to improve the OFF response when operated with a higher viscosity fluid such as oil.
- Low-noise construction Specially constructed to reduce the metal noise during operation.

Variations

Model	Applicable fluid *1 * Can be used heated water.				
Woder	Air	Medium vacuum	Water	Oil	Steam
For Air VX2 0 Page 600	٥	_	I	—	_
For Medium vacuum	•*2	•	Ι	_	_
For Water	•*2	_	•	—	_
VX203 Page 611	•*2	-	•*2	•	_
For Steam heated water.	•2	_	•2	•2	•

*1 For details, refer to pages 640 and 641. *2 Refer to the individual specifications for each fluid.

<Body Size>


Model	Body	Orifice diameter						Port size	
wouer	size	2 mmø	3 mmø	4 mmø	5 mmø	7 mmø	8 mmø	10 mmø Note)	Foit size
VX2 ¹ ₄	Size 1	•	•	_	•	-	—	—	1/8, 1/4 One-touch fitting: ø6, ø8
VX2 ² ₅	Size 2	Ι	Ι	٠	_	0	_	-	1/4, 3/8 One-touch fitting: ø8, ø10
VX2 ₆ ³	Size 3	I	I	_	•	I	•	۰	1/4, 3/8, 1/2 One-touch fitting: ø10, ø12

Note) N.C. only

INDEX

Direct Operated 2 Port Solenoid Valve Series VX21/22/23

ingle	e Unit/Manifold: Specifications	
omn	non Specifications 598	es
elec	tion Steps599	Valv
	F	Process Valves
	For Air	20 C
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate 600, 601	٩
	How to Order (Single Unit)602	VX2
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate $\ldots 603$	VXD
	How to Order (Solenoid Valve for Manifold, Manifold Base), Blanking Plate Assembly Part No., How to Order Manifold Assembly (Example) $\dots604$	VXZ
	For Medium Vacuum (0.1 Pa.abs or more)	VXS
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage ${\sf Rate}\ldots605$	VXF2
	How to Order (Single Unit)606	0140
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate $\ldots 607$	SX10
	How to Order (Solenoid Valve for Manifold, Manifold Base), Blanking Plate Assembly Part No., How to Order Manifold Assembly (Example) $\ldots 608$	
	For Water	
92	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate 609	
	How to Order (Single Unit)610	
$\mathbf{A}_{\mathbf{X}}$	For Oil	
ر	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate 611	
	How to Order (Single Unit)612	
$\tilde{\mathcal{A}}$	For Steam * Can be used with heated water.	
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate613	
	How to Order (Single Unit)614	
•	al Options	
	ompliant 619	
onst	ruction	
Sin	gle Unit	
Ma	nifold	
	aciana (Cinala I Init) Dadu matariali Aluminum	

- Dimensions (Single Unit) Body material: Aluminum 623
 - Body material: Resin 625
- Body material: C37, Stainless steel .. 627 (Manifold) Base material: Aluminum 630 Solenoid Valve Flow-rate Characteristics 633 596 **SMC**

INDEX

Variations

Single Unit (For Air, Medium Vacuum, Water, Oil and Steam)

Valve type Normally Closed (N.C.) Normally Open (N.O.) Solenoid coil type Insulation type: Class B, Class H Rated voltage	Electrical entry Grommet Conduit DIN terminal Conduit terminal Flat terminal Normally Close		Normally	Open (N.O	
100 V/200 V/110 V/230 VAC (220 V/240 V/48 V/24 VAC)	Size		Size 1	Size 2	Size 3
24 VDC (12 VDC)		2 mmø	•		
oltage in () indicates special voltage.		3 mmø	•	-	-
Material		4 mmø	_	•	-
material	Orifice diameter	5 mmø	•	_	•
Body - Aluminum Beein C37 (Brase)	Onnoo diamotor				
Body — Aluminum, Resin, C37 (Brass), Stainless steel		7 mmø	—	•	-
Body — Aluminum, Resin, C37 (Brass), Stainless steel Seal — NBR, FKM*		7 mmø 8 mmø	_	•	•
Stainless steel				• 	• • •

Manifold (For Air, Medium Vacuum)

Manifold type

Common SUP type Individual SUP type

Solenoid coil type

Insulation type: Class B

Rated voltage

100 V/200 V/110 V/230 VAC (220 V/240 V/48 V/24 VAC) 24 VDC (12 VDC)

Voltage in () indicates special voltage.

Material

Body — Resin
Base — Aluminum
Seal — NBR, FKM

Electrical entry

- Grommet
- Conduit
- DIN terminal
- Conduit terminal
- Flat terminal

Manifold

	Marinolu				
	Size		Size 1	Size 2	Size 3
Orifice diameter 2 mmø 3 mmø 4 mmø 5 mmø		•	—	—	
		3 mmø	•	—	—
		4 mmø	—	•	—
		5 mmø	•	—	•
		7 mmø	—	•	•
е	Common SUP type	IN		3/8	
siz	(Air)	OUT	1/8, 1/4		
Port size	Individual SUP type	IN	1/8, 1/4		
а.	(Medium vacuum)	OUT		3/8	

Series VX21/22/23 Common Specifications

Standard Specifications

	Valve co	nstruction	Direct operated poppet	ves
	Withstand pressure Body material Seal material Note 3) Enclosure		2.0 MPa (Resin body type 1.5 MPa)	Valve
Valve			Aluminum, Resin, C37 (Brass), Stainless steel	
specifications			NBR, FKM	000
			Dust-tight, Water-jet-proof type (IP65) Note 1)	Ę
	Environment		Location without corrosive or explosive gases	ā
Coil	Rated voltage	AC	100 VAC, 200 VAC, 110 VAC, 230 VAC, (220 VAC, 240 VAC, 48 VAC, 24 VAC) Note 2)	
	DC		24 VDC, (12 VDC) Note 2)	VX
	Allowable voltage fluctuation		±10% of rated voltage	
specifications	Allowable leakage	AC	5% or less of rated voltage	VX
	voltage DC		2% or less of rated voltage	
	Coil insulation type		Class B, Class H	VX
	entry flat terminal type te () indicates special volt	rminal is IP40. age. (Refer to page 616.)		VX
ote 3) For seal n	naterial/EPDM, refer to X	332. (Refer to page 618.)		

▲ Be sure to read "Specific Product Precautions" before handling.

Solenoid Coil Specifications

Normally Closed (N.C.) DC Specification

Class B

Size	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
Size 1	4.5	50
Size 2	7	55
Size 3	10.5	65

Class H

Size	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
Size 1	9	100
Size 2	12	100
Size 3	15	100

Note 1) Power consumption: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: ±10%)

Note 2) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

AC Specification (Built-in Full-wave Rectifier Type) Class B

Size	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
Size 1	7	60
Size 2	9.5	70
Size 3	12	70

Class H

Size	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
Size 1	9	100
Size 2	12	100
Size 3	15	100

Note 1) Apparent power: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: $\pm 10\%$)

Note 2) There is no difference in the frequency and the inrush and energized apparent power, since a rectifying circuit is used in the AC.

Note 3) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

Normally Open (N.O.) DC Specification

Class B

Size	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
Size 1	7.5	60
Size 2	8.5	70
Size 3	12.5	70

Class H

Size	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
Size 1	9	100
Size 2	12	100
Size 3	15	100

Note 1) Power consumption: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: $\pm 10\%$)

Note 2) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

AC Specification (Built-in Full-wave Rectifier Type) Class B

Size	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
Size 1	9	60
Size 2	10	70
Size 3	14	70

Class H

Size	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
Size 1	9	100
Size 2	12	100
Size 3	15	100

Note 1) Apparent power: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: $\pm 10\%$)

Note 2) There is no difference in the frequency and the inrush and energized apparent power, since a rectifying circuit is used in the AC.

Note 3) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

INDEX

VXF2

SX10

Series VX21/22/23 Selection Steps

Air Page 600, 601 Water Page 609 Oil Page 609 Oil Page 601 Medium Page 605 Steam Page 613 * Body material", "Port size" and "Orifice diameter" from "Flow rate — Pressure" of Item Selection item Size Size 3 Size 3 3	Select the fluid. Select the fluid. Select the fluid. Air Page 600, 601 Water Page 600 Oil Page 601 Page 605 Steam Page 613 Page 613 Page 613 Select "Body material", "Port size" and "Orifice diameter" from "Flow rate — Pressure" of tem Selection Item Symbol	Item	Selection item	Dawa		Symbol					
he fluid.	Select the fluid. Select the fluid. Select the fluid. Select "Body material", "Port size" and "Orifice diameter" from "Flow rate – Pressure" of tem Select from "Flow rate – Pressure." Body material Aluminum Port size 1/8 A 8 VX2 3 0			····go							
Medium Page 605 4 Steam Page 613 5 'Body material", "Port size" and "Orifice diameter" from "Flow rate — Pressure" of Item Symbol from "Flow Size Size 3 3 0	Medium Page 605 4 Steam Page 613 5 Select "Body material", "Port size" and "Orifice diameter" from "Flow rate — Pressure" of Item Selection item Select from "Flow rate — Pressure." • Body material • Port size • Orifice diameter • Port size • Orifice diameter		Water	Page 609		2				,	,
Medium Page 605 4 Steam Page 613 5 'Body material", "Port size" and "Orifice diameter" from "Flow rate — Pressure" of Item Symbol from "Flow Size Size 3 3 0	Medium Page 605 4 Steam Page 613 5 Select "Body material", "Port size" and "Orifice diameter" from "Flow rate — Pressure" of Item Selection item Select from "Flow rate — Pressure." • Body material • Port size • Orifice diameter • Port size • Orifice diameter	Select the fluid.	Oil 🚺	Page 611	\rightarrow	3	0		VX2	3 [)
Body material", "Port size" and "Orifice diameter" from "Flow rate — Pressure" of Selection item Symbol from "Flow Size Size 3 Size	Select "Body material", "Port size" and "Orifice diameter" from "Flow rate – Pressure" of Item Selection item Symbol Select from "Flow rate – Pressure." Size Size 3 3 9 Body material A O VX2 3 0			Page 605		4)
Item Selection item Symbol from "Flow Size Size 3 3 9	Item Selection item Symbol Select from "Flow rate - Pressure." Size Size 3 3 9 Body material Aluminum A 9 VX2 3 0 Port size 1/8 A 9 VX2 3 0			Page 613		5					
material Body material Aluminum VX2 3 0	• Orifice diameter	Select from "Flow	Size	Size 3	-		0			7	
	Orifice diameter 2	Select from "Flow rate — Pressure."	Size	Size 3	-		0	1	/X2		n [
Orifice diameter 2		Select from "Flow rate — Pressure." • Body material • Port size	Size Body material	Size 3 Aluminum	→ →	3	_	\	/X2	3	D [
material size Port size 1/8 A O VX2 3 0											
electrical specification.		Select from "Flow rate — Pressure." • Body material • Port size • Orifice diameter	Size Body material Port size Orifice diameter	Size 3 Aluminum 1/8	 → → 	3	_	\	/X2	3	0 [
electrical specification. Item Selection item Symbol	Item Selection item Symbol	Select from "Flow rate — Pressure." • Body material • Port size • Orifice diameter Select electrical spec	Size Body material Port size Orifice diameter	Size 3 Aluminum 1/8 2	 → → 	3 A	_		/X2	3	0 [
Item Selection item Symbol	Select electrical Voltage 24 VDC	Select from "Flow rate — Pressure." • Body material • Port size • Orifice diameter Select electrical spec Item	Size Body material Port size Orifice diameter	Size 3 Aluminum 1/8 2	 → → → 	3 A Symbol	0			0	

For Air Single Unit

Model/Valve Specifications

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Aluminum Body Type

				Elow-rat	te characteris	tice	Maximum operating		Note)	1
Size	Port size	Orifice diameter	Model	1 IOW-Ta		103	Maximum operating pressure differential	Max. system pressure	Weight Note)	
0120	1 011 5120	(mmø)	Wibdei	C [dm ³ /(s·bar)]	b	Cv	(MPa)	(MPa)	(g)	SX10
		2		0.63	0.63	0.23	1.0		220	·
1	1/8, 1/4	3	VX210	1.05	0.68	0.41	0.6		220	
		5		2.20	0.39	0.62	0.2		220	
2	1/4, 3/8	4	VX220	1.90	0.52	0.62	1.0		340]
2	1/4, 3/6	7	V7220	3.99	0.44	1.08	0.15	1.0	340	
		5		1.96	0.55	0.75	1.0		450	
3	1/4, 3/8	8	VX230	5.67	0.33	1.58	0.3		450]
3		10	VA230	5.74	0.64	2.21	0.1		450]
	1/2	10		8.42	0.39	2.21	0.1		470	J

Resin Body Type (Built-in One-touch Fittings)

		Orifice diameter		Flow-rat	e characterist	ics	Maximum operating	Max. system pressure	Weight Note)
Size	Port size	(mmø)	Model	C [dm ³ /(s·bar)]	b	Cv	pressure differential (MPa)	(MPa)	(g)
		2		0.82	0.44	0.23	1.0		220
	ø6	3		1.25	0.34	0.35	0.6		220
		5	VX210	1.45	0.43	0.40	0.2		220
		2	VA210	0.82	0.44	0.23	1.0		220
	ø8	3		1.81	0.40	0.41	0.6		220
		5		2.11	0.32	0.56	0.2		220
	ø8	4		1.69	0.40	0.47	1.0		340
2	00	7	VX220	3.14	0.34	0.84	0.15	1.0	340
2	ø10	4	VA220	1.68	0.49	0.50	1.0	1.0	340
	010	7		3.54	0.36	0.90	0.15		340
		5		2.50	0.44	0.70	1.0		460
	ø10	8		2.77	0.82	1.22	0.3		460
3		10	VX230	5.69	0.46	1.54	0.1		460
3		5	VA230	2.50	0.44	0.70	1.0		460
	ø12	8		2.56	0.88	1.38	0.3		460
		10		5.69	0.64	1.76	0.1		460

Note) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Refer to "Glossary of Terms" on page 632 for details on the maximum operating pressure differential.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

Valve Leakage Rate

Internal Leakage

Seal material Note 2)	Leakage rate (Air) Note 1)
NBR (FKM)	1 cm ³ /min or less (Aluminum body type)
	15 cm ³ /min or less (Resin body type)

External Leakage

Seal material Note 2)	Leakage rate (Air) Note 1)
NBR (FKM)	1 cm ³ /min or less (Aluminum body type)
	15 cm ³ /min or less (Resin body type)

Note 1) Leakage is the value at ambient temperature 20°C. Note 2) For seal material/FKM, refer to "Other Options" on page 616 for the selection.

