

"The answers to all the crazy Pneumatic and Fluid Power Questions"

Table of Contents

Unit Conversions	1
Fractional / Decimal / Millimeter Conversion Chart	2
Pressure Conversions	
Cylinder Force Chart	4
Cylinder Speed vs Flow Chart	
Formulas	
Valve Sizing	
Valve Selection	7
Vacuum Cup Sizing	
Sizing Vacuum Ejectors	8 to 10
Pipe Thread Quick Reference	11
Installation Guide for Valves	12
Directional Control Valves	13 & 14
Product Data Codes	15
Cylinder Part Number Building Information	16
Crossing Over a Cylinder	17
Valve Part Number Building Information	18
Vacuum Order Sheet	
Auto Switches	
Pressure Switches and their Simplified Operation	21
NEMA Ratings (Electrical Enclosures)	22
IP Ratings (Electrical Enclosures)	
How to Order (Series KQ2- New)	23

Unit Conversions

By

 ∇

To Obtain

 ∇

English to Metric Metric to English To Obtain Multiply By Multiply ∇ ∇ ∇ ∇ Length: Length: um0.0394 mil µm mil mm0.0394 in 25.4 mm in in 2.54 cm cm0.3937 in ft ft 0.3048 m Area: Area: mm² 0.0016 in² cm² 0.1550 in² in² 6.4516 cm² 10.764 m² ft² ft^2 0.0929 m^2 Volume: Volume: mm³ 6.10x10⁻⁵ in³ in³ 16387..... mm³ cm³ (cc) 0.0610 in³ in³ 16.387 cm³ (cc) m³ 35.314 ft³ ft³ 0.0283 m³ gal (US) 3.785 Weight: Weiaht: g 0.0353 oz oz 28.349 g kg lb lb 0.4536 kg Force: Force: gf 2.205x10-3 lbf lbf 0.4536 kgf kgf 2.2046 lbf N 0.2248 lbf lbfN Torque: Toraue: N·m 0.7375 ft·lb ft·lb...... 1.3559 N·m ft·lb 0.1383 kg·m kg·m 7.223 ft·lb Pressure: Pressure: mm (H2O)..... 0.00142 psi in (H2O) 0.00254 kgf/cm2 mm (Hg)..... 0.0193 psi in (Hg) 0.03518 kgf/cm² psi 6.8947 kPa kPa 0.145 psi psi 0.06894 bar psi 0.0703 kgf/cm² bar 14.5 psi kgf/cm² 14.224 psi psi 0.00689 MPa MPa 145.0 psi Energy: Energy: N·m 0.7375 ft·lb ft·lb 1.356 N·m ft·lb......J kWh...... 3.6 MJ Power: Power: Wft·lb/s ft·lb/s..... 1.356 W kWhp hp...... 0.7457 KW Flow Rate: Flow Rate: e/min ANR0.035 SCFM Flow Coefficient: Flow Coefficient: mm² 0.0556 Cv

Temperature: °C=5/9 (°F -32)

SMC

Temperature: $^{\circ}F = (1.8 \times ^{\circ}C) + 32$

Fractional / Decimal / Millimeter Conversion Chart

1mm = 0.03937" 0.01" = 0.254mm 1" = 25.4mm

Inch	Decimal	mm
1/64	0.016	0.397
1/32	0.031	0.794
3/64	0.047	1.191
1/16	0.063	1.588
5/64	0.078	1.984
3/32	0.094	2.381
7/64	0.109	2.778
1/8	0.125	3.175
9/64	0.141	3.572
5/32	0.156	3.969
11/64	0.172	4.366
3/16	0.188	4.763
13/64	0.203	5.159
7/32	0.219	5.556
15/64	0.234	5.953
1/4	0.25	6.35
17/64	0.266	6.747
9/32	0.281	7.144
19/64	0.297	7.541
5/16	0.313	7.938
21/64	0.328	8.334

las e la	Destined	
Inch	Decimal	mm
11/32	0.344	8.731
23/64	0.359	9.128
3/8	0.375	9.525
25/64	0.391	9.922
13/32	0.406	10.319
27/64	0.422	10.716
7/16	0.438	11.113
29/64	0.453	11.509
15/32	0.469	11.906
31/64	0.484	12.303
1/2	0.5	12.7
33/64	0.516	13.097
17/32	0.531	13.494
35/64	0.547	13.891
9/16	0.563	14.288
37/64	0.578	14.684
19/32	0.594	15.081
39/64	0.609	15.478
5/8	0.625	15.875
41/64	0.641	16.272
21/32	0.656	16.669