INDEX

Process Valves

VX2 VXD

VXZ

VXS

VXF2

For Air Single Unit

Model/Valve Specifications

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Aluminum Body Type

0:	Dent sins	Orifice diameter	Madal	Flow-rat	Flow-rate characteristics			Max. system pressure	Weight Note)
Size	Port size	(mmø)	Model	C [dm ³ /(s·bar)]	b	Cv	pressure differential (MPa)	(MPa)	(g)
		2		0.63	0.63	0.23	0.9		240
1	1/8, 1/4	3	VX240	1.05	0.68	0.41	0.45		240
		5		2.20	0.39	0.62	0.2		240
2	1/4, 3/8	4	VX250	1.90	0.52	0.62	0.8	1.0	370
-	1/4, 3/6	7	VA250	3.99	0.44	1.08	0.15		370
3	1/4, 3/8	5	VX260	1.96	0.55	0.75	0.8		490
3	1/4, 3/0	8	VA200	5.67	0.33	1.58	0.3		490

Resin Body Type (Built-in One-touch Fittings)

0.		Orifice diameter		Flow-rat	e characterist	ics	Maximum operating	Max. system pressure	Weight Note)
Size	Port size	(mmø)	Model	C [dm3/(s·bar)]	b	Cv	pressure differential (MPa)	(MPa)	(g)
		2		0.82	0.44	0.23	0.9		240
	ø6	3		1.25	0.34	0.35	0.45		240
		5	VX240	1.45	0.43	0.40	0.2		240
		2	VX240	0.82	0.44	0.23	0.9		240
	ø8	3		1.81	0.40	0.41	0.45		240
		5		2.11	0.32	0.56	0.2		240
	ø8	4		1.69	0.40	0.47	0.8	1.0	370
2	00	7	VX250	3.14	0.34	0.84	0.15	1.0	370
2	-10	4	VA250	1.68	0.49	0.50	0.8		370
	ø10	7		3.54	0.36	0.90	0.15		370
	ø10	5		2.50	0.44	0.70	0.8		500
3	010	8	VX260	2.77	0.82	1.22	0.3		500
3	ø12	5	VA200	2.50	0.42	0.70	0.8		500
	012	8		2.56	0.88	1.38	0.3		500

Note) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Refer to "Glossary of Terms" on page 632 for details on the maximum operating pressure differential.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

Valve Leakage Rate

Internal Leakage

Seal material Note 2)	Leakage rate (Air) Note 1)
NBR (FKM)	1 cm ³ /min or less (Aluminum body type)
	15 cm ³ /min or less (Resin body type)

External Leakage

Leakage rate (Air) Note 1)
1 cm ³ /min or less (Aluminum body type)
15 cm ³ /min or less (Resin body type)

Note 1) Leakage is the value at ambient temperature 20°C. Note 2) For seal material/FKM, refer to "Other Options" on page 616 for the selection.

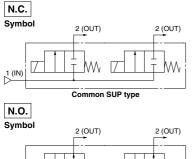
				Dir			2 Port Sole Order (Sin				ries VX21/22/23	
					VX2	2 1	Fluid Air	.] [A]		Common Specifications Seal material NBR Coil insulation type Class B Thread type Rc* * One-touch fittings are attached to the resin body type.	Valves
Coil size Size		Ve type	1	Body Symbol	Body	t size/(Port	Orifice diameter		Volta Symbol	Age/Electric	Electrical entry	Pro
Size	Symbol	valve type	ļ	·	material	size	diameter		Symbol	vollage	-	VX2
Size 1	1	N.C. N.O.	ļ	A B C D E	Aluminum	1/8	2 3 5 2 3		A	24 VDC	Grommet	VXD VXZ
			1	F		1/4	5		в	100 VAC	Grommet	WYO
			\	н			2		c	110 VAC	/With surge	VXS
			Ì	J		ø6	3		D	200 VAC	voltage suppressor	VXF2
			Ń	K	Resin (With bracket)		5		E	200 VAC 230 VAC		
				L	(with blacket)	ø8	2		F	230 VAC 24 VDC		SX10
			į	N		20	5		G	24 VDC 24 VDC	DIN terminal	-
			т	A			4		н	100 VAC	/With surge	
0: 0	2	N.C.		B		1/4	7		H J	110 VAC	voltage suppressor	
Size 2	5	N.O.	1	D	Aluminum	3/8	4		J K	200 VAC		
	5		Ĺ	E		5,0	7		L	200 VAC 230 VAC		
			Ň	H	Resin	ø8	4		M	230 VAC 24 VDC	Conduit terminal	-
			N	L	(With bracket)	- 10	4		N		/With surge	
			`	M	1	ø10	7			100 VAC 110 VAC	voltage suppressor	
			т	Α			5		P			
Size 3	3	N.C.		В	1	1/4	8		Q	200 VAC		
Size 5	6	N.O.		С			10 (N.C. only)		R	230 VAC		-
	•		Į	D	Aluminum	0/0	5		S T	24 VDC	Conduit /With surge	
			1	F		3/8	8 10 (N.C. only)		Т	100 VAC	voltage	
			1	G		1/2	10 (N.C. only)		U	110 VAC	\suppressor/	
			/	H			5		V	200 VAC		
			\	J		ø10	8		w	230 VAC		-
				K L M N	Resin (With bracket)	ø12	10 (N.C. only) 5 8 10 (N.C. only)		Y	24 VDC	Flat terminal	
									z		Other voltages]

For special options, refer to pages 616 to 618.

24 VAC				
48 VAC				
220 VAC				
240 VAC				
12 VDC				
Without DIN connector				

Low concentration ozone resistant (Seal material: FKM)
Seal material: EPDM
Oil-free
G thread
NPT thread
With bracket (Aluminum body only)
Mounting holes on the bottom side of the body (Aluminum body only)
Special electrical entry direction

_


INDEX

* For other fluids, please contact SMC.

Model/Valve Specifications

W MM 1 (IN) Common SUP type

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

0:	Orifice diameter	Madal	F	low-rate characteris	Maximum operating	Max. system pressure	
Size (mmø)	(mmø)	Model	C [dm ³ /(s·bar)]	b	Cv	pressure differential (MPa)	(MPa)
	2		0.63	0.63	0.23	1.0	
1	3	VX2A0 VX2B0	1.05	0.68	0.41	0.6	
	5		2.20	0.39	0.62	0.2	
2	4		1.90	0.52	0.62	1.0	1.0
~	2 7	VAZDU	3.99	0.44	1.08	0.15	
3	5	VX2C0	1.96	0.55	0.75	1.0	
3	7	VA2C0	3.99	0.44	1.08	0.3	

Normally Open (N.O.)

0:	Size Orifice diameter	Marial	F	low-rate characteris	tics	Maximum operating	Max. system pressure
Size (mmø)	Model	C [dm ³ /(s·bar)]	b	Cv	pressure differential (MPa)	(MPa)	
	2		0.63	0.63	0.23	0.9	
1	3	VX2D0	1.05	0.68	0.41	0.45	
	5		2.20	0.39	0.62	0.2	
2	4	VX2E0	1.90	0.52	0.62	0.8	1.0
~	2 7	VAZLU	3.99	0.44	1.08	0.15	
3	5	VX2F0	1.96	0.55	0.75	0.8	
3	7	VAZFU	3.99	0.44	1.08	0.3	

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

Valve Leakage Rate

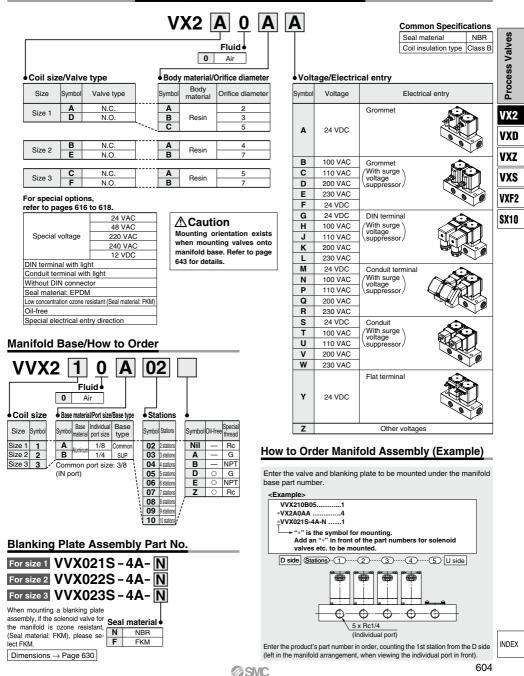
Internal Leakage

Seal material Note 2)	Leakage rate Note 1)
NBR (FKM)	1 cm ³ /min or less

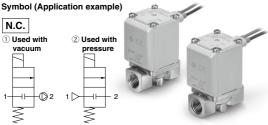
External Leakage

Seal material Note 2)	Leakage rate Note 1)
NBR (FKM)	1 cm ³ /min or less

Note 1) Leakage is the value at ambient temperature 20°C.


Note 2) For seal material/FKM, refer to "Other Options" on page 616 for the selection.

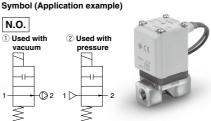
How to Order (Solenoid Valve for Manifold)



For Medium Vacuum (0.1 Pa-abs or more) Single Unit

This valve can also be used with air. (Refer to the valve specifications for air.)

Model/Valve Specifications


When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

122 1

41

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

0:		Orifice diameter		Flow-rate of	haracteris	stics	Operating pres	ssure range	Max. system pressure	Note) Weight
Size	Port size	(mmø)	Model	C [dm ³ /(s·bar)]	b	Cv	① Used with vacuum (Pa₊abs)	(2) Used with pressure (MPa·G)	Max. system pressure (MPa)	(g)
		2		0.63	0.63	0.23		0 to 1.0	-	300
1	1/8, 1/4	3	VX214	1.05	0.68	0.41		0 to 0.6		300
		5		2.20	0.39	0.62		0 to 0.2		300
2	1/4. 3/8	4	VX224	1.90	0.52	0.62	0.1 to	0 to 1.0		460
-	1/4, 3/0	7	7 VX224 3.99 0.4	0.44	1.08	atmospheric	0 to 0.15	1.0	460	
		5		1.96	0.55	0.75	pressure	0 to 1.0		580
2	1/4, 3/8	8	VY224	5.67	0.33	1.58		0 to 0.3		580
3	3 10 VX234	VA234	5.74	0.64	2.21		0 to 0.1	1 [580	
	1/2	10		8.42	0.39	2.21		0 to 0.1	1	630

Normally Open (N.O.)

	Orifice diameter			Flow-rate characteristics			Operating pres	Max. system pressure	Note) Weight	
Siz	e Port size	(mmø)	Model	C [dm3/(s·bar)]	b	Cv	1 Used with vacuum (Pa-abs)		(MPa)	(g)
		2		0.63	0.63	0.23		0 to 0.9	-	320
1	1/8, 1/4	3	VX244	1.05	0.68	0.41	0.1 to	0 to 0.45		320
		5		2.20	0.39	0.62		0 to 0.2		320
2	1/4. 3/8	4	VX254	1.90	0.52	0.62	atmospheric	0 to 0.8	1.0	490
-	1/4, 3/6	1/4, 3/8 7 VX254 3.99	3.99	0.44	1.08	pressure	0 to 0.15	1 [490	
3	1/4. 3/8	5	VX264	1.96	0.55	0.75		0 to 0.8		620
3	1/4, 3/6	8	VA204	5.67	0.33	1.58		0 to 0.3		620

Note) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)		
1 to 60 Note)	-20 to 60		

Note) With no freezing

Valve Leakage Rate

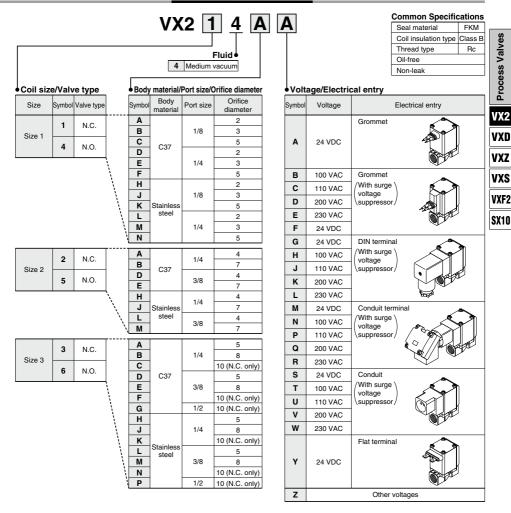
Internal Leakage

j-						
Seal material	Leakage rate Note)					
FKM	10 ⁻⁶ Pa·m ³ /sec or less					

External Leakage

Seal material	Leakage rate Note)
FKM	10 ⁻⁶ Pa·m ³ /sec or less

Note) Leakage (10⁻⁶ Pa·m³/sec) is the value at differential pressure 0.1 MPa and ambient temperature 20°C.

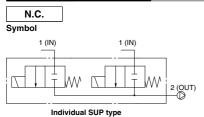


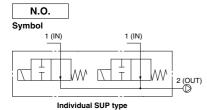
Direct Operated 2 Port Solenoid Valve Series VX21/22/23

For Medium Vacuum Single Unit

How to Order (Single Unit)

For special options, refer to pages 616 to 618.


	24 VAC	Without DIN connector
	48 VAC	Seal material: EPDM
Special voltage	220 VAC	G thread
	240 VAC	NPT thread
	12 VDC	With bracket
DIN terminal with light		Mounting holes on the bottom side of the body
Conduit terminal with light		Special electrical entry direction


For Medium Vacuum (0.1 Pa-abs or more) Manifold

* For other fluids, please contact SMC.

Model/Valve Specifications

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

0:	Orifice diameter	Marial	Flow-rate characteristics			Maximum operating	Max. system pressure
Size	Size (mmø) Mode	Model	C [dm3/(s·bar)]	b	Cv	pressure differential (MPa)	(MPa)
	2		0.63	0.63	0.23	1.0	
1	3	VX2A4	1.05	0.68	0.41	0.6	
	5		2.20	0.39	0.62	0.2	
2	4	VX2B4	1.90	0.52	0.62	1.0	1.0
~	7	VAZD4	3.99	0.44	1.08	0.15	
3	5	VX2C4	1.96	0.55	0.75	1.0	
3	7	VA204	3.99	0.44	1.08	0.3	

Normally Open (N.O.)

0:	Orifice diameter	Marial	Flow-rate characteristics			Maximum operating	Max. system pressure
Size	Size Orifice diameter Model	Model	C [dm3/(s·bar)]	b	Cv	pressure differential (MPa)	(MPa)
	2		0.63	0.63	0.23	0.9	
1	3	VX2D4	1.05	0.68	0.41	0.45	
	5		2.20	0.39	0.62	0.2	
2	4	VX2E4	1.90	0.52	0.62	0.8	1.0
-	7	VA2L4	3.99	0.44	1.08	0.15	
3	5	VX2F4	1.96	0.55	0.75	0.8	
3	7	VA2F4	3.99	0.44	1.08	0.3	

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 60 Note)	-20 to 60

Note) With no freezing

Valve Leakage Rate

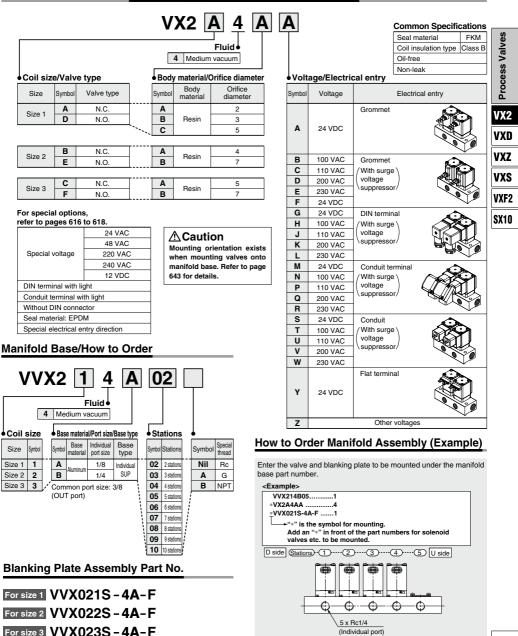
Internal Leakage

Seal material	Leakage rate Note)		
FKM	10 ⁻⁶ Pa·m ³ /sec or less		

External Leakage

Seal material	Leakage rate Note)
FKM	10 ⁻⁶ Pa·m ³ /sec or less

Note) Leakage (10⁻⁶ Pa·m³/sec) is the value at differential pressure 0.1 MPa and ambient temperature 20°C.



Direct Operated 2 Port Solenoid Valve Series VX21/22/23

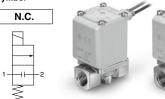
For Medium Vacuum Manifold

How to Order (Solenoid Valve for Manifold)

Dimensions → Page 630

SMC

INDEX


Enter the product's part number in order, counting the 1st station from the D side

(left in the manifold arrangement, when viewing the individual port in front).