Inch	Decimal	mm
43/64	0.672	17.066
11/16	0.688	17.463
45/64	0.703	17.859
23/32	0.719	18.256
47/64	0.734	18.653
3/4	0.75	19.05
49/64	0.766	19.447
25/32	0.781	19.844
51/64	0.797	20.241
13/16	0.813	20.638
53/64	0.828	21.034
27/32	0.844	21.431
55/64	0.859	21.828
7/8	0.875	22.225
57/64	0.891	22.622
29/32	0.906	23.019
59/64	0.922	23.416
15/16	0.938	23.813
61/64	0.953	24.209
31/32	0.969	24.606
63/34	0.984	25.003

mm	Inch	mm	Inch
0.1	0.0039	9	0.3543
0.2	0.0079	10	0.3937
0.3	0.0118	11	0.4331
0.4	0.0157	12	0.4724
0.5	0.0197	13	0.5118
0.6	0.0236	14	0.5512
0.7	0.0276	15	0.5906
0.8	0.0315	16	0.6299
0.9	0.0354	17	0.6693
1	0.0394	18	0.7087
2	0.0787	19	0.7480
3	0.1181	20	0.7874
4	0.1575	21	0.8268
5	0.1969	22	0.8661
6	0.2362	23	0.9055
7	0.2756	24	0.9449
8	0.3150	25	0.9843

Pressure Conversions

PSI	kgf/cm ²	MPa	kPa	bar
4	.28	.03	28	0.28
10	.70	.07	69	0.69
12	.84	.08	83	0.83
15	1.1	.10	103	1.03
20	1.4	.14	138	1.38
22	1.5	.15	152	1.52
25	1.8	.17	172	1.72
29	2.0	.20	200	2.00
30	2.1	.21	207	2.07
35	2.5	.24	241	2.41
36	2.6	.25	248	2.48
41	2.9	.28	282	2.83
45	3.2	.31	310	3.10
49	3.4	.34	338	3.38
55	3.9	.38	379	3.79
59	4.1	.41	407	4.07
65	4.6	.45	448	4.48
70	4.9	.48	483	4.83
75	5.3	.52	517	5.17
80	5.6	.55	552	5.52
86	6.0	.59	593	5.93
90	6.3	.62	621	6.21
96	6.7	.66	662	6.62
100	7.0	.69	689	6.89
103	7.2	.71	710	7.10
104	7.3	.72	717	7.17
110	7.7	.76	758	7.58
115	8.1	.79	793	7.93
120	8.4	.83	827	8.27
125	8.8	.86	861	8.62
131	9.2	.90	903	9.03
135	9.5	.93	931	9.31
141	9.9	.97	972	9.72
145	10.2	1.0	1000	10.00
159	11.2	1.1	1096	10.96
215	15.1	1.48	1482	14.82

Cylinder Force Chart

_	Piston Area		Оре	rating P	ressure (p	osi)	
Bore	(in ²)	25 psi	50 psi	75 psi	100 psi	125 psi	150 psi
1/4" (6mm)	0.05	1 lbf	2 lbf	4 lbf	5 lbf	6 lbf	7 lbf
8mm	0.08	2	4	6	8	10	12
3/8" (10mm)	0.11	3	6	8	11	14	17
5/8" (16mm)	0.31	8	15	23	31	38	46
3/4" (20mm)	0.44	11	22	33	44	55	66
1" (25mm)	0.79	20	39	59	79	98	118
1 1/8"	0.99	25	50	75	99	124	149
30mm	1.10	27	55	82	110	137	164
1 ¼" (32mm)	1.23	31	61	92	123	153	184
1 ½" (40mm)	1.77	44	88	133	177	221	265
1 ¾"	2.41	60	120	180	241	301	361
2" (50mm)	3.14	79	157	236	314	393	471
2 ½" (63mm)	4.91	123	245	368	491	614	736
3 ¼ (80mm)	8.30	207	415	622	830	1037	1244
4" (100mm)	12.57	314	628	942	1257	1571	1885
4 1⁄2"	15.90	398	795	1193	1590	1988	2386
5" (125mm)	19.63	491	982	1473	1963	2454	2945
140mm	23.86	597	1193	1790	2386	2983	3579
6"	28.27	707	1414	2121	2827	3534	4241
160mm	31.16	779	1558	2337	3116	3896	4675
7" (180mm)	38.48	962	1924	2886	3848	4811	5773
8" (200mm)	50.27	1257	2513	3770	5027	6283	7540
10" (250mm)	78.54	1963	3927	5890	7854	9817	11781
12"	113.10	2827	5655	8482	11310	14137	16965

Note: Do not forget to apply safety factor of 0.7 for horizontal and 0.5 for vertical cylinder orientation.