Model/Valve Specifications

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1. Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

Size		Orifice diameter		Flow-rate ch	aracteristics	Maximum operating	Max. system pressure	Weight Note)
Size	Size Port size (mmø)	Model	AV (x 10 ⁻⁶ m ²)	Conversion Cv	pressure differential (MPa)	(MPa)	(g)	
		2		5.5	0.23	1		300
1	1/8, 1/4	3	VX212	10.0	0.42	0.6		300
		5		15.0	0.63	0.2		300
2	1/4, 3/8	4	VX222	15.0	0.63	1		460
2	1/4, 3/8	7		26.0	1.08	0.15	1.0	460
		5		18.0	0.75	1		580
3	1/4, 3/8	8	VX232	38.0	1.58	0.3		580
3		10		53.0	2.21	0.1		580
	1/2	10		53.0	2.21	0.1		630

Normally Open (N.O.)

<u> </u>		Orifice diameter		Flow-rate ch	aracteristics	Maximum operating	Max. system pressure	Weight Note)
Size	ize Port size	(mmø)	Model	AV (x 10 ⁻⁶ m ²)	Conversion Cv	pressure differential (MPa)	(MPa)	(g)
		2		5.5	0.23	0.9		320
1	1/8, 1/4	3	VX242	10.0	0.42	0.45		320
		5		15.0	0.63	0.2		320
2	1/4, 3/8	4	VX252	15.0	0.63	0.8	1.0	490
2	1/4, 3/6	7	VA252	26.0	1.08	0.15		490
3	1/4, 3/8	5	VX262	18.0	0.75	0.8		620
3	1/4, 3/6	8	V A 202	38.0	1.58	0.3		620

Note) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively. • Refer to "Glossary of Terms" on page 632 for details on the maximum operating pressure differential.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 60 Note)	-20 to 60

Note) With no freezing

Valve Leakage Rate

Internal Leakage

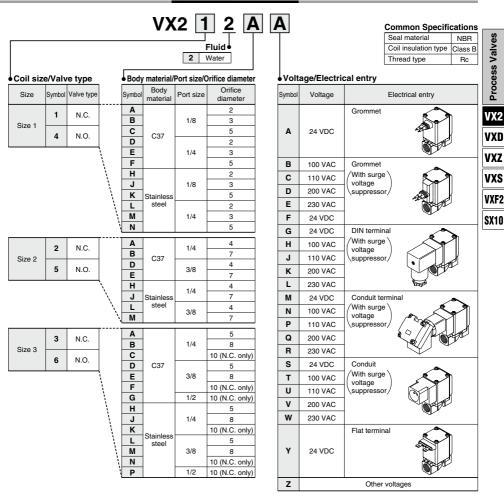
Seal material Note 2)	Leakage rate (Water) Note 1)
NBR (FKM)	0.1 cm ³ /min or less

External Leakage

Seal material Note 2)	Leakage rate (Water) Note 1)
NBR (FKM)	0.1 cm ³ /min or less

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other Options" on page 616 for the selection.


SMC

Direct Operated 2 Port Solenoid Valve Series VX21/22/23

Note) Refer to the table on page 620 for (ROHS) UL-compliant.

For Water Single Unit

How to Order (Single Unit)

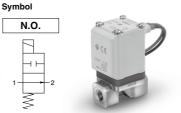
For special options, refer to pages 616 to 618.

or special options, relet	to puges 010 to 010.	
	24 VAC	Applicable to deionized water (Seal material: FKM)
	48 VAC	Seal material: EPDM
Special voltage	220 VAC	Oil-free
	240 VAC	G thread
	12 VDC	NPT thread
DIN terminal with light		With bracket
Conduit terminal with light		Mounting holes on the bottom side of the body
Without DIN connector		Special electrical entry direction

Single Unit For

This valve can also be used with air or water. (Refer to the valve specifications for air or water.)

▲ When the fluid is oil.


The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Model/Valve Specifications

Symbol

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

Size	Port size	Orifice diameter	Model	Flow-rate ch	aracteristics	Maximum operating pressure differential	Max. system pressure	Weight Note)
Size	Port size	(mmø)	woder	AV (x 10 ⁻⁶ m ²)	Conversion Cv	(MPa)	(MPa)	(g)
		2		5.5	0.23	1		300
1	1/8, 1/4	3	VX213	10.0	0.42	0.6		300
		5		15.0	0.63	0.2		300
2	1/4, 3/8	4	VX223	15.0	0.63	1		460
-	1/4, 3/6	7	V A 2 2 3	26.0	1.08	0.15	1.0	460
		5		18.0	0.75	1		580
3	1/4, 3/8	8	VX233	38.0	1.58	0.3		580
3		10		53.0	2.21	0.1		580
	1/2	10		53.0	2.21	0.1		630

Normally Open (N.O.)

0:	Denteine	Orifice diameter	diameter Flow-rate characteristics		Maximum operating	Max. system pressure	Weight Note)	
Size	Port size	(mmø)	Model	AV (x 10 ⁻⁶ m ²)	Conversion Cv	pressure differential (MPa)	(MPa)	(g)
		2		5.5	0.23	0.9		320
1	1/8, 1/4	3	VX243	10.0	0.42	0.45		320
		5		15.0	0.63	0.2		320
2	1/4, 3/8	4	VX253	15.0	0.63	0.8	1.0	490
2	1/4, 3/6	7	VA255	26.0	1.08	0.15		490
3	1/4, 3/8	5	VX263	18.0	0.75	0.8		620
3	1/4, 3/6	8	VA203	38.0	1.58	0.3		620

Note) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

· Refer to "Glossary of Terms" on page 632 for details on the maximum operating pressure differential.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 60	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

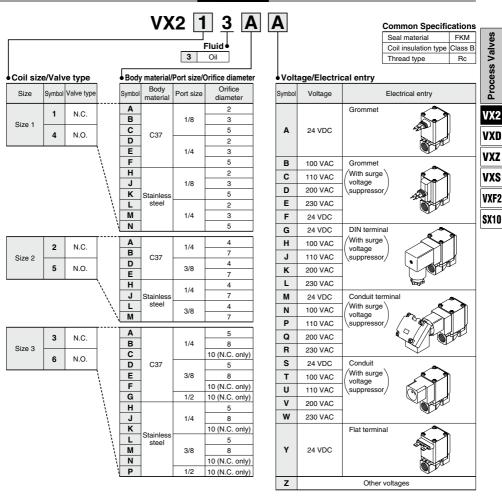
Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Oil) Note)
FKM	0.1 cm ³ /min or less

External Leakage

Seal material	Leakage rate (Oil) Note)				
FKM	0.1 cm ³ /min or less				
Note) Lookago is the value at ambient temperature 20%C					

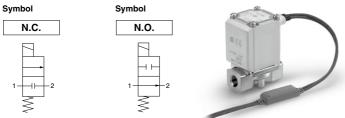

Note) Leakage is the value at ambient temperature 20°C.

Direct Operated 2 Port Solenoid Valve Series VX21/22/23

For Oil Single Unit

How to Order

For special options, refer to pages 616 to 618.


24 VAC	Without DIN connector
48 VAC	Oil-free
220 VAC	G thread
240 VAC	NPT thread
12 VDC	With bracket
	Mounting holes on the bottom side of the body
	Special electrical entry direction
	48 VAC 220 VAC 240 VAC

This valve can also be used with air, water, oil or heated water. (Refer to the valve specifications for air, water or oil.)

Model/Valve Specifications

When the valve is closed, flow is blocked from port 1 to port 2. However, if the pressure in port 2 is higher than port 1, the valve will not be able to block the fluid and it will flow from port 2 to port 1.

Normally Closed (N.C.)

Size	Port size	Orifice diameter	Model	Flow-rate ch	aracteristics	Maximum operating pressure differential	Max. system pressure	Weight ^{Note)}
Size	Port size	(mmø)	woder	AV (x 10 ⁻⁶ m ²)	Conversion Cv	(MPa)	(MPa)	(g)
		2		5.5	0.23	1		300
1	1/8, 1/4	3	VX215	10.0	0.42	0.6		300
		5		15.0	0.63	0.2		300
2	1/4, 3/8	4	VX225	15.0	0.63	1		460
2	1/4, 3/6	7	VA225	26.0	1.08	0.15	1.0	460
		5		18.0	0.75	1		580
3	1/4, 3/8	8	VX235	38.0	1.58	0.3		580
3		10		53.0	2.21	0.1		580
	1/2	10		53.0	2.21	0.1		630

Normally Open (N.O.)

Size	Deut sins	Orifice diameter	Marial	Flow-rate characteristics		Maximum operating	Max. system pressure	Weight Note)
Size	Port size	(mmø)	Model	AV (x 10 ⁻⁶ m ²)	Conversion Cv	(MPa)	(MPa)	(g)
		2		5.5	0.23	0.9		320
1	1/8, 1/4	3	VX245	10.0	0.42	0.45		320
		5		15.0	0.63	0.2		320
2	1/4, 3/8	4	VX255	15.0	0.63	0.8	1.0	490
2	1/4, 3/0	7	VA255	26.0	1.08	0.15		490
3	1/4, 3/8	5	VX265	18.0	0.75	0.8		620
3	1/4, 3/6	8	VA205	38.0	1.58	0.3		620

Note) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
Steam: 183 or less	-20 to 60
Heated water: 99 or less	-2010 00

Valve Leakage Rate

Internal Leakage

Fluid	Seal material	Leakage rate
Steam	FKM for high temperature	1.0 cm ³ /min or less
Heated water	Privi for high temperature	0.1 cm ³ /min or less

External Leakage

Fluid	t t	Seal material	Leakage rate
Stea	m	FKM for high temperature	1.0 cm ³ /min or less
Heated v	water	FRM for high temperature	0.1 cm ³ /min or less

Direct Operated 2 Port Solenoid Valve Series VX21/22/23

For Steam Single Unit

How to Order (Single Unit)

B

					VX	2 1	5 A
						1	Fluid
					5	Stea	ım
					* Car	be used w	ith heated water.
•Coil siz	e/Valv	e type		Body	material/	Port size/C	Drifice diameter
Size	Symbol	Valve type		Symbol	Body material	Port size	Orifice diameter
	1	N.C.		Α			2
Size 1	Ľ.	N.O.		В		1/8	3
0120 1	4	N.O.		С	C37		5
	-			D	00,		2
			Ϊ.	E		1/4	3
			1	F			5
			N.	н			2
			- X	J		1/8	3
				K	Stainless		5
			Į.	L	steel		2
			Ì	M		1/4	3
			,	N			5
	2	N.C.		Α		1/4	4
Size 2	Ľ	N.O.		В	C37	1/4	7
0120 2	5	N.O.		D	007	3/8	4
	ľ	14.0.	l	E		0/0	7
			λ,	н		1/4	4
			Ň	J	Stainless		7
			N	L	steel	3/8	4
			Ż	М			7
	•		[Α			5
Cine 0	3	N.C.		в		1/4	8
Size 3	6	N.O.		С			10 (Only N.C.)
	0	N.O.		D	C37		5
			l.	Е		3/8	8
			Ϋ́.	F			10 (Only N.C.)
			ί.	G		1/2	10 (Only N.C.)
				н			5
			N.	J		1/4	8
			N,	к	Stainless		10 (Only N.C.)
			Ņ	L	steel		5
			Ì	М		3/8	8
			Ì	N			10 (Only N.C.)
			,	Р		1/2	10 (Only N.C.)

		Com	mon Specifi	cations	
	[Seal	material	FKM for high temperature	es
	[Coil	insulation type	Class H	alv
		Thre	ad type	Rc	Š
• Volt	age/Ele	ectric	cal entry		Process Valves
Symbol	Volta	ge	Elec	strical entry Note 3)	VX2
			Grommet		VXD
A	24 VI	C			VXZ
в	100 V	AC	Grommet		VXS
С	110 V	AC	(With surge voltage		VXF2
D	200 V	AC	\suppressor/		0140
E	230 V	AC			SX10
G	24 VE	C	DIN terminal		
н	100 V	AC	With surge version N	ottage ote 1) 2)	
J	110 V	AC			
к	200 V	AC	1	NOT	
L	230 V	AC			
Ν	100 V	AC	Conduit term	inal	
Р	110 V	AC	(With surge voltage		
Q	200 V	AC	\suppressor/	A Provent	
R	230 V	AC			
т	100 V	AC	Conduit		
U	110 V	AC	(With surge voltage		
v	200 V	AC	\suppressor/		
w	230 V	AC	1	A TOTAL	
z			Other vo	oltages	
Note 1	AC volta	ade co	oil for "H" of DIN	I terminal type does not	

Common Specifications

Note 1) AC voltage coil for "H" of DIN terminal type does not have full-wave rectifier. Full-wave rectifier is built on the DIN connector side. Refer to page 631 to order it as an accessory.

Note 2) DIN connector insulation class is Class "B".

Note 3) Flat terminal is not available.

For special options, refer to pages 616 to 618.

24 VAC			
48 VAC			
220 VAC			
240 VAC			
Seal material: EPDM			
tom side of the body			
Special electrical entry direction			

Dimensions \rightarrow Page 629 (Single unit)

INDEX

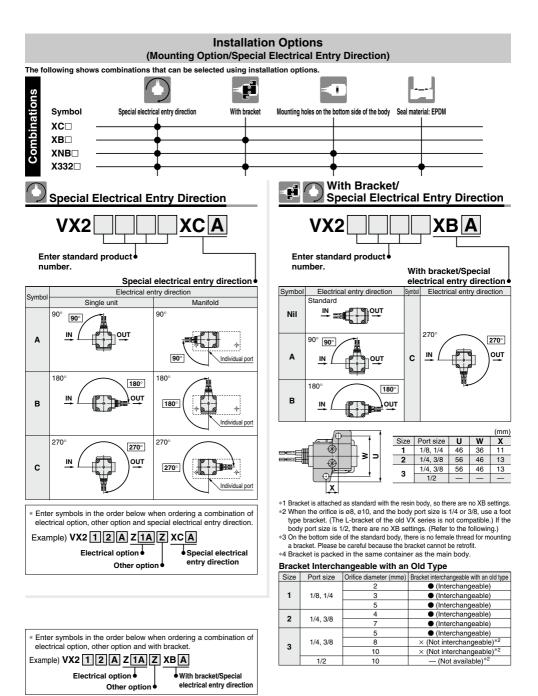
Series VX21/22/23 Special Options

Electrical Options (Special voltage, With light, Without DIN connector)

Enter standard product

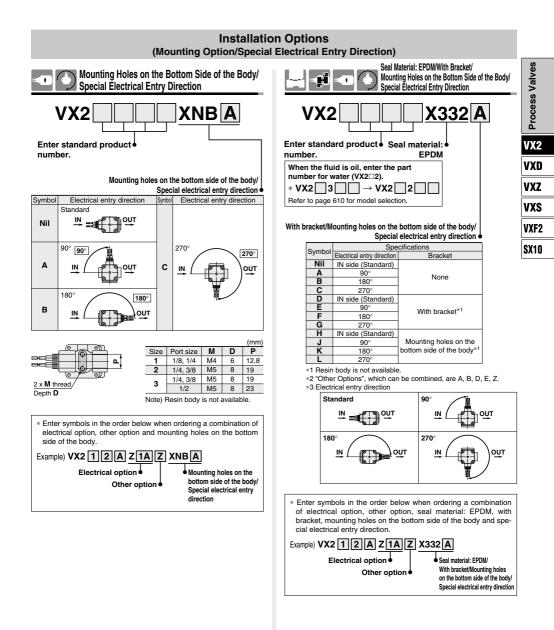
				Voltage/Electrical entry
pecification		Class H*		Electrical entry
	1A	•	48 VAC	
	1B	•	220 VAC	Grommet
	10	•	240 VAC	(With surge voltage suppressor)
	10	•	24 VAC	<u> </u>
	1D	-	12 VDC	Grommet
	1E	-	12 VDC	Grommet (With surge voltage suppressor)
	1F	•	48 VAC	
d)	1G	•	220 VAC	DIN terminal
Special voltage	1H		240 VAC	(With surge voltage suppressor)
đ	1V		24 VAC	(with surge voltage suppressor)
-	1J	—	12 VDC	
<u>Ö</u>	1K		48 VAC	
ğ	1L		220 VAC	Conduit terminal
0,	1M		240 VAC	(With surge voltage suppressor)
	1W	•	24 VAC	(with surge voltage suppressor)
	1N	—	12 VDC	
	1P	•	48 VAC	
	1Q	•	220 VAC	Conduit
	1R	•	240 VAC	Conduit
	1Y	•	24 VAC	(With surge voltage suppressor)
	1S	_	12 VDC	1
	1T	_	12 VDC	Flat terminal
	0.4		24 VDC	
	2A 2B		100 VAC	-
	2D 2C	-	110 VAC	-
		•		-
	2D	•	200 VAC	DIN terminal
	2E 2F		230 VAC	(With surge voltage suppressor)
	2F 2G		48 VAC 220 VAC	(with surge voltage suppressor)
	2G 2H	÷	220 VAC 240 VAC	-
-	2H 2V	•		-
g		•	24 VAC	-
	2J	-	12 VDC	
With light	2K	-	24 VDC	1
-	2L	•	100 VAC 110 VAC	4
	2M	•	200 VAC	1
	2N 2P	•	200 VAC 230 VAC	Conduit tormins!
	2P 2Q	•	230 VAC 48 VAC	Conduit terminal
	2Q 2R		220 VAC	(With surge voltage suppressor)
		•		1
	25	•	240 VAC	4
	2W	•	24 VAC	4
	2T	_	12 VDC	1
	3A	_	24 VDC	
to,	3B	_	100 VAC	1
ec	3C	_	110 VAC	1
nnd	3D	_	200 VAC	1
8	3E	_	230 VAC	DIN terminal
N	3F	_	48 VAC	(With surge voltage suppressor)
Ŧ	3G	_	220 VAC	(
JQ	3H	_	240 VAC	1
Without DIN connector	3V		24 VAC	1
5				

* Options marked with ● are available for Class "H" coil. Applicable for all when the coil insulation class is Class "B". **Other Options**


Low co	ncentration ozone resistant Oil-f		plicable to deionized water	Process Valves
	Port th		1	ess
	VX2 1 0 A			Proc
				VX2
	er standard product ∳ ber.			VXD
num				
	concentration ozone resistan	t and a	Other option pplicable to deionized water/	VXZ
	concentration ozone resistan Low concentration ozone resistant and applicable to deionized water ⁴¹ (Seal material: FKM)		pplicable to deionized water/	VXZ VXS
Low c	Low concentration ozone resistant and applicable		pplicable to deionized water/ Oil-free/Port thread	VXS
Low of Symbol	Low concentration ozone resistant and applicable		pplicable to deionized water/ Oil-free/Port thread Port thread Rc, One-touch fitting ^{\$2} G	
Low of Symbol Nil A B	Low concentration ozone resistant and applicable		pplicable to deionized water/ Oil-free/Port thread Port thread Rc, One-touch fitting ^{*2} G NPT	VXS VXF2
Low c Symbol Nil A B C	Low concentration ozone resistant and applicable	Oil-free — —	pplicable to deionized water/ Oil-free/Port thread Port thread Rc, One-touch fitting*2 G NPT Rc, One-touch fitting*2	VXS
Low of Symbol Nil A B	Low concentration ozone resistant and applicable		pplicable to deionized water/ Oil-free/Port thread Port thread Rc, One-touch fitting ^{*2} G NPT	VXS VXF2
Low c Symbol Nil A B C D	Low concentration ozone resistant and applicable to deionized water ⁴¹ (Seal material: FKM) — — — — — —	Oil-free — —	pplicable to deionized water/ Oil-free/Port thread Port thread Rc, One-touch fitting ^{#2} G G	VXS VXF2
Low c Symbol Nil A B C D E F G	Low concentration ozone resistant and applicable	Oil-free — —	pplicable to deionized water/ Oil-free/Port thread Port thread Rc, One-touch fitting*2 G NPT Rc, One-touch fitting*2 G NPT G NPT	VXS VXF2
Low c Symbol Nil A B C D E F G H	Low concentration ozone resistant and applicable to deionized water ⁴¹ (Seal material: FKM) — — — — — —	Oil-free — — — —	pplicable to deionized water/ Oil-free/Port thread Port thread Rc, One-touch fitting*2 G NPT Rc, One-touch fitting*2 G NPT G NPT Rc, One-touch fitting*2	VXS VXF2
Low c Symbol Nil A B C D E F G	Low concentration ozone resistant and applicable to deionized water ⁴¹ (Seal material: FKM) — — — — — —	Oil-free — —	pplicable to deionized water/ Oil-free/Port thread Port thread Rc, One-touch fitting* ² G NPT Rc, One-touch fitting* ² G NPT G NPT Rc, One-touch fitting* ² G NPT Rc, One-touch fitting* ² G	VXS VXF2
Low c Symbol Nil A B C D E F G H	Low concentration ozone resistant and applicable to deionized water ⁴¹ (Seal material: FKM) — — — — — —	Oil-free — — — —	pplicable to deionized water/ Oil-free/Port thread Port thread Rc, One-touch fitting*2 G NPT Rc, One-touch fitting*2 G NPT G NPT Rc, One-touch fitting*2	VXS VXF2

*1 Applicable to air (VX2□0) and water (VX2□2).

*2 When the body is resin, One-touch fittings are equipped.


* Enter symbols in the order below when ordering a combination of electrical option, other option, etc.

SMC

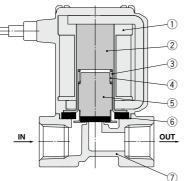
Special Options Series VX21/22/23

INDEX

Series VX21/22/23 UL-compliant * Refer to the table shown below for UL-compliant.

Virtual day (Note) Constrained (Note) Units (Note) U								For Air								
Note Table and Partial	VX210) Valv	e type: N.	С.		<u>VX</u> 2	20 Valv	ve type: N.	с.		v	/ <u>X23</u> 0	Valv	e type: N.	С.	
B B A XB B B A XB 0	Size, Valve type,	Body	Voltage, Electrical entry,	Other		Valve ty	^{De,} matorial	Electrical entry,			V	alve type,		Electrical entry,		With ^{Note)} bracket
B B A XB B B A XB 0		Α		Nil	Nil				Nil	Nil		/X230	Α		Nil	Nil
D D C E E D D C H Mono F E D D C H Mono M F E D D D C J Mono M F E D																
E E D H Hest E D J Mose M F E D J Mose M F E D Kows P H N G Kows R L N G M F E D M Meso R L N G M N G M N G U Massion filt S Z S Z N N S Z N		С	С	в		1	D	С	В		1		С	С	в	
F F E J*000 M G K 1000 P H L 1000 Q K M 1000 N G G M M 1000 N G G M M 1000 Q K R L Note S Z R L Note S Z R L Note R L Note S Z T Note S Z Note R L V Visition of the standard to the		D	D	С]		E	D	С				D	D	С	
H stein N M F J Stein N Geo K 1990 N G K N G K M Meen N Geo K 1990 N G K M Meen N Geo K M Meen N Ge]											
J Yown P H N G K Weis R L A K <							-									
L twos O K M twos S Z T Note) Sore the U D K L K L K L U D socket is estable to the W T Note) Sore the U T Note) Sore the U T Note) Sore the U Note		-					M Note)		-	-					-	
N Mode R L N Mode S Z T Nolop Since the U			-		-					-			-	-		
N Note) S Z M Note) S Z T Note) Since the T Note) Since the U V attached to the V attached to the V<					1											
T Note) Since the U T Note) Since the U T Note) Since the U Note)																
U bracket is etathed to the resin body ype Y U bracket is etathed to the resin body ype Z1A bracket is etathed to the resin body ype Z1A D bracket is etathed to the resin body ype Z1B bracket is etathed to the resin body ype Z1A D bracket is etathed to the resin body ype Z1A D D bracket is etathed to the resin body ype Z1A D			-		j			-		J nacithe				-		
V attached to the resin body type H, J, K, L, M, N, Y V attached to the resin body Y V attached to the resin body Y A A A A A A A A A A A A A A A A M W <thw< td=""><th></th><th></th><td>U</td><td></td><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td></td><td></td><td>U</td><td></td><td></td></thw<>			U					U						U		
N H, J, K, L, M, N N <th></th> <th></th> <td>v</td> <td>attach</td> <td>ed to the</td> <td></td> <td></td> <td></td> <td>attach</td> <td>ned to the</td> <td></td> <td></td> <td></td> <td>v</td> <td>attach</td> <td>ed to the</td>			v	attach	ed to the				attach	ned to the				v	attach	ed to the
VB Cannot be selected. VI Z1A VB Cannot be selected. VI Z1A VB Cannot be selected. VI Z1A VB Cannot be z1A VB Cannot be z1D																
Z1B Z1B Z1B Z1C Z1C Z1C Z1U Z1U Z1U Z1D Z1D Z1U Z1E Z1E Z1E Z1K Z1K Z1K Z1M Z1W Z1W Z1M Z1M Z1W Z1N Z1W Z1W Z1N Z1W Z1W Z1N Z1W Z1W Z1N Z1N Z1W Z1N Z1N Z1W Z1N Z1N Z1P Z1Q Z1Q Z1Q Z1R Z1R Z1S Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z2K Z2L Z2M Z2N Z2N Z2N Z2N Z2N Z2P Z2P Z2P Z2Q Z2R Z2R Z2N Z2N Z2N Z2N Z2N Z2N Z2N Z2N Z2N Z2B Z2R Z																
Z1C Z1C Z1C Z1U Z1U Z1U Z1D Z1D Z1D Z1E Z1E Z1E Z1K Z1L Z1L Z1M Z1L Z1L Z1M Z1M Z1M Z1M Z1M Z1M Z1N Z1N Z1N Z1P Z1Q Z1Q Z1R Z1R Z1R Z1Y Z1S Z1S Z1S Z1S Z1S Z1T Z2K Z2L Z2M Z2N Z2N Z2P Z2P Z2P Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2N Z2N Z2N Z2N Z2N Z2N Z2Q Z2Q Z2Q Z2R Z2R Z				select	ed.				select	ted.					select	ed.
Z1U Z1U Z1U Z1D Z1D Z1D Z1E Z1E Z1E Z1K Z1K Z1K Z1M Z1M Z1M Z1M Z1M Z1M Z1M Z1M Z1M Z1M Z1M Z1M Z1N Z1M Z1M Z1N Z1N Z1N Z1P Z1P Z1P Z1Q Z1Q Z1Q Z1R Z1R Z1R Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z2K Z2K Z2M Z2M Z2M Z2N Z2N Z2N Z2N Z2N Z				-					-						-	
210 210 210 21E 21E 21E 21K 21K 21K 21L 21L 21L 21M 21M 21M 21W 21W 21W 21P 21Q 21Q 21P 21Q 21Q 21R 21R 21R 21Y 21S 21S 21T 21T 21T 21X 21X 21X 21Q 21Q 21Q 21R 21R 21R 21Y 21S 21S 21T 21T 21T 22K 22L 22L 22M 22M 22M 22N 22P 22P 22Q 22Q 22Q 22Q 22Q 22Q 22Q 22Q 22Q 22Q 22Q 22Q 22Q 22Q 22W 22B 22F 22F 23A 23A 23A 23B 23B 2				-					-						-	
Z1E Z1E Z1E Z1K Z1L Z1L Z1M Z1M Z1M Z1W Z1M Z1M Z1W Z1M Z1M Z1N Z1N Z1M Z1P Z1P Z1P Z1R Z1R Z1R Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z1T Z1T Z2K Z2K Z2K Z2N Z2M Z2N Z2N Z2N Z				1					-						-	
Z1K Z1K Z1K Z1M Z1M Z1M Z1M Z1M Z1M Z1W Z1W Z1W Z1N Z1W Z1W Z1P Z1P Z1P Z1Q Z1Q Z1Q Z1R Z1R Z1R Z1Y Z1Y Z1Y Z1G Z1G Z1R Z1R Z1R Z1R Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z1T Z2K Z2L Z2L Z2L Z2M Z2M Z2M Z2N Z2P Z2P Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2A Z2A Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3A Z3A Z3A Z3F Z3F Z				1					1							
Z1M Z1M Z1M Z1N Z1N Z1W Z1N Z1N Z1W Z1P Z1P Z1P Z1Q Z1Q Z1Q Z1R Z1R Z1R Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z1T Z1T Z2K Z2K Z2K Z2N Z2N Z2N Z2N Z2N Z2N Z2P Z2P Z2P Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2N Z2N Z2N Z2P Z2Q Z2Q Z2R Z2S Z2S Z2W Z2W Z2W Z2T Z2S Z2S Z3A Z3A Z3A Z3B Z3G Z3G Z3F Z3F Z3F Z3H Z3H Z3H Z3V Z3V Z3V Z3J Z3V Z3V Z3J Z3V Z				1					-						1	
Z1W Z1W Z1W Z1N Z1N Z1N Z1P Z1P Z1P Z1Q Z1Q Z1Q Z1R Z1R Z1R Z1Y Z1Y Z1Y Z1S Z1S Z1T Z1T Z1T Z1T Z2K Z2K Z2K Z2M Z2M Z2M Z2N Z2N Z2N Z2P Z2P Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2N Z2T Z2R Z2R Z3A Z3A Z3A Z3B Z3C Z3C Z3D Z3D Z3D Z3F Z3F Z3F Z3G Z3F Z3F Z3H Z3H Z3H Z3V Z3V Z3V Z3V Z3V Z3V Z3V Z3V Z3V Z3V Z3V Z3V Z3V Z3V Z			Z1L	1				Z1L	1					Z1L	1	
Z1N Z1N Z1N Z1P Z1P Z1P Z1Q Z1Q Z1P Z1R Z1R Z1R Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z1T Z1S Z1T Z1K Z1Y Z1S Z1S Z1S Z1T Z1K Z2K Z2L Z2L Z2L Z2M Z2N Z2N Z2P Z2P Z2P Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3D Z3D Z3G Z3G Z3G Z3G Z3G Z3G Z3H Z3H Z3H Z3J Z3J Z			Z1M]				Z1M	1					Z1M]	
Z1P Z1P Z1P Z1Q Z1Q Z1Q Z1R Z1R Z1Q Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z1T Z1T Z2K Z2L Z2L Z2M Z2L Z2L Z2M Z2M Z2M Z2N Z2N Z2N Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2W Z2W Z2W Z2T Z2T Z2N Z3A Z3A Z3A Z3A Z3A Z3A Z3D Z3D Z3D Z3E Z3G Z3G Z3A Z3G Z3G Z3A Z3G Z3G Z3G Z3G Z3G Z3G Z3G Z3G Z3H Z3H Z3H Z3V Z3V Z3V Z3J Z3V Z3V Z3J Z3V Z3V Z3J Z3V Z]												
Z1Q Z1Q Z1Q Z1R Z1R Z1R Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z1T Z1T Z2K Z2K Z2K Z2M Z2M Z2L Z2N Z2N Z2N Z2P Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2S Z2S Z2W Z2W Z2W Z2T Z3A Z3A Z3B Z3B Z3B Z3C Z3D Z3D Z3G Z3G Z3G Z3H Z3H Z3H Z3V Z3V Z3V Z3J Z3J Z3J																
Z1R Z1R Z1R Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z1T Z1T Z2K Z2K Z2K Z2M Z2L Z2L Z2M Z2N Z2N Z2P Z2P Z2P Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3E Z3F Z3F Z3G Z3G Z3G Z3H Z3H Z3H Z3J Z3J Z3J									-							
Z1Y Z1Y Z1Y Z1S Z1S Z1S Z1T Z1T Z1T Z2K Z2L Z2L Z2M Z2M Z2M Z2N Z2N Z2N Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3F Z3F Z3F Z3G Z3G Z3G Z3H Z3H Z3H Z3J Z3J Z3J				-					-						-	
Z1S Z1S Z1S Z1T Z1T Z1T Z2K Z2K Z2K Z2L Z2L Z2L Z2M Z2M Z2M Z2N Z2N Z2N Z2P Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2S Z2S Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3F Z3F Z3F Z3G Z3H Z3H Z3V Z3J Z3J				4					-						-	
Z1T Z1T Z1T Z2K Z2K Z2K Z2M Z2M Z2M Z2N Z2N Z2N Z2P Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2A Z2N Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3G Z3G Z3G Z3H Z3H Z3H Z3V Z3V Z3V Z3J Z3J Z3J									-						1	
Z2K Z2K Z2K Z2L Z2L Z2L Z2M Z2M Z2M Z2N Z2N Z2N Z2P Z2P Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3E Z3F Z3F Z3G Z3H Z3H Z3V Z3V Z3V Z3J Z3J Z3J									1						1	
Z2M Z2M Z2M Z2P Z2P Z2P Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3F Z3F Z3F Z3G Z3G Z3H Z3V Z3V Z3V Z3J Z3J Z3J				1				Z2K	1					Z2K	1	
Z2N Z2N Z2N Z2P Z2P Z2P Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3F Z3F Z3F Z3G Z3H Z3H Z3V Z3V Z3V Z3J Z3J Z3J			Z2L	1				Z2L	1					Z2L	1	
Z2P Z2P Z2P Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3E Z3F Z3F Z3G Z3G Z3H Z3V Z3V Z3V Z3J Z3J Z3J																
Z2Q Z2Q Z2Q Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3D Z3F Z3F Z3F Z3G Z3G Z3H Z3V Z3J Z3J																
Z2R Z2R Z2R Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3F Z3F Z3F Z3G Z3H Z3H Z3V Z3V Z3V				-					-						-	
Z2S Z2S Z2S Z2W Z2W Z2W Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3F Z3F Z3F Z3H Z3H Z3H Z3V Z3V Z3V				-					-						-	
Z2W Z2W Z2W Z2T Z3A Z2A Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3E Z3F Z3F Z3G Z3G Z3G Z3H Z3H Z3H Z3J Z3J Z3J									-						-	
Z2T Z2T Z2T Z3A Z3A Z3A Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3E Z3E Z3E Z3G Z3G Z3G Z3V Z3J Z3J				4					1						1	
Z3B Z3B Z3B Z3C Z3C Z3C Z3D Z3D Z3D Z3E Z3E Z3E Z3F Z3F Z3F Z3G Z3H Z3H Z3V Z3J Z3J				1					1						1	
Z3C Z3C Z3D Z3D Z3E Z3E Z3F Z3F Z3G Z3H Z3V Z3J				1					1					Z3A	1	
Z3D Z3D Z3D Z3E Z3E Z3E Z3F Z3F Z3F Z3G Z3G Z3G Z3H Z3H Z3H Z3V Z3V Z3V			Z3B	1				Z3B	1					Z3B	1	
Z3E Z3E Z3E Z3F Z3F Z3F Z3G Z3G Z3G Z3H Z3H Z3H Z3V Z3V Z3V]]	
Z3F Z3F Z3F Z3G Z3G Z3G Z3H Z3H Z3H Z3V Z3V Z3V Z3J Z3J Z3J				1					1							
Z3G Z3G Z3H Z3H Z3V Z3V Z3J Z3J			-					-	-							
Z3H Z3H Z3H Z3V Z3V Z3V Z3J Z3J Z3J				-					-							
Z3V Z3V Z3V Z3J Z3J Z3J				4					-							
Z3J Z3J Z3J				{					-						-	
				1					1						1	
Refer to prove C4C to C40 for electrical actions, other entires, and breaket/electrical entry direction				J											1	