Cylinder Speed vs. Flow Chart

1	1/0	0/4		4.4/0	•	0.1/0	0.4/4	4
In/sec	1/2	3/4	1	1 1/2	2	2 1/2	3 1/4	4
1	.0014 .041	.0032	.0058	.013	.023	.036 1.0	.061	.092
	.041	.091 .0065	.16 .012	.37 .026	.65 .046	.072	1.73 .12	2.6 .18
2	.0029	.18	.33	.74	1.3	2.0	3.5	.1 0 5.2
-	.0043	.0097	.17	.039	.11	.069	.18	.276
3	.13	.28	.5	1.1	3.0	2.0	5.2	7.8
	.0058	.013	.023	.052	.092	.14	.24	.37
4	.16	.37	.65	1.5	2.6	4.0	6.9	10.4
5	.0069	.015	.028	.065	.11	.18	.3	.46
5	.21	.46	.83	1.9	3.3	5.0	8.6	13.0
6	.0087	.020	.035	.078	.14	.22	.37	.55
0	.25	.56	1.0	2.2	4.0	6.1	10.4	15.6
7	.010	.023	.04	.091	.16	.25	.43	.64
	.28	.44	1.13	2.6	4.5	7.1	12.1	18.2
8	.011	.025	.045	.10	.18	.29	.49	.74
	.33	.73	1.3	3.0	5.2	8.1	13.8	20.8
9	.013	.030	.053	.12	.21	.32	.55	.83
	.36	.82	1.45	3.3	5.8	9.1	15.6	23.4
10	.014	.032	.058	.13	.23	.36	.61	.92
	.36 .016	.91	1.63	3.7	6.5 .25	10.1 .40	17.3 .67	26.0 1
11	.010	.035 1.0	.063 1.78	.14 4.1	7.1	11.1	.07 19.0	28.6
	.018	.039	.07	.16	.28	.43	.73	1.1
12	.49	1.1	1.8	4.4	7.8	12.1	20.8	31.2
10	.019	.042	.075	.17	.30	.47	.79	1.2
13	.53	1.18	2.10	4.8	8.4	13.1	22.5	33.8
14	.02	.045	.08	.18	.32	.50	.85	1.3
14	.57	1.28	2.28	5.2	9.1	14.1	24.2	36.4
15	.021	.048	.085	.19	.34	.54	.91	1.4
15	.61	1.36	2.43	5.6	9.7	15.1	25.9	39.0
16	.023	.052	.093	.20	.37	.58	.98	1.5
10	.65	1.46	2.6	5.9	10.4	16.2	27.7	41.6
17	.024	.055	.096	.22	.39	.61	1.0	1.6
	.69	1.55	2.75	6.3	11.0	17.2	29.4	44.2
18	.026	.058	.103	.230	.41	.65	1.1	1.7
	.73	1.65	2.93	6.6	11.7	18.2	31.1 1.2	46.8
19	.028 .77	.062 1.73	.11 3.08	.25 7.0	.44 12.3	.68 19.2	1.2 32.8	1.75 49.4
	.029	.065	.12	.26	.46	.72	1.25	49.4 1.8
20	.81	1.83	3.25	7.4	13.0	20.2	34.6	52.0
	.032	.072	.13	.29	.51	.79	1.3	2.0
22	.89	2.01	3.58	8.1	14.3	22.2	38.1	57.2
24	.034	.077	.14	.31	.55	.86	1.5	2.2
24	.98	2.19	3.90	8.9	15.6	24.2	41.5	62.4
26	.037	.084	.15	.34	.60	.94	1.6	2.4
20	1.06	2.38	4.23	9.6	16.9	26.3	45.0	67.6
28	.04	.09	.16	.36	.64	1.0	1.7	2.6
20	1.14	2.56	4.55	10.3	18.2	27.3	48.4	72.8
30	.069	.097	.17	.39	.69	1.1	1.8	2.8
	1.22	2.74	4.88	11.1	19.5	30.3	51.9	78.0

Cv Required at the cylinder Top / SCFM Lower: Cv based on 70 psi inlet and 10 psi pressure drop. Note: This chart does not take into account the flow restrictions through the valve and tubing, etc..

Formulas

Area (in²) = diameter² x 0.7854 or π r² *Circumference* = π D = 2π r *Pressure* = Force / Area *Force* = Pressure · Area *Cylinder Volume (Head end)* = Piston Area • Stroke *Cylinder Volume (Rod end)* = (Piston Area - Rod Area) • Stroke *Compression Ratio (C.R.)* = (psig + 14.7) / 14.7 *Consumption (Standard ft³)* = (Area in² x Stroke in x Compression Ratio) / 1728 *Air Demand (scfm)* = 60 x Area in² x Piston Speed in/s x C.R.) / 1728 *Peak Air Flow (Q)* = Volume / Time • C.R. *Torque* = Force • Perpendicular distance from shaft *Water Weight* = Pounds = US Gallons x 8.3453 π = 3.14, D = Diameter, r = Radius

Valve Sizing

Use the formula below with the cylinder flow chart above and the Compression Ratio and Pressure Drop Factor chart below to calculate the required Cv for a valve.

Piston Area (in²) x Stroke (in) x Compression Ratio

Pressure Drop Factor x Stroke Time (sec) x 29

Inlet Pressure	Compression Ratio	P	ressure Di Pr	rop Factor essure Dro		us
Flessure	nalio	2 psi	5 psi	10 psi	15 psi	20 psi
10	1.7	6.5				
20	2.4	7.8	11.8			
30	3.0	8.9	13.6	18.0		
40	3.7	9.9	15.3	20.5	23.6	
50	4.4	10.8	16.7	22.6	26.4	29.0
60	5.1	11.7	18.1	24.6	29.0	32.0
70	5.8	12.5	19.3	26.5	31.3	34.8
80	6.4	13.2	20.5	28.2	33.5	37.4
90	7.1	13.9	21.6	29.8	35.5	39.9
100	7.8	14.5	22.7	31.3	37.4	42.1
110	8.5	15.2	23.7	32.8	39.3	44.3
120	9.2	15.8	24.7	34.2	41.0	46.4
130	9.8	16.4	25.6	35.5	42.7	48.4
140	10.5	16.9	26.5	36.8	44.3	50.3

Note: Pressure drop factor is based on the inlet pressure of the valve and the allowable pressure drop across the valve. For average conditions use a 70 psi inlet pressure and a 10 psi pressure drop.