Refer to pages 616 to 618 for electrical options, other options, and bracket/electrical entry direction.

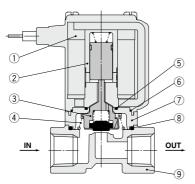

UL-compliant Series VX21/22/23

		_			_		For Water					_			
VX212	Valv	e type: N.	C.		VX22	2 Valv	e type: N.			VX232	. Valv	e type: N.	c.		
Size,	Body	Voltage,	Other	With	Size,	Body	Voltage,	Other	With	Size,	Body	Voltage,	Other	With	'es
Valve type, Fluid	material	Electrical entry, Electrical options	options	bracket	Valve type, Fluid	material	Electrical entry, Electrical options	options	bracket	Valve type, Fluid	material	Electrical entry, Electrical options	options	bracket	Process Valves
VX212	Α	Α	Nil	Nil	VX222	Α	Α	Nil	Nil	VX232	Α	Α	Nil	Nil	ss /
L	В	В	Α	ХВ		В	В	Α	ХВ		В	В	Α	ХВ	ŝ
	С	С	В			D	С	В			С	С	В		2
	D	D	C			E	D	C			D	D	C	-	
	E	E F	D			H	E F	DE	-		E F	E F	DE	-	VX2
	н	M	F			L	M	F			G	M	F	-	VXD
	J	N	G			М	N	G			н	N	G	1	VAD
	K	Р	Н				Р	Н			J	Р	Н		VXZ
	L	Q	K				Q	K	-		K	Q	ĸ	-	1000
	N	н S	Z				R	Z	-		M	R	L	-	VXS
I		T	-]			Т	-	J		N	T	-	1	VXF2
		U	1				U	1			Р	U			-
		v					V					v			SX10
		W					W					W			
		Y Z1A	-				Y Z1A	-				Y Z1A			
		Z1A Z1B	-				Z1A Z1B					Z1A Z1B			
		Z1C	1				Z1C	1				Z1C			
		Z1U					Z1U					Z1U			
		Z1D					Z1D					Z1D			
		Z1E	-				Z1E	-				Z1E			
		Z1K Z1L	-				Z1K Z1L	-				Z1K Z1L			
		Z1M	-				Z1M					Z1M			
		Z1W					Z1W	1				Z1W			
		Z1N					Z1N					Z1N			
		Z1P					Z1P					Z1P			
		Z1Q Z1R	-				Z1Q Z1R					Z1Q Z1R			
		Z1Y	-				ZIY					Z1Y			
		Z1S	1				Z1S	1				Z1S			
		Z1T					Z1T					Z1T			
		Z2K					Z2K					Z2K			
		Z2L Z2M	-				Z2L Z2M	-				Z2L Z2M			
		Z2M Z2N	1				Z2M Z2N	-				Z2M Z2N			
		Z2P					Z2P					Z2P			
		Z2Q					Z2Q					Z2Q			
		Z2R					Z2R					Z2R			
		Z2S Z2W	-				Z2S Z2W	-				Z2S Z2W			
		Z2W Z2T	-				Z2W Z2T	-				Z2W Z2T			
		Z3A	-				Z3A					Z3A			
		Z3B	1				Z3B	1				Z3B			
		Z3C					Z3C					Z3C			
		Z3D					Z3D					Z3D			
		Z3E Z3F	-				Z3E Z3F	-				Z3E Z3F			
		Z3F Z3G	1				Z3F Z3G	1				Z3F Z3G			
		Z3H	1				Z3H	1				Z3H			
		Z3V	1				Z3V	1				Z3V			
		Z3J]				Z3J]				Z3J			
		-								 					INDEX

Refer to pages 616 to 618 for electrical options, other options, and bracket/electrical entry direction.

Construction/Single Unit

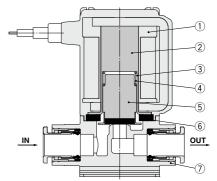
Normally Closed (N.C.) Body material: Aluminum, C37, Stainless steel



Component Parts

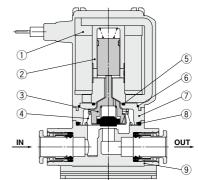
No.	Description	Material
1	Solenoid coil	Cu + Fe + Resin
2	Core	Fe
3	Tube	Stainless steel
4	Spring	Stainless steel
5	Armature assembly	NBR, FKM, Stainless steel
6	Seal	NBR, FKM
7	Body	Aluminum, C37, Stainless steel

Normally Open (N.O.)


Body material: Aluminum, C37, Stainless steel

Component Parts

No.	Description	Material
1	Solenoid coil	Cu + Fe + Resin
2	Sleeve assembly	Stainless steel, Resin (PPS)
3	Push rod assembly	Resin (PPS), Stainless steel, NBR, FKM
4	Spring	Stainless steel
5	O-ring A	NBR, FKM
6	O-ring B	NBR, FKM
7	Adapter	Resin (PPS)
8	O-ring C	NBR, FKM
9	Body	Aluminum, C37, Stainless steel


Body material: Resin

Component Parts

No.	Description	Material
1	Solenoid coil	Cu + Fe + Resin
2	Core	Fe
3	Tube	Stainless steel
4	Spring	Stainless steel
5	Armature assembly	NBR, FKM, Stainless steel
6	Seal	NBR, FKM
7	Body	Resin (PBT)

Body material: Resin

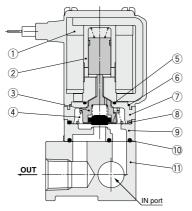
Component Parts

No.	Description	Material									
1	Solenoid coil	Cu + Fe + Resin									
2	Sleeve assembly	Stainless steel, Resin (PPS)									
3	Push rod assembly	Resin (PPS), Stainless steel, NBR, FKM									
4	Spring	Stainless steel									
5	O-ring A	NBR, FKM									
6	O-ring B	NBR, FKM									
7	Adapter	Resin (PPS)									
8	O-ring C	NBR, FKM									
9	Body	Resin (PBT)									

SMC

Direct Operated 2 Port Solenoid Valve Series VX21/22/23

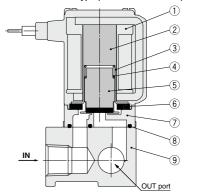
Normally Closed (N.C.) Base material: Aluminum

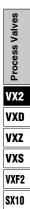

Construction/Manifold

Component Parts

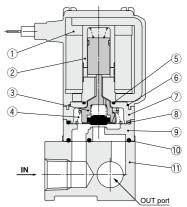
No.	Description	Material
1	Solenoid coil	Cu + Fe + Resin
2	Core	Fe
3	Tube	Stainless steel
4	Spring	Stainless steel
5	Armature assembly	NBR, FKM, Stainless steel
6	Seal	NBR, FKM
7	Body	Resin (PPS)
8	Gasket	NBR, FKM
9	Base	Aluminum

Normally Open (N.O.)


Base material: Aluminum Common SUP type (for air)



Component Parts


No.	Description	Material
1	Solenoid coil	Cu + Fe + Resin
2	Sleeve assembly	Stainless steel, Resin (PPS)
3	Push rod assembly	Resin (PPS), Stainless steel, NBR, FKM
4	Spring	Stainless steel
5	O-ring A	NBR, FKM
6	O-ring B	NBR, FKM

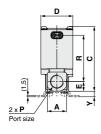
Individual SUP type (for medium vacuum)

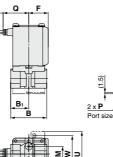
Individual SUP type (for medium vacuum)

No.	Description	Material
7	Adapter	Resin (PPS)
8	O-ring C	NBR, FKM
9	Body	Resin (PPS)
10	Gasket	NBR, FKM
11	Base	Aluminum

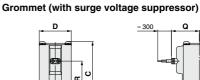
INDEX

For Air

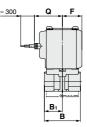

Dimensions/Body Material: Aluminum

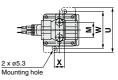

= 300

2 x ø5.3

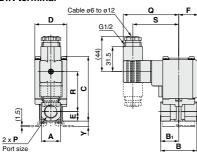

Mounting hole

Grommet

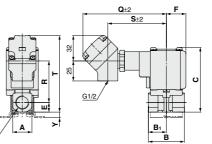


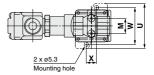


х



<u>ш</u>ŧ





DIN terminal

													(mm)
Size	Port size	Α	в	Bı	с	D	E	E	M	ounting	bracket o	dimensio	ns
Size	P	~		Di			-	•	M	U	W	X	Y
1	1/8, 1/4	19	43	21	61 (67)	30	9.5	20	12.8	46	36	11	6
2	1/4, 3/8	24	45	22.5	76 (84)	35	12	22	19	56	46	13	7
3	1/4, 3/8	24	45	22.5	81 (89)	40	12	24.5	19	56	46	13	7
3	1/2	30	50	25	86.5	40	15	24.5	-	_	_	-	_

х

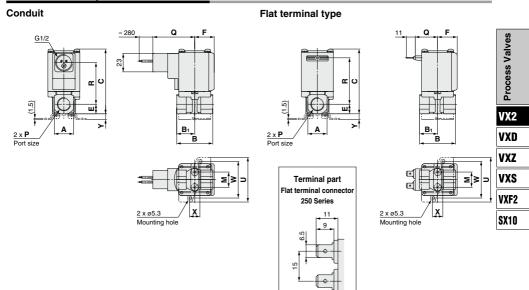
2 x ø5.3

Mounting hole

≥1≥|=

							Electrical entry						
Size	Port size P	(Grommet		Grommet e voltage suppressor)		DIN terminal		Conduit terminal				
		Q	R	Q	R	Q R S			Q	R	S	Т	
1	1/8, 1/4	27	42 (47.5)	30	28.5 (34)	64.5	34 (39.5)	52.5	99.5	36 (41.5)	68.5	77 (83)	
2	1/4, 3/8	29.5	53.5 (61.5)	32.5	39.5 (47.5)	67	45 (53)	55	102	47 (55)	71	91 (99)	
3	1/4, 3/8	32	58 (66)	35	44.5 (52.5)	69.5	50 (58)	57.5	104.5	52 (60)	73.5	96 (104)	
3	1/2	32	61	35	47.5	69.5	53	57.5	104.5	55	73.5	101.5	

SMC


<u>2 x </u>**P**

Port size

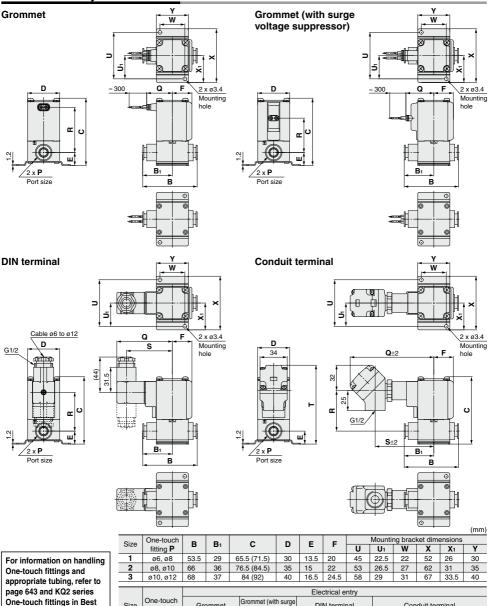
(): Denotes the Normally Open (N.O.) dimensions.

623

Dimensions/Body Material: Aluminum

Cine	Port size	•	в	B1	<u> </u>	D	E	E	M	ounting l	bracket c	limensio	ns
Size	P	A	P	D1			-		м	U	W	X	Y
1	1/8, 1/4	19	43	21	61 (67)	30	9.5	20	12.8	46	36	11	6
2	1/4, 3/8	24	45	22.5	76 (84)	35	12	22	19	56	46	13	7
3	1/4, 3/8	24	45	22.5	81 (89)	40	12	24.5	19	56	46	13	7
3	1/2	30	50	25	86.5	40	15	24.5	_	_	—	—	—

			Electric	Electrical entry									
Size	Port size		Conduit	Flat	terminal type								
	F	Q	R	Q	R								
1	1/8, 1/4	47.5	36 (41.5)	23	42 (47.5)								
2	1/4, 3/8	50	47 (55)	25.5	53.5 (61.5)								
3	1/4, 3/8	52.5	52 (60)	28	58 (66)								
3	1/2	52.5	55	28	61								

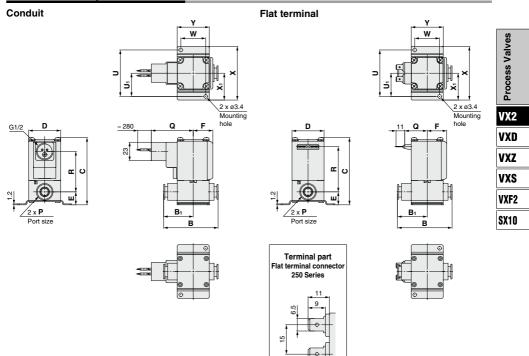

(): Denotes the Normally Open (N.O.) dimensions.