Note: For more accurate valve sizing, particularly when temperature is a factor, or the operation is speed critical, use the following procedure.

Something to remember when choosing which equation to use for valve selection

- In many instances temperature is not a factor in system applications. In most industrial application, compressed air temperature is roughly the same as ambient. If this is the case, then the use of equation #1 is recommended. This equation has been widely accepted to get a Cv value.
- 2. If temperature is a factor in the application then equation #2 is recommended. We have chosen to use the constant 22.48 in our equations, but those who choose to be more conservative may choose use 22.67 as the constant. Both tied to ambient temperature.
- When sizing a valve by calculating the Cv value, determining the pressure drop across the valve (i.e. ΔP), is an important step.
 What has proven to be a good practice in calculating Cv is the following:

- a. For general applications use 10 psi for the pressure drop.
- b. When a more conservative approach is needed, use 5 psi for the pressure drop.
- c. If cylinder and design factors are critical, then using a 2 psi drop will more conservatively size the valve.
- 4. Also remember that, for calculation purposes, whether P1 is given in PSIG or PSIA, P2 needs to be reflected in absolute or PSIA (i.e. P2a)
- 5. Lastly, we recognize that not all applications will have a supply pressure of a higher valve: thus it is suggested that if P1 is 60 PSI or less, a 5 PSI pressure drop across the valve be used to calculate the Cv value.

(Eq. 1) Simplified equation when temperature is not a factor

$$Cv = \frac{1.024 \text{ x Q}}{\sqrt{\Delta P \text{ x P2a}}}$$

Given:	Cv	= Flow coefficient
	1.024	= Constant
	Q	= Peak Flow Rate in SCFM
	ΔP	= Pressure drop across the valve
		(See information above)
	P2a	= Down-stream (valve's outlet) pressure in PSIA

(Eq. 2) Equation used when temperature is a factor in system application

$$Cv = \begin{pmatrix} Q \\ 22.48 \end{pmatrix} \frac{TR}{\sqrt{\Delta P \times P2a}}$$

Given:	Cv	= Flow coefficient
	22.48	= Constant (22.7 is often used, but 22.48 will be used on the PS exam)
	TR	= Temperature in Rankin (°F + 460)
	Q	= Peak flow retain SCFM
	ΔP	= Pressure drop across the valve
		(See information above)
	P2a	= Down-stream (valve's outlet) pressure in PSIA

Vacuum Cup Sizing

Use the theoretical lift force (Ft) table below to determine what size vacuum cup to use for an application. Practical lift force (Fp) should be calculated with the following formula. Use the safety factors (t) from the table.

PLANE OF CUP CONTACT	STATIC LOAD	DYNAMIC LOAD
Horizontal	t > 4	t > 4
Vertical	t > 4	t > 8

$F_p = F_t \times 1/t$	
------------------------	--

Ft	(Ib _f)	Vacuum Pressure (InHg)							
Cup ø (mm)	Area (mm ²)	26"	24"	22"	20"	18"	16"	14"	12"
2	.031	.062	.057	.05	.049	.042	.037	.033	.029
4	.126	.245	.225	.207	.187	.170	.150	.132	.112
6	.283	.551	.509	.465	.423	.381	.340	.298	.254
8	.503	.979	.904	.829	.754	.677	.602	.527	.452
10	.785	1.53	1.41	1.29	1.18	1.06	.941	.825	.705
13	1.33	2.58	2.38	2.18	1.98	1.79	1.59	1.39	1.19
16	2.01	3.90	3.62	3.31	3.02	2.71	2.40	2.12	1.81
20	3.14	6.13	5.64	5.16	4.70	4.23	3.77	3.31	2.82
25	4.91	9.57	8.82	8.09	7.36	6.61	5.89	5.14	4.41
32	8.04	15.7	14.5	13.3	12.1	10.8	9.63	8.44	7.23
40	12.6	24.5	22.5	20.6	18.8	16.9	15.1	13.2	11.3
50	19.6	38.1	35.3	32.4	29.3	26.5	23.6	20.6	17.7

Note: If several cups are used simply add up the forces for each cup

Sizing Vacuum Ejectors

Step 1 – Determine values for adsorption response time. $T_1 \& T_2$

Pave = Vacuum pressure required.

Given: T_2 = Adsorption response time to 95% of Pave. (Time Required by process)

Find: T_1 = Adsorption response time to 63% of P_{ave}. $T_1 = \frac{T_2}{3}$

Step 2 – Determine the total volume of your system by calculating component volumes and adding them together.

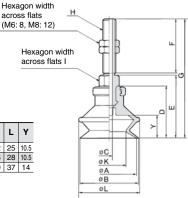
2a) Tub	e Volume	Vt: (mm³)
$V_t = \frac{\pi}{4}$	- x d² x	L 1000

Step 2 – Determine the total volume of your system by calculating component volumes and adding them together. (Continued)

2b) Pad Volume V_P (if significant): (mm³)

$$V_p = \frac{\pi}{4} \mathbf{x} \, \mathbf{d}^2 \mathbf{x} \, \mathbf{L}$$

Where: $V_p = pad volume (mm^3)$ d = ID of pad (mm)L = Depth of pad (mm)


For bellows pads

$$V_{pb} = \frac{\pi}{4} \mathbf{x} \mathbf{A}^2 \mathbf{x} \mathbf{Y}$$

Where: $V_{bp} = pad volume (mm^3)$ A = Dimension A from chart ID of Pad (mm)

Y = Dimension Y from chart Depth of Pad (mm)

Model			A B D H: M6 x 1			H: M8 x 1				ĸ	1	v				
woder	A	Р	יין	С	E	F	G	T	С	Е	F	G	I	n.	-	
ZPT20B	20	22	23.5		28.5		54.5			33.5		49.5		12	25	10.5
ZPT25B	25	27	24	3	29	25	55	8	3.5	34	15	50	12	16	28	10.5
ZPT32B	32	34	29		34		60			39		55		19	37	14

2c) Buffer Volume Vb (if present)

To approximate using C, G, & Y in the standard equation for volume:

$$V_{p} = \frac{\pi}{4} \times \mathbf{C}^{2} \mathbf{x} \text{ (G-Y)}$$

2d) Filter Volume Vf (if present) (mm³)

Consult Best Pneumatics (for example):

AMJ3000 = 30cc* 1000 = 30,000 mm³ AMJ4000/5000 = 85cc* 1000 = 85.000 mm³

Or calculate approximate filter volume by dimensions from the catalog.

(Note that dimensions are not always given for the ID of the filter, so estimate can be used)

	Where:
$V_f = \frac{\pi}{4} \times d^2 x h$	Vf = filter volume (mm ³)
4 4 4 4 4	d = ID of filter (mm)
	Y = height of filter (mm)

2e) Add component volumes together (mm³)

 $V_{total} = V_t + V_p + V_b + V_f + V_{misc}$

2f) Convert form mm³ to Liters

 V_{total} (mm³) x $\frac{1 \text{ (Liter)}}{1,000,000 \text{ (mm³)}} = V_{\text{total}}$ (Liters)

Sizing Vacuum Ejectors

Step 3 – Determine the mean vacuum flow, Q_1 (liter/mm)

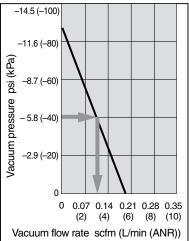
$$Q_1 = \frac{V_{\text{total}}}{T_1} \times \frac{60 \text{ sec}}{1 \text{ min}}$$

 $Where: Q1 = Average flow required (L/min) \\ V_{Total} = Volume of to be evacuated (liters)$

Step 4 – Determine Leakage, Q_{L} (Liter/min) and Q_{max} (liter/min)

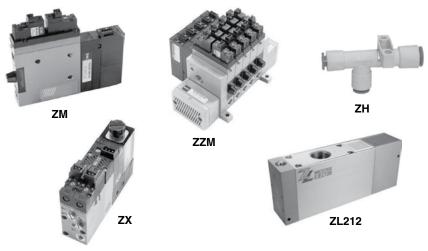
Connect pad to a test ejector and vacuum pressure gauge. Operate ejector at recommended supply pressure and place pad on work piece.

Note the vacuum pressure achieved and compare it to chart from the catalog for the ejector.


If the pressure gauge shows full vacuum pressure achieved, then there is no leakage.

Then use $Q_{\text{max}} = 2 \times Q_1$

If the pressure gauge shows less than full vacuum pressure achieved, determine Q_{L} by finding pressure achieved on graph. Move to the right until intersecting diagonal line above the Q_{L} flow rate


Then use $Q_{\max} = 3 \ge (Q_1 + Q_L)$

Flow Characteristics

Step 5 – Choose ejector.

Choose an ejector that meets the physical characteristics, optional features and Q $_{max}$ flow rate that will perform adsorption in the given time. T_2

Pipe Thread Quick Reference

Tapered pipe threads seal at the points where the crests of the threads meet the roots of the mating threads. Standard pipe threads, NPT, PT, and BSPT require sealant to prevent the development of a spiral leak path. NPTF threads are designed to crush the points of the crests into the roots of the mating threads to achieve the same purpose, however, use of a lubricant or sealant to prevent galling of the threads is preferred where not functionally prohibited.