624

INDEX

For Air

Dimensions/Body Material: Resin


One-fouch fittings in Best Pneumatics No. 6. The KQ2 series information can be downloaded from the following SMC website, http://www.smcworld.com

One-touch Grommet (with surge Size Grommet **DIN** terminal Conduit terminal fittina P voltage suppressor Q Q R R Q R s Q R S т 1 ø6, ø8 27 42.5 (48) 30 29 (34.5) 64.5 34.5 (40) 52.5 99.5 36.5 (42) 68.5 81.5 (87) 37 (45) 2 ø8 ø10 29.5 51 (59) 32.5 67 43 (50.5) 55 102 45 (52.5) 71 91.5 (99.5) 3 ø10, ø12 32 56.5 (64.5) 35 43 (51) 69.5 48.5 (56.5) 57.5 104.5 50.5 (58.5) 73.5 98.5 (106.5)

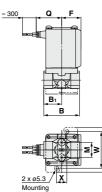
(): Denotes the Normally Open (N.O.) dimensions.

SMC

Dimensions/Body Material: Resin

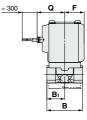
(mm)

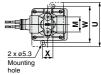
	One-touch								Mountin	a braa	kot dim	oncion			Electric	al entry	/
Size	fitting P	в	B1	c	D	E	F		Mounting bracket dimensions						Conduit		at terminal
	nung F							U	U1	w	Х	X 1	Y	Q	R	Q	R
1	ø6, ø8	53.5	29	65.5 (71.5)	30	13.5	20	45	22.5	22	52	26	30	47.5	36.5 (42)	23	42.5 (48)
2	ø8, ø10	66	36	76.5 (84.5)	35	15	22	53	26.5	27	62	31	35	50	45 (52.5)	25.5	51 (59)
3	ø10, ø12	68	37	84 (92)	40	16.5	24.5	58	29	31	67	33.5	40	52.5	50.5 (58.5)	28	56.5 (64.5)


(): Denotes the Normally Open (N.O.) dimensions.

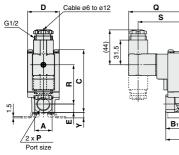
Dimensions/Body Material: C37, Stainless Steel

Grommet

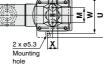




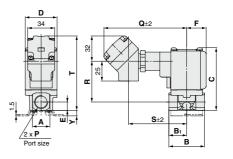
hole

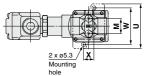


Grommet (with surge voltage suppressor)



DIN terminal




Conduit terminal

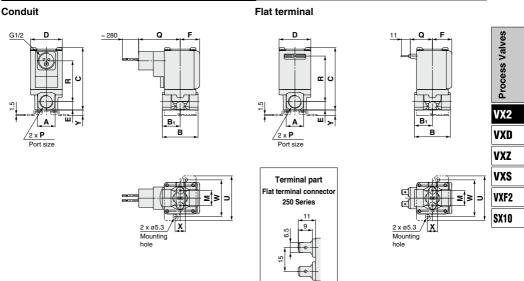
<u>2 x P</u>

∍

Port size

(----)

													(mm)			
Size	Port size		в	B1		D	-	-	Mounting bracket dimensions							
Size	P	A		D1		0	-		М	U	w	X	Y			
1	1/8, 1/4	19	43	21	61 (67)	30	9.5	20	12.8	46	36	11	6			
2	1/4, 3/8	22	45	22.5	74.5 (82.5)	35	10.5	22	19	56	46	13	7			
	1/4, 3/8	22	45	22.5	79 (87)	40	10.5	24.5	19	56	46	13	7			
3	1/2	29.5	50	25	85.5	40	14	24.5	_	_		_	_			


							Electrical entry							
Size	Port size P		Grommet		met (with surge ge suppressor)		DIN terminal		Conduit terminal					
		Q	R	Q	R	Q	R	s	Ø	R	S	Т		
1	1/8, 1/4	27	42 (47.5)	30	28.5 (34)	64.5	64.5 34 (39.5)		99.5	36 (41.5)	68.5	77 (83)		
2	1/4, 3/8	29.5	53.5 (61.5)	32.5	39.5 (47.5)	67	45 (53)	55	102	47 (55)	71	89.5 (97.5)		
3	1/4, 3/8	32			44 (52)	69.5	49.5 (57.5)	57.5	104.5	51.5 (59.5)	73.5	94 (102)		
	1/2	32	61	35	47.5	69.5	53	57.5	104.5	55	73.5	100.5		

(): Denotes the Normally Open (N.O.) dimensions.

Medium W Water

Dimensions/Body Material: C37, Stainless Steel

														(mm)
Size	Port size		-	-		_	D	-	-	M	ounting I	bracket o	dimensio	ns
Size	Р	A	В	B1	(С		E	F	М	U	W	X	Y
1	1/8, 1/4	19	43	21	61	(67)	30	9.5	20	12.8	46	36	11	6
2	1/4, 3/8	22	45	22.5	74.5	74.5 (82.5)		10.5	22	19	56	46	13	7
3	1/4, 3/8	22	45	22.5	79	(87)	40	10.5	24.5	19	56	46	13	7
	1/2	29.5	50	25	85	5.5	40	14	24.5	—	—	—	—	—
	Destation			Electric	al entry									
Size	Port size		Conduit		FI	lat termir	nal							
	•	Q	F	۲	Q	F	2							
1	1/8, 1/4	47.5	36 (4	41.5)	23	42 (4	47.5)							
2	1/4, 3/8	50	47	(55)	25.5	53.5	(61.5)							

57.5 (65.5)

61

52.5 52.5 (): Denotes the Normally Open (N.O.) dimensions.

1/4, 3/8

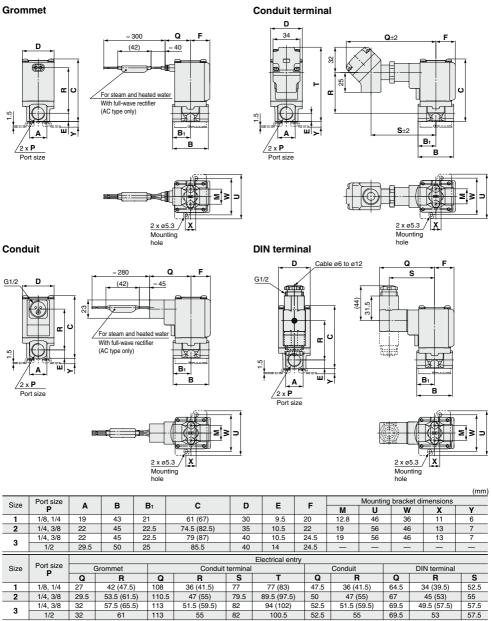
1/2

3

51.5 (59.5)

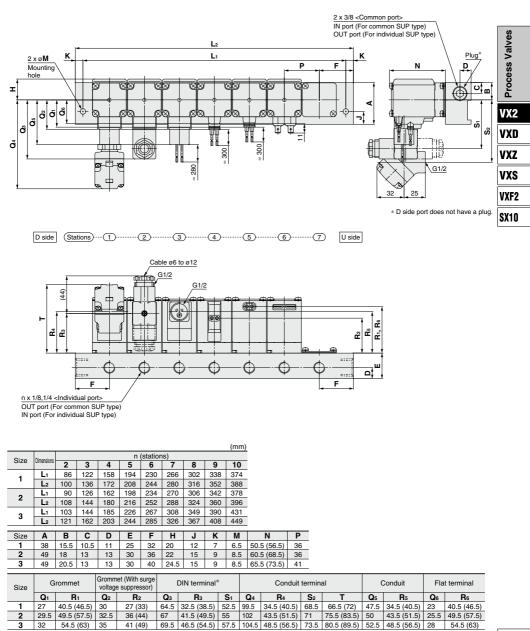
55

28


28

628

* Can be used with heated water


Dimensions/Body Material: C37, Stainless Steel

(): Denotes the Normally Open (N.O.) dimensions.

Flat terminal is not available for valves for steam and heated water.

Dimensions/Manifold/Base Material: Aluminum

(): Denotes the Normally Open (N.O.) dimensions.

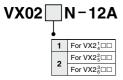
* When using a DIN terminal that faces downward, be careful of interference in the electrical wires and piping.

INDEX

vacuum

Series VX21/22/23

For Air, Medium Vacuum, Water, Oil and Steam


Replacement Parts

• DIN Connector Part No.

Electrical option	Rated voltage	Connector part no.	Electrical option	Rated voltage	Connector part n
	24 VDC			24 VDC	GDM2A-G-S5
	12 VDC			100 VAC	
	100 VAC			110 VAC	
	110 VAC			200 VAC	
None	200 VAC	C18312G6GCU	None	220 VAC	GDM2A-R
None	220 VAC	C18312G6GCU		230 VAC	GDM2A-R
	230 VAC			240 VAC	
	240 VAC			24 VAC	
	24 VAC			48 VAC	
	48 VAC			24 VDC	GDM2A-G-Z
	24 VDC	GDM2A-L5		100 VAC	GDM2A-R-L
	12 VDC	GDM2A-L6		110 VAC	GDM2A-R-L
	100 VAC	GDM2A-L1		200 VAC	GDM2A-R-L
	110 VAC	GDM2A-L1	With light	220 VAC	GDM2A-R-L
With light	200 VAC	GDM2A-L2		230 VAC	GDM2A-R-L
	220 VAC	GDM2A-L2		240 VAC	GDM2A-R-L
	230 VAC	GDM2A-L2		24 VAC	GDM2A-R-L
	240 VAC	GDM2A-L2		48 VAC	GDM2A-R-L
	24 VAC	GDM2A-L5			
	48 VAC	GDM2A-L15			

* Select an appropriate DIN connector suitable for the coil insulation type.

- Gasket Part No. for DIN Connector VCW20-1-29-1 (For Class B Coil) VCW20-1-29-1-F (For Class H Coil)
- Lead Wire Assembly for Flat Terminal (Set of 2 pcs.) VX021S-1-16FB
- Bracket Assembly Part No. (for Metal Body)

* 2 mounting screws are shipped together with the bracket assembly.

On the bottom side of the standard body, there is no female thread for mounting a bracket. Please select XNB□.

Series VX21/22/23 Glossary of Terms

Pressure Terminology

1. Maximum operating pressure differential

The maximum pressure differential (the difference between the inlet and outlet pressure) which is allowed for operation. When the outlet pressure is 0 MPa, this becomes the maximum operating pressure.

2. Minimum operating pressure differential

The minimum pressure differential (the difference between the inlet pressure and outlet pressure) required to keep the main valve fully open.

3. Maximum system pressure

The maximum pressure that can be applied inside the pipelines (line pressure).

[The pressure differential of the solenoid valve portion must not exceed the maximum operating pressure differential.]

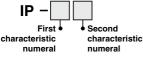
4. Withstand pressure

The pressure in which the valve must be withstood without a drop in performance after holding for one minute under prescribed pressure and returning to the operating pressure range. [value under the prescribed conditions]

Electrical Terminology

1. Apparent power (VA)

Volt-ampere is the product of voltage (V) and current (A). Power consumption (W): For AC, W = V-A-cos θ . For DC, W = V-A. Note) cos θ shows power factor. cos $\theta \approx 0.9$


2. Surge voltage

A high voltage which is momentarily generated by shutting off the power in the shut-off area.

3. Degree of protection

A degree defined in the "JIS C 0920: Waterproof test of electric machinery/appliance and the degree of protection against the intrusion of solid foreign objects."

Verify the degree of protection for each product.

First Characteristics:

Degrees of protection against solid foreign objects

0	Non-protected
1	Protected against solid foreign objects of 50 mmø and greater
2	Protected against solid foreign objects of 12 mmø and greater
3	Protected against solid foreign objects of 2.5 mmø and greater
4	Protected against solid foreign objects of 1.0 mmø and greater
5	Dust-protected
6	Dust-tight

Electrical Terminology

Second Characteristics: Degrees of protection against water Non-protected 0 Protected against vertically falling water drops Dripproof type 1 1 Protected against vertically falling water drops 2 Dripproof type 2 when enclosure tilted up to 15 3 Protected against rainfall when enclosure tilted up to 60° Rainproof type 4 Protected against splashing water Splashproof type 5 Protected against water jets Water-jet-proof type 6 Protected against powerful water jets Powerful water-jet-proof type

7 Protected against the effects of temporary immersion in water
 8 Protected against the effects of continuous immersion in water
 Submersible type

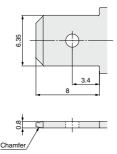
Example) IP65: Dust-tight, Water-jet-proof type

"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

Others

1. Material

NBR: Nitrile rubber FKM: Fluororubber EPDM: Ethylene propylene rubber


2. Oil-free treatment

The degreasing and washing of wetted parts

3. Symbol

Flat Terminal

Flat terminal/Electrical connection size of molded coil

Process Valves

VX2

VXD

VXZ

Series VX21/22/23 Solenoid Valve Flow-rate Characteristics (How to indicate flow-rate characteristics)

1. Indication of flow-rate characteristics

The flow-rate characteristics in equipment such as a solenoid valve etc. are indicated in their specifications as shown in Table (1).

Table (1) Indication of Flow-rate Characteristics

Corresponding equipment	Indication by international standard	Other indications	Conformed standard
D	С, b	_	ISO 6358: 1989 JIS B 8390: 2000
Pneumatic equipment		S	JIS B 8390: 2000 Equipment: JIS B 8373, 8374, 8375, 8379, 8381
		Cv	ANSI/(NFPA)T3.21.3: 1990
Process fluid control	Av	_	IEC60534-2-3: 1997
equipment			JIS B 2005: 1995 Equipment: JIS B 8471, 8472, 8473

2. Pneumatic equipment

2.1 Indication according to the international standards

(1) Conformed standard

ISO 6358: 1989 : Pneumatic fluid power—Components using compressible fluids— Determination of flow-rate characteristics

JIS B 8390: 2000 : Pneumatic fluid power—Components using compressible fluids— How to test flow-rate characteristics

(2) Definition of flow-rate characteristics

The flow-rate characteristics are indicated as a result of a comparison between sonic conductance C and critical pressure ratio b.

Sonic conductance C	C : Value which divides the passing mass flow rate of an equipment in a choked flow condition by the product of the upstream absolute pressure and the density in a standard condition.
Critical pressure ratio	b : Pressure ratio (downstream pressure/upstream pressure) which will turn to a choked flow when the value is smaller than this ratio.
Choked flow	: The flow in which the upstream pressure is higher than the downstream pressure and where sonic speed in a certain part of an equipment is reached. Gaseous mass flow rate is in proportion to the upstream pressure and not dependent on the downstream pressure.
Subsonic flow Standard condition	: Flow greater than the critical pressure ratio : Air in a temperature state of 20°C, absolute pressure 0.1 MPa (= 100 kPa = 1 bar), relative humidity 65%.
	It is stipulated by adding the "(ANR)" after the unit depicting air volume. (standard reference atmosphere) Conformed standard: ISO 8778: 1990 Pneumatic fluid power—Standard reference atmosphere, JIS B 8393: 2000: Pneumatic fluid power—Standard reference atmosphere

(3) Formula for flow rate

It is described by the practical units as following.