BSPT - British Standard Taper Pipe Threads

PT – Japanese Industrial Standard Taper Pipe Threads

{R (PT) – Taper external threads}

{Rc (PT) - Taper internal threads}

NPT – American National Standard Taper Pipe Threads

*All of the above are designed to be used with sealant to provide a pressure tight joint.

NPTF – American National Standard Dry seal Pipe Threads *Designed to provide a pressure tight joint without the use of sealant.

PF – Japanese Industrial Standard Parallel Pipe Threads *Straight threads use a gasket or O-ring to produce a pressure tight joint.

		PT &	BSPT	NPT & NPTF				
Port Size	Threads per inch	Pitch	Major Dia.	Thread form angle	Threads per inch	Pitch	Major Dia.	Thread form angle
1/16	28	.03571	.304	55°	27	.030704	.313	60°
1/8	28	.03571	.383	55°	27	.030704	.404	60°
1/4	19	.05262	.518	55°	18	.05556	.540	60°
3/8	19	.05262	.656	55°	18	.05556	.675	60°
1/2	14	.07142	.825	55°	14	.07143	.840	60°
3/4	14	.07142	1.041	55°	14	.07143	1.050	60°

Basic Dimensions

Compatibility between the above male and female is outlined below. SMC Corporation, however, has the unique solution to all this complexity. The Uni-Fit will screw into all major thread variations.

		Female								
			Para	allel			Taper	American		
		BSP					BSPT Rc PT			NPTF
	BSP	Y	Y	Y	Y	N	Ν	N	Ν	Ν
	BSPT	Y	Y	Y	Y	Y	Y	Y	Ν	Ν
	G	Y	Y	Y	Y	Ν	Ν	N	Ν	Ν
6	NPT	Ν	Ν	N	Ν	Ν	Ν	N	Y	Ν
Male	NPTF	Ν	Ν	N	Ν	Ν	Ν	N	N	Y
Σ	PF	Y	Y	Y	Y	N	Ν	N	Ν	Ν
	PT	Y	Y	Y	Y	Y	Y	Y	N	Ν
	R	Y	Y	Y	Y	Y	Y	Y	N	Ν
	UNI	Y	Y	Y	Y	Y	Y	Y	Y	Y

Miniature threads, **M5x0.8** and **10/32 UNF**, will only mate as follows: **10/32** male will fit into an **M5** female, **M5** male will <u>NOT</u> fit into a **10/32** female. Both of these threads use a gasket to produce a pressure tight fit.

"Standard ISO port call out"

Port ID	Description of Function
1	Inlet – Supply Pressure {Port P}
2	Output – Normally Open at rest (Unless specified in a 2 or 3 port valve) (1 – 2) {Port B}
4	Output – Normally Closed at rest (45) {Port A}
3 & 5	Exhaust ports {Port EA & EB}
x	External Pilot Supply (Used to supply pilot for low pressure or vacuum applications)
EX	Pilot Exhaust (Never plug. Leave open or use a silencer)

Each square represents a position or state that the valve will perform. The square that has the call outs will always show the valve at rest.

At Rest Action

2 port NC	P Blocked	A	Blocked	ł
2 port NO	P→ A			
3 Port NC	P Blocked	A E		
3 Port NO	P→ A	E Blocked		
5 Port / 2 Position	P→ B	A	EA	EB Blocked
5 Port / 3 Position – Closed	P, B & A Blocked	ł	EA & EB Blocked	
5 Port / 3 Position – Exhaust	P Blocked	В 🖚	EB	A 🗕 EA
5 Port / 3 Position – Open	P → B & A	EA &	EB 🔶	Blocked

Valve Functions

A directional control valve determines the flow of air between its ports by opening, closing or changing its internal connections. The valves are described in terms of: the number of ports, the number of switching positions, its normal (not operated) position and the method of operation. The first two points are normally expressed in the terms 5/2, 3/2, 2/2 etc. The first figure relates to the number of ports (excluding pilot ports) and the second to the number of positions.

The main functions and their ISO symbols are:

Symbol	Principal Construction	Function	Application
	A 	2/2 ON/OFF without exhaust.	Air motors and pneumatic tools
		3/2 Normally closed (NC), pressurizing or exhausting the output A	Single acting cylinders (push type), pneumatic signals
		3/2 Normally open (NO), pressurizing or exhausting the output A	Single acting cylinders (pull type), inverse pneumatic signals
		4/2 Switching between output A and B, with common exhaust	Double acting cylinders
		5/2: Switching between output A and B, with separate exhausts.	Double acting cylinders
		5/3, Open center: As 5/2 but with outputs open to exhaust in mid- position	Double acting cylinders, with the possibility to de- pressurize the cylinder
		5/3 Closed center: As 5/2 but with mid- position fully shut off	Double acting cylinders, with stopping possibility
		5/3 Pressurized center:	Special appli- cations, i.e. Locking or Rodless Cylinder

Valve Symbols, Principles, description and main applications

Port Identification

The denominations or nomenclature used to identify the various ports was not uniform until the 5/2 and 5/3 valves were invented. Until the 5/2 and 5/3 were invented, there was more tradition than any respected standard.