When
$$\frac{P_{2}+0.1}{P_{1}+0.1} \leq b$$
, choked flow

$$\boldsymbol{Q} = 600 \times \boldsymbol{C} (\boldsymbol{P}_{1} + 0.1) \sqrt{\frac{293}{273 + \boldsymbol{t}}}$$
(1)

When $\frac{P_{2+0.1}}{P_{1+0.1}} > b$, subsonic flow

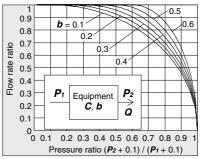
$$\boldsymbol{Q} = 600 \times \boldsymbol{C} (\boldsymbol{P}_{1} + 0.1) \sqrt{1 - \left[\frac{\boldsymbol{P}_{2} + 0.1}{\boldsymbol{P}_{1} + 0.1} - \boldsymbol{b}\right]^{2}} \sqrt{\frac{293}{273 + t}} \dots (2)$$

Q: Air flow rate [dm³/min (ANR)], dm³ (Cubic decimeter) of SI unit are also allowed to be described by L (liter). 1 dm³ = 1 L

- C : Sonic conductance [dm³/(s·bar)]
- **b** : Critical pressure ratio [--]
- P1: Upstream pressure [MPa]
- P2: Downstream pressure [MPa]
- t : Temperature [°C]

Note) Formula of subsonic flow is the elliptic analogous curve.

Flow-rate characteristics are shown in Graph (1) For details, please make use of SMC's "Energy Saving Program."


Example)

Obtain the air flow rate for $P_1 = 0.4$ [MPa], $P_2 = 0.3$ [MPa], t = 20 [°C] when a solenoid value is performed in C = 2 [dm³/(s·bar)] and b = 0.3.

According to formula 1, the maximum flow rate = 600 x 2 x (0.4 + 0.1) x $\sqrt{\frac{293}{273 + 20}}$ = 600 [dm³/min (ANR)]

Pressure ratio = $\frac{0.3 + 0.1}{0.4 + 0.1} = 0.8$

Based on Graph (1), the flow rate will be 0.7 when the pressure ratio is 0.8 and $\mathbf{b} = 0.3$. Hence, flow rate = Maximum flow rate x flow rate ratio = 600 x 0.7 = 420 [dm³/min (ANR)]

(4) Test method

Graph (1) Flow-rate characteristics

Attach a test equipment with the test circuit shown in Fig. (1) while maintaining the upstream pressure to a certain level which does not go below 0.3 MPa. Next, measure the maximum flow to be saturated in the first place, then measure this flow rate at 80%, 60%, 40%, 20% and the upstream and downstream pressure. And then, obtain the sonic conductance C from this maximum flow rate. Besides that, substitute each data of others for the subsonic flow formula to find b, then obtain the critical pressure ratio b from that average.

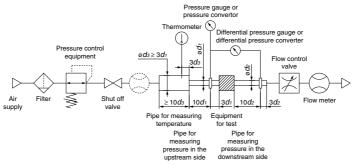


Fig. (1) Test circuit based on ISO 6358, JIS B 8390

SMC

	ocess Valves
	Ţ
ļ	VX2
	VXD
	VXZ
	VXS
	VXF2
	SX10

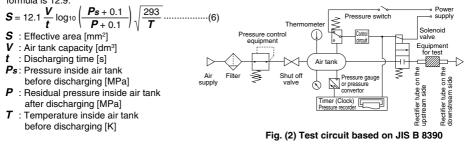
INDEX

Series VX21/22/23

2.2 Effective area S

(1) Conformed standard JIS B 8390: 2000: Pneumatic fluid power—Components using compressible fluids— Determination of flow rate characteristics Equipment standards: JIS B 8373: 2 port solenoid valve for pneumatics JIS B 8374: 3 port solenoid valve for pneumatics JIS B 8375: 4 port, 5 port solenoid valve for pneumatics JIS B 8379: Silencer for pneumatics JIS B 8381: Fittings of flexible joint for pneumatics (2) Definition of flow-rate characteristics Effective area S: The cross-sectional area having an ideal throttle without friction deduced from the calculation of the pressure changes inside an air tank or without reduced flow when discharging the compressed air in a choked flow, from an equipment attached to the air tank. This is the same concept representing the "easy to run through" as sonic conductance C. (3) Formula for flow rate When $\frac{P_{2} + 0.1}{P_{1} + 0.1} \le 0.5$, choked flow $Q = 120 \times S(P_1 + 0.1) \sqrt{\frac{293}{273 + t}}$ (3) When $\frac{P_2 + 0.1}{P_1 + 0.1} > 0.5$, subsonic flow

$$Q = 240 \times S \sqrt{(P_2 + 0.1)(P_1 - P_2)} \sqrt{\frac{293}{273 + t}}$$
(4)


Conversion with sonic conductance **C**:

- $S = 5.0 \times C$ (5)
- Q: Air flow rate[dm³/min(ANR)], dm³ (cubic decimeter) of SI unit are also allowed to be described by L (liter) 1 dm³ = 1 L
- S : Effective area [mm²]
- **P**₁ : Upstream pressure [MPa]
- P2: Downstream pressure [MPa]
- *t* : Temperature [°C]

Note) Formula for subsonic flow (4) is only applicable when the critical pressure ratio \boldsymbol{b} is the unknown equipment. In the formula (2) by the sonic conductance \boldsymbol{C} , it is the same formula as when $\boldsymbol{b} = 0.5$.

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (2) in order to discharge air into the atmosphere until the pressure inside the air tank goes down to 0.25 MPa (0.2 MPa) from an air tank filled with the compressed air at a certain pressure level (0.5 MPa) which does not go below 0.6 MPa. At this time, measure the discharging time and the residual pressure inside the air tank which had been left until it turned to be the normal values to determine the effective area S, using the following formula. The volume of an air tank should be selected within the specified range by corresponding to the effective area of an equipment for test. In the case of JIS B 8373, 8374, 8375, 8379, 8381, the pressure values are in parentheses and the coefficient of the formula is 12.9.

 2.3 Flow coefficient <i>Cv</i> factor The United States Standard ANSI/(NFPA)T3.21.3: 1990: Pneumatic fluid power—Flow rating test procedure and reporting method for fixed orifice components Defines the <i>Cv</i> factor of flow coefficient by the following formula which is based on the test conducted by the test circuit analogous to ISO 6358. <i>Cv</i> =Q (7)	Process Valves
$\boldsymbol{C}\boldsymbol{v} = \frac{\boldsymbol{Q}}{114.5\sqrt{\frac{\Delta \boldsymbol{P}(\boldsymbol{P}\boldsymbol{2} + \boldsymbol{P}\boldsymbol{a})}{T_1}}} \dots \dots$	VX2
$\Delta \boldsymbol{P}$: Pressure drop between the static pressure tapping ports [bar] \boldsymbol{P}_1 : Pressure of the upstream tapping port [bar gauge]	VXD
P_2 : Pressure of the downstream tapping port [bar gauge]: $P_2 = P_1 - \Delta P$	VXZ
 <i>Q</i> : Flow rate [dm³/s standard condition] <i>Pa</i> : Atmospheric pressure [bar absolute] 	VXS
T_1 : Upstream absolute temperature [K] Test conditions are < $P_1 + P_a = 6.5 \pm 0.2$ bar absolute, $T_1 = 297 \pm 5$ K, 0.07 bar $\leq \Delta P \leq 0.14$ bar.	VXF2
This is the same concept as effective area \boldsymbol{A} which ISO 6358 stipulates as being applicable only when the pressure drop is smaller than the upstream pressure and the compression of air does not become a problem.	SX10
3. Process fluid control equipment	

(1) Conformed standard

IEC60534-2-3: 1997: Industrial process control valves. Part 2: Flow capacity, Section Three-Test procedures

JIS B 2005: 1995: Test method for the flow coefficient of a valve Equipment standards: JIS B 8471: Solenoid valve for water JIS B 8472: Solenoid valve for steam JIS B 8473: Solenoid valve for fuel oil

(2) Definition of flow-rate characteristics

Av factor: Value of the clean water flow rate represented by m³/s which runs through a valve (equipment for test) when the pressure difference is 1 Pa. It is calculated using the following formula.

 $Av = Q_{1} / \frac{\rho}{P}$ (8)

Av: Flow coefficient [m2]

Q : Flow rate [m³/s]

 $\Delta \boldsymbol{P}$: Pressure difference [Pa]

- ho : Fluid density [kg/m³]
- (3) Formula of flow rate

It is described by the practical units. Also, the flow-rate characteristics are shown in Graph (2). In the case of liquid:

 $\boldsymbol{Q} = 1.9 \times 10^6 \boldsymbol{A} \boldsymbol{V} \sqrt{\frac{\Delta \boldsymbol{P}}{\boldsymbol{G}}}$

- Q : Flow rate [L/min]
- Av: Flow coefficient [m²]
- $\Delta \mathbf{P}$: Pressure difference [MPa]

G : Relative density [water = 1]

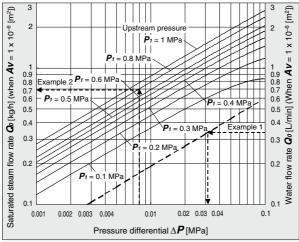
In the case of saturated aqueous vapor:

 $Q = 8.3 \times 10^6 Av \sqrt{\Delta P(P_2 + 0.1)}$ (10)

- Q : Flow rate [kg/h]
- Av : Flow coefficient [m2]
- $\Delta \mathbf{P}$: Pressure difference [MPa] \mathbf{P}_1 : Upstream pressure [MPa]: $\Delta \mathbf{P} = \mathbf{P}_1 - \mathbf{P}_2$
- P_2 : Downstream pressure [MPa]

Series VX21/22/23

Conversion of flow coefficient: $Av = 28 \times 10^{-6} Kv = 24 \times 10^{-6} Cv$ (11)


Here,

Kv factor

: Value of the clean water flow rate represented by $m^{3}\!/h$ which runs through a valve at 5 to 40°C, when the pressure difference is 1 bar.

Cv factor (Reference values): Figures representing the flow rate of clean water by US gal/min which runs through a valve at 60°F, when the pressure difference is 1 lbf/in² (psi).

Value is different from *Kv* and *Cv* factors for pneumatic purpose due to different test method.

Example 1)

Graph (2) Flow-rate characteristics

Obtain the pressure difference when water 15 [L/min] runs through a solenoid valve with an $Av = 45 \times 10^{-6} \text{ [m}^2$]. Since $Q_0 = 15/45 = 0.33$ [L/min], according to Graph (2), if reading ΔP when Q_0 is 0.33, it will be 0.031 [MPa].

Example 2)

Obtain the saturated steam flow rate when $P_1 = 0.8$ [MPa], $\Delta P = 0.008$ [MPa] with a solenoid valve with an $Av = 1.5 \times 10^{-6}$ [m²].

According to Graph (2), if reading Q_0 when P_1 is 0.8 and ΔP is 0.008, it is 0.7 [kg/h]. Hence, the flow rate $Q = 0.7 \times 1.5 = 1.05$ [kg/h].

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (3). Next, pour water at 5 to 40° C, then measure the flow rate with a pressure difference of 0.075 MPa. However, the pressure difference needs to be set with a large enough difference so that the Reynolds number does not go below a range of 4 x 10^4 .

By substituting the measurement results for formula (8) to figure out Av.

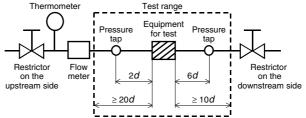
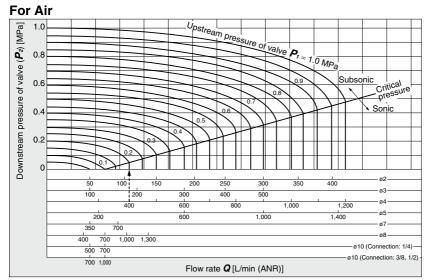
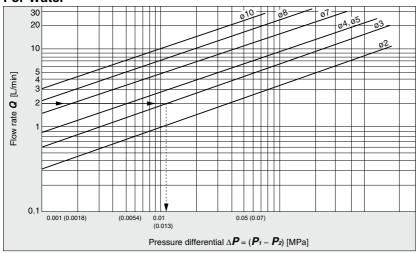



Fig. (3) Test circuit based on IEC60534-2-3, JIS B 2005

ÌSMC

Series VX21/22/23 Flow-rate Characteristics 1

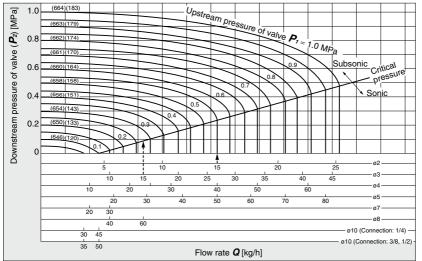

Note) Use this graph as a guide. In the case of obtaining an accurate flow rate, refer to pages 633 through to 637.

How to read the graph

The sonic range pressure to generate a flow rate of 400 L/min (ANR) is P1 \approx 0.2 MPa for a ø4 orifice and P1 \approx 0.58 MPa for a ø3 orifice.

For Water

How to read the graph


When a water flow of 2 L/min is generated, $\Delta P \approx 0.013$ MPa for a valve with ø3 orifice.

638

Series VX21/22/23 Flow-rate Characteristics 2

Note) Use this graph as a guide. In the case of obtaining an accurate flow rate, refer to pages 633 through to 637.

For Saturated Steam

How to read the graph

The sonic range pressure to generate a flow rate of 15 kg/h is P1 = 0.55 MPa for a ø2 orifice and P1 = 0.28 MPa for a ø3 orifice. The amount of potential heat varies somewhat based on the pressure P1. At 15 kg/h, there will be approximately 9700 kcal/h of heat.

Be sure to read this before handling.

Refer to page 1154 for Safety Instructions. For 2 Port Solenoid Valves for Fluid Control Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

2. Fluid c

< Air>

1) Use (

2) Insta

Design

▲Warning

1. Cannot be used as an emergency shutoff valve etc. The valves presented in this catalog are not designed for safety applications such as an emergency shutoff valve. If the valves are used in this type of system, other reliable safety assurance measures should also be adopted.

Extended periods of continuous energization

The solenoid coil will generate heat when continuously energized. Avoid using in a tightly shut container. Install it in a well ventilated area. Furthermore, do not touch it while it is being energized or right after it is energized.

3. Liquid rings

In cases with a flowing liquid, provide a bypass valve in the system to prevent the liquid from entering the liquid seal circuit.

4. Actuator drive

When an actuator, such as a cylinder, is to be driven using a valve, take appropriate measures to prevent potential danger caused by actuator operation.

5. Pressure (including vacuum) holding

It is not usable for an application such as holding the pressure (including vacuum) inside of a pressure vessel because air leakage is entailed in a valve.

- When the conduit type is used as equivalent to an IP65 enclosure, install a wiring conduit etc.
- 7. When an impact, such as water hammer etc., caused by the rapid pressure fluctuation is applied, the solenoid valve may be damaged. Give an attention to it.

Selection

▲Warning

1. Fluid

1) Type of fluid

Before using a fluid, check whether it is compatible with the materials of each model by referring to the fluids listed in this catalog. Use a fluid with a kinematic viscosity of 50 mm²/s or less. If there is something you do not know, please contact SMC.

2) Flammable oil, Gas

Check the specifications for leakage in the interior and/or exterior area

3) Corrosive gas

Cannot be used since it will lead to cracks by stress corrosion or result in other incidents.

- 4) When a brass body is used, then depending on water quality, corrosion and internal leakage may occur. If such abnormalities occur, exchange the product for a stainless steel body.
- 5) Use an oil-free specification when any oily particle must not enter the passage.
- 6) Applicable fluid on the list may not be used depending on the operating condition. Give adequate confirmation, and then determine a model, just because the compatibility list shows the general case.

Selection	Se	1
Warning	Valves	
luid quality	Process	
Air>	ö	
) Use clean air.	4	
Do not use compressed air that contains chemicals, synthetic oils including organic solvents, salt or corrosive gases, etc.,	VX2	
as it can cause damage or malfunction.	VXD	
Install air filters close to the values on the unstream side. A fil-		

Install air filters close to the valves on the upstream side. A filtration degree of 5 µm or less should be selected.