Originally, the codes previously used for older hydraulic equipment were adopted. "P" for the supply port comes from "pump", the hydraulic source of fluid energy, and is understood to mean "pressure" in pneumatic systems.

The outlet of a 2/2 (two ports, two positions) or 3/2 valve has always been "A", with the second, antivalent output port labeled "B".

The exhaust port was originally labeled "R" from Return (to the oil tank). We can think of R as return to atmosphere in pneumatic systems. The second exhaust port in 5/2 valves was sometimes named S, or the former "R1" and the latter "R2".

The pilot port initiating the power connection to port A has originally been coded "Z" (the two extreme letters in the alphabet belongs together) and the other "Y".

After 20 years of bargaining about pneumatic and hydraulic symbols, one of the ISO work groups had the idea that ports should have numbers instead of letters, thus delaying the termination of the standard ISO 1219 by another 6 years. Supply should be "1", the outputs "2" and "4", the pilot port connecting "1" with "2" is then "12" etc. Table A shows the main sets of port identifications in use. Preferred are now the ISO 5599 numbers.

Standard	Supply Port	NC output	NO output	Exhaust of NC	Exhaust of NO	Pilot for NC	Pilot for NO
Old JIS	Р	A	В	R	S	Z	Y
ISO 1219	Р	А	В	R	S	Z	Y
JIS	Р	А	В	R1	R2	Z	Y
JIS	1	4	2	5	3	14	12
NFPA	Р	А	В	EA	EB	PA	PB
ISO 5599	1	4	2	5	3	14	12
SMC	P (1)	A (4)	B (2)	EA (5)	EB (3)	PA (14)	PB (12)

Table A Typical port identifications

Monostable And Bi-stable

Spring returned valves are monostable (stable in one default or preferred condition). They have a defined preferred position to which they automatically return. A bi-stable valve has no preferred position and remains in either position until one of its two impulse signals are operated.

Valve Types

The two principal methods of construction are Poppet and Slide with either elastic (rubber) or metal seals. Fig. B relates to the various combinations.

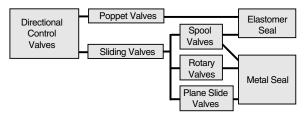


Fig. B The various types of valves and sealing methods

Product Data Codes

Acronyms for Materials

C3604	Copper alloy per JIS H 3250 type C 3604
CR	Neoprene
EPR	Ethylene-propylene rubber
FKM	Fluorocarbon or Fluoro Elastomers (Viton)
NBR	Buna N or Nitrile rubber
PBT	Polybutylene terephthalate
POM	Polyacetal (Delrin)
PP	Poly-propylene
Si	Silicone rubber

SL	Silicone rubber
SPC	Cold roll steel
SUS	Stainless steel
SUS304	304 grade stainless steel
SUS316	316 grade stainless steel
SWP-B	Piano wire
SWRM3	Low Carbon steel wire rod
TF	Polytetrafluoroethylene (Teflon)
PFA	Moldable Teflon

Indication of International Standard Code for Production Lot No.

Annual C	ode	Monthly	y Code		Country (Code
Year V	ariable Code 1st digit	Month	Fixed Code 2nd digit		Company	Fixed Code 3rd & 4th digits
1996	A	January	0	5	SMC-JAPAN	Nil
1997	В	February	P	5	SMC-USA (INDY)	I
1998	C	March	Q	5	SMC-CANÀDA	CA
1999	D	April	R	5	SMC-MEXICO	MX
2000	E	May	S	5	SMC-ARGENTINA	AR
2001	F	June		5	SMC-CHILE	CL
2002	G	July	U	5	SMC-SWITZERLAND	CH
2003	Н	August	V	5	SMC-GERMANY	DE
2004	I	September	W	5	SMC-UK	GB
2005	J	October	X	5	SMC-IRELAND	IE
2006	K	November	Y	5	SMC-ITALY	IT
2007	L	December	Z	5	SMC-FRANCE	FR
2008	M			5	SMC-SWEDEN	SE
2009	N			5	SMC-AUSTRIA	AT
2010	0			5	SMC-SPAIN	ES
2011	P			-	SMC-TIWAN	
2012	Q			5	SMC-SINGAPORE	SG
2013					SMC-manufacturing (SP)	
2014	-			-	SMC-HONG KONG	
2015	T				SMC-PHILIPPINE	
2016					SMC-MALAYSIA	
2017				5	SMC-KOREA	KR
2018	W				SMC-CHINA	
2019				-	SMC-THAILAND	
2020					SMC-INDIA	
2021					SMC-AUSTRALIA	
2022				5	SMC-NEW ZEALAND	NZ
2023	В					
					Note)	
1st digit		nnual Code	7 then yotum [A	1	 Exception: Countr available for SMC 	y code is not - Japan, SMC-China
2nd digit	Fixed Mor	-], then return [A	IJ		cturing (Singapore).
-		-			2. Exception: Countr	
3rd & 4th digitals			mmon Country	Code	e) for Indianapolis fa	
					If 2 or more produce	
For example:			exist in future, add number of facilities			
Production in			after this code in order of registration.			
Production in	USA on I	May 2000	ESI		In case of necessi	
					information, Job N	o. etc., add them

after this code.