3) Install an aftercooler or air drver. etc.

Compressed air that contains excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an aftercooler or air dryer, etc.

If excessive carbon powder is generated, eliminate it by installing mist separators at the upstream side of valves. SX10 If excessive carbon powder is generated by the compressor, it may adhere to the inside of the valves and cause a malfunction

Refer to Best Pneumatics No.5 for further details on compressed air quality.

<Vacuum>

Please be aware that there is a range of pressure that can be used.

Air pressure Hydraulic pressure	Low vacuum	Medium vacuum ction filtration,	High vacuum Vacuum bottle set	Ultra high vacuum Suction cup>	Extreme high vacuum
		ying scharge/	Diagma	Neon tube/Fluoresce	at light
		scharge/	Vapor deposition	Surface physics	ni nyni
Torr	<accelerator< th=""><th>, Electron micr</th><th>OSCOPE> Charge particle b</th><th>ed eam</th><th></th></accelerator<>	, Electron micr	OSCOPE> Charge particle b	ed eam	
(mmHg)	10 ² 10 1	10-1 10-2 10	³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10	7 10-8 10-9 10-10 10-11 1	0-12
Pa 10 ⁹ 10 ⁸ 10 ⁷ 10 ⁸ 10	0 ⁵ 10 ⁴ 10 ³ 10	D ² 10 ¹ 1 10	⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10	0° 10° 107 10° 10° 1	0-10 10-11 10-12

Vacuum piping direction: if the system uses a vacuum pump, we ask that you install the vacuum pump on the secondary side. Also, install a filter on the primary side, and be careful that no foreign object is picked up.

Please replace the valve after operating the device approximately 300.000 times.

Be sure to read this before handling.

Refer to page 1154 for Safety Instructions. For 2 Port Solenoid Valves for Fluid Control Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Selection

Marning

<Water>

The use of a fluid that contains foreign objects can cause problems such as malfunction and seal failure by promoting wear of the valve seat and armature and by sticking to the sliding parts of the armature etc. Install a suitable filter (strainer) immediately upstream from the valve. As a general rule, use 100 mesh.

The supply water includes materials that create a hard sediment or sludge such as calcium and magnesium. Since this scale and sludge can cause the valve to malfunction, install water softening equipment, and a filter (strainer) directly upstream from the valve to remove these substances.

Tap water pressure:

The water pressure for tap water is normally 0.4 MPa or less. However, in places like a high-rise building, the pressure may be 1.0 MPa. When selecting tap water, be careful of the maximum operating pressure differential.

When using water or heated water, poor operation or leaks may be caused by dezincification, erosion, corrosion, etc. The brass (C37) body of this product uses dezincification resistant material as a standard. We also offer a stainless steel body type with improved corrosion resistance. Please use the one that fits your needs.

<0il>

Generally, FKM is used as seal material, as it is resistant to oil. The resistance of the seal material may deteriorate depending on the type of oil, manufacturer or additives. Check the resistance before using. The kinematic viscosity must not exceed 50 mm²/s.

<Steam>

The use of a steam that contains foreign objects can cause problems such as malfunction and seal failure by promoting wear of the valve seat and armature, and by sticking to the sliding parts of the armature etc. Install a suitable filter (strainer) immediately upstream from the valve.

As a standard, the mesh count for the strainer is 100 mesh. However, the size and shape of foreign objects that occur depends on the operating environment. Check the fluid status and choose an appropriate mesh count.

The supply water to a boiler includes materials that create a hard sediment or sludge such as calcium and magnesium.

Sediment and sludge from steam can cause the valve to not operate properly. Install a water softening device, which removes these materials. Do not use operation steam which contains chemicals, synthetic oils containing organic solvents, salts or corrosive gases, etc., as these can cause damage or deterioration.

3. Ambient environment

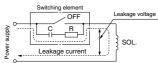
Use within the operable ambient temperature range. Check the compatibility between the product's composition materials and the ambient atmosphere. Be certain that the fluid used does not touch the external surface of the product.

4. Countermeasures against static electricity

Take measures to prevent static electricity since some fluids can cause static electricity.

Selection

A Warning


5. Low temperature operation

- The valve can be used in an ambient temperature of between -20 to -10°C. However, take measures to prevent freezing or solidification of impurities, etc.
- 2) When using valves for water application in cold climates, take appropriate countermeasures to prevent the water from freezing in tubing after cutting the water supply from the pump, by draining the water etc. When warming by a heater etc., be careful not to expose the coil portion to a heater. Installation of a dryer, heat retaining of the body is recommended to prevent a freezing condition in which the dew point temperature is high and the ambient temperature is low, and the high flow runs.

≜Caution

1. Leakage voltage

Particularly when using a resistor in parallel with a switching element and using a C-R element (surge voltage suppressor) to protect the switching element, take note that leakage current will flow through the resistor, C-R element, etc., creating a possible danger that the valve may not turn off.

AC coil: 5% or less of rated voltage DC coil: 2% or less of rated voltage

2. Selecting model

Material depends on fluid. Select optimal models for the fluid.

3. When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s.

Mounting

∕∆Warning

1. If air leakage increases or equipment does not operate properly, stop operation.

After mounting is completed, confirm that it has been done correctly by performing a suitable function test.

- Do not apply external force to the coil section. When tightening is performed, apply a wrench or other tool to the outside of the piping connection parts.
- 3. Mount a valve with its coil position upward, not downward.

When mounting a valve with its coil positioned downward, foreign objects in the fluid will adhere to the iron core leading to a malfunction. Especially for strict leakage control, such as with vacuum applications and non-leak specifications, the coil must be positioned upward.

4. Do not warm the coil assembly with a heat insulator etc.

Use tape, heaters, etc., for freeze prevention on the piping and body only. They can cause the coil to burn out.

Be sure to read this before handling.

Refer to page 1154 for Safety Instructions. For 2 Port Solenoid Valves for Fluid Control Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Mounting

Warning

- 5. Secure with brackets, except in the case of steel piping and copper fittings.
- 6. Avoid sources of vibration, or adjust the arm from the body to the minimum length so that resonance will not occur.
- 7. Painting and coating

Warnings or specifications printed or labeled on the product should not be erased, removed or covered up.

Disassembly/Assembly Procedures

≜Caution

1. Before starting the disassembly work, be sure to shut off the power supply and pressure supply, and then release the residual pressure.

Disassembly

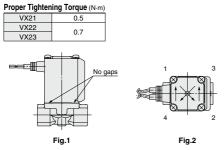
<N.C.>

1) Loosen the mounting screws.

The coil assembly, seal, return spring, armature assembly and body can be removed.

<N.O.>

1) Loosen the mounting screws.


The coil assembly, push rod assembly, O-rings, adapter and body can be removed.

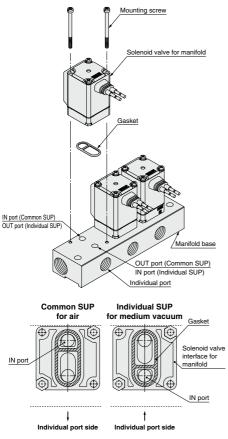
Assembly

<Common to N.C. and N.O.>

- Mount the components on the body in the reverse order of disassembly.
- 2) When changing the electrical entry direction, turn the coil assembly in a desired direction to mount it.
- 3) Push the coil assembly against the body and tighten the screws two or more rounds diagonally (Fig. 2) in the status that there are no gaps between the coil assembly and body (Fig. 1).

Tighten the screws in the order of " $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ ".

- After tightening the screws, make sure that there are no gaps between the coil and body (Fig. 1).
- After the disassembly and assembly have been completed, make sure that no leak occurs from the seal. Additionally, when restarting the valve, make sure that the valve operates correctly after checking the safety.


Be sure to read this before handling.

Refer to page 1154 for Safety Instructions. For 2 Port Solenoid Valves for Fluid Control Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Disassembly/Assembly Procedures

≜Caution

Manifold Exploded View

* Mounting orientation exists when mounting valves onto manifold base. Mount it as shown above.

* Take great care when special electrical entry direction (XC) is used.

Piping

≜ Warning

1. During use, deterioration of the tube or damage to the fittings could cause tubes to come loose from their fittings and thrash about.

To prevent uncontrolled tube movement, install protective covers or fasten tubes securely in place.

2. For piping the tube, fix the product securely using the mounting holes so that the product is not in the air.

▲Caution

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe. Avoid pulling, compressing, or bending the valve body when piping.

- 2. Avoid connecting ground lines to piping, as this may cause electric corrosion of the system.
- 3. Always tighten threads with the proper tightening torque.

When using steel piping, tighten with the proper tightening torque shown below.

Lower tightening torque will lead into fluid leakage.

Tightening Torque for Piping

Thread size	Proper tightening torque (N·m)
Rc1/8	7 to 9
Rc1/4	12 to 14
Rc3/8	22 to 24
Rc1/2	28 to 30

4. Connection of piping to products

When connecting piping to a product, avoid mistakes regarding the supply port etc.

5. Wrapping of sealant tape

When connecting pipes, fittings, etc., be sure that chips from the pipe threads and sealing material do not enter the valve.

Furthermore, when sealant tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

@SMC

 In applications such as vacuum and non-leak specifications, use caution specifically against the contamination of foreign objects or airtightness of the fittings.

Be sure to read this before handling.

Refer to page 1154 for Safety Instructions. For 2 Port Solenoid Valves for Fluid Control Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Recommended Piping Conditions

1. When connecting tubes using One-touch fittings, provide some spare tube length shown in Fig. 1, recommended piping configuration.

Also, do not apply external force to the fittings when binding tubes with bands etc. (see Fig. 2.)



Fig. 1 Recommended piping configuration

				Unit: mm
Tube	N	Nounting pitch	A	Straight
size	Nylon tubing	Soft nylon tubing	Polyurethane tubing	portion length
ø1/8"	44 or more	29 or more	25 or more	16 or more
ø6	84 or more	39 or more	39 or more	30 or more
ø1/4"	89 or more	56 or more	57 or more	32 or more
ø8	112 or more	58 or more	52 or more	40 or more
ø10	140 or more	70 or more	69 or more	50 or more
ø12	168 or more	82 or more	88 or more	60 or more

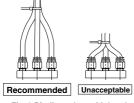


Fig. 2 Binding tubes with bands

Wiring

∆Warning

 Do not apply AC voltage to Class "H" coil AC type unless it is built in full-wave rectifier, or the coil will be damaged.

▲Caution

- 1. As a rule, use electrical wire with a cross sectional area of 0.5 to 1.25 mm² for wiring. Furthermore, do not allow excessive force to be applied to the lines.
- 2. Use electrical circuits which do not generate chattering in their contacts.
- 3. Use voltage which is within $\pm 10\%$ of the rated voltage. In cases with a DC power supply where importance is placed on responsiveness, stay within $\pm 5\%$ of the rated value. The voltage drop is the value in the lead wire section connecting the coil.
- 4. When a surge from the solenoid affects the electrical circuitry, install a surge voltage suppressor etc., in parallel with the solenoid. Or, adopt an option that comes with the surge voltage protection circuit. (However, a surge voltage occurs even if the surge voltage protection circuit is used. For details, please consult with SMC.)

644

Be sure to read this before handling.

Refer to page 1154 for Safety Instructions. For 2 Port Solenoid Valves for Fluid Control Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Operating Environment

MWarning

- 1. Do not use in an atmosphere having corrosive gases, chemicals, sea water, water, water steam, or where there is direct contact with any of these.
- 2. Do not use in explosive atmospheres.
- 3. Do not use in locations subject to vibration or impact.
- 4. Do not use in locations where radiated heat will be received from nearby heat sources.
- Employ suitable protective measures in locations where there is contact with water droplets, oil or welding spatter, etc.

Maintenance

≜Marning

1. Removing the product

The valve will reach a high temperature when used with high temperature fluids. Confirm that the valve temperature has dropped sufficiently before performing work. If touched inadvertently, there is a danger of being burned.

- Shut off the fluid supply and release the fluid pressure in the system.
- 2) Shut off the power supply.
- 3) Dismount the product.

2. Low frequency operation

Switch valves at least once every 30 days to prevent malfunction. Also, in order to use it under the optimum state, conduct a regular inspection once a half year.

≜Caution

1. Filters and strainers

- 1) Be careful regarding clogging of filters and strainers.
- 2) Replace filter elements after one year of use, or earlier if the pressure drop reaches 0.1 MPa.
- 3) Clean strainers when the pressure drop reaches 0.1 MPa.

2. Lubrication

When using after lubricating, never forget to lubricate continuously.

3. Storage

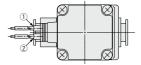
In case of long term storage after use, thoroughly remove all moisture to prevent rust and deterioration of rubber materials etc.

4. Exhaust the drainage from an air filter periodically.

Operating Precautions

Marning

- If there is a possibility of reverse pressure being applied to the valve, take countermeasures such as mounting a check valve on the downstream side of the valve.
- 2. When problems are caused by a water hammer, install water hammer relief equipment (accumulator etc.), or use an SMC water hammer relief valve (Series VXR). For details, please consult with SMC.


Electrical Connections

▲Caution

Grommet

Class B coil: AWG20 Insulator O.D. 2.5 mm

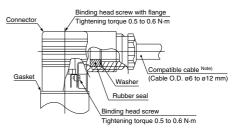
Class H coil: AWG18 Insulator O.D. 2.1 mm

Rated voltage	Lead wire color			
haled vollage	1	2		
DC	Black	Red		
100 VAC	Blue	Blue		
200 VAC	Red	Red		
Other AC	Gray	Gray		

* There is no polarity

DIN terminal

Since internal connections are shown below for the DIN terminal, make connections to the power supply accordingly.

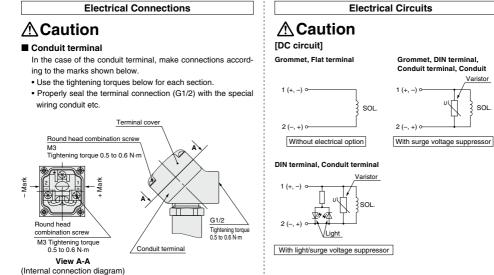


Terminal no.	1	2
DIN terminal	+ (-)	- (+)

* There is no polarity.

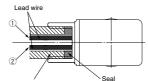
@SMC

- Use compatible heavy duty cords with cable O.D. ø6 to ø12 mm.
- Use the tightening torques below for each section.



Note) For an outside cable O.D. ø9 to ø12 mm, remove the internal parts of the rubber seal before using.

Be sure to read this before handling.


Refer to page 1154 for Safety Instructions. For 2 Port Solenoid Valves for Fluid Control Precautions, refer to "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

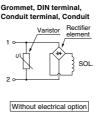
Conduit

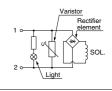
When used as an IP65 equivalent, use seal to install the wiring conduit. Also, use the tightening torgue below for the conduit.

Class B coil: AWG20 Insulator O.D. 2.5 mm Class H coil: AWG18 Insulator O.D. 2.1 mm

Wiring conduit (Bore size G1/2 Tightening torque 0.5 to 0.6 N·m)

Rated voltage	Lead wire color	
	1	2
DC	Black	Red
100 VAC	Blue	Blue
200 VAC	Red	Red
Other AC	Gray	Gray


* There is no polarity


Description	Part no.	
Seal	VCW20-15-6	

Note) Please order separately.

[AC circuit]

* For AC (Class B), the standard product is equipped with surge voltage suppressor.

DIN terminal. Conduit terminal

With light/surge voltage suppressor

One-touch Fitting

▲Caution

∕∂SMC

For information on handling One-touch fittings and appropriate tubing, refer to page 643 and the KQ2 series One-touch fittings in Best Pneumatics No. 6. The KQ2 series information can be downloaded from the following SMC website, http://www.smcworld.com

INDEX

Process Valves

VX2

VXD

VXZ

VXS

VXF2

SX10