Cylinder Part Number Building Information

- Style? _____
- Bore? _____
- Stroke? ____
- Single or Double Acting?
- Spring return or spring extend?

Mounting? _____

Inch or Metric?

Auto - Switch Capable? Y or N

- Number of Switches? _____
- Reed or Solid State? NPN or PNP?
- What Voltage? _____
- Standard or Long Leads?
- Prewired lead connector?

Options

- Oversize rod?
- Cushions? Air or Urethane?
- Non-rotating rod?
- Rod boot? Nylon or Neoprene?
- Low or High Temp application?
- Low Friction?
- Stainless Steel Rod?
- Adjustable Stroke? Extend or Retract?
- Dual Stroke? Single or Double Rod?
- Extended rod? Inch or Metric?
- Extended rod threads? Inch or Metric?
- Special Rod threads?

Accessories

- Rod Eye
- Double Rod Clevis
- Flange (Head or Rear)
- Single Rod Clevis
- Foot Bracket
- Trunnion

SpeedL	oad	_ Mounting Dire	ection
Temperature	Enviro	onment	
Moments: X	Y	Z	

Note: Use cylinder dimensional sketch on page 19, if necessary.

Crossing Over a Cylinder

Bore Stroke	Inch or Metr	ic Port Size
Thread Size	Mounting Style	
Line Pressure	Load _	
Vertical or Horizontal Lift	Switches	Style
Dimensions:		
А В	C D _	
E F	G	

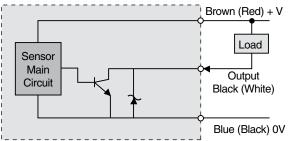
Valve Part Number Building Information

How Many Ports?	
How Many Positions?	
• Flow?	
Rubber or Metal Seal?	
What is the application?	
Cylinder bore?	Stroke?
Speed?	Blow off?
Single or Double Solenoid?	
Voltage?	
Style of Connector?	
Plug-In, DIN or Grommet?	
Serial or Discrete?	
Body Ported, Sub-plate or Manifol	d?
Foot bracket, Mounting holes or D	IN Rail?
Port Size?	Threaded or One Touch Fitting
How Many Stations?	
Operating Pressure?	
Temperature?	
• Environment?	

Vacuum Order Sheet

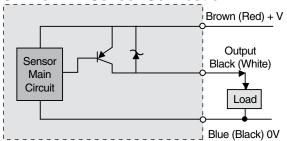
- Ejector Single stage, 2-stage or 3-stage nozzle?
- Port size? ______
- Flow? _____
- Application:
 - Horizontal or Vertical Lift?
 - Load Material? ______
 - Weight of Load? ______
 - Number of Pads? ______
 - Surface Material? ______
 - Pad Diameter? _____
 - Flat, Flat w/ Ribs, Deep or Bellows?
 - Material? ______
 - Connection Vertical or Horizontal Vacuum entry?
 - Buffer or Non Buffer?
 - Female Fitting, Barb or One-Touch?
 - Vacuum Pressure? ______
- Vacuum Filter? ______
- Solenoid Valves for Supply and/or Blow off?
 - Voltage? _____
 - Type of connector, Grommet, L type, M type?
- Individual or Manifold?
- Vacuum Switch or Adsorption Conformation?

PNP or NPN?


Auto Switches

REED SWITCHES: A thin metal contact is drawn closed by the magnetic field of the piston magnet. Since this is a mechanical switch it will wear out over time and is susceptible to vibration and shock. Their advantage is that they are inexpensive and can be used with AC voltages.

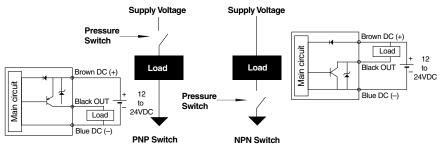
SOLID- STATE SWITCHES: The magnetic field generated by the piston magnet causes a current flow inside the switch. Since there are no moving parts, the switch life is much longer than a reed switch and they are less prone to vibration and shock. They are more expensive, can only be used with DC voltages and you need to know whether you need a sinking or sourcing switch.


Current Sinking (NPN) –The switch sensor "sinks" current from the load through the sensor to ground. The load is connected between the positive voltage supply and the output lead of the sensor.

3-Wire NPN Sensor Connection

Current Sourcing (PNP) – The switch sensor "Sources" current through load to ground. The load is connected between the output lead of the sensor and the negative "ground" lead of the supply.

3-Wire PNP Sensor Connection



Three wire DC sensors include one wire that provides voltage to the sensor, an output signal wire and a ground wire. Most electro-mechanical loads (relays, counters, solenoids etc.) can use either a sink or source type switch provided it is wired properly. The proper sensor type must be chosen when used with solid-state load and programmable controllers due to the fact that some of these loads must be grounded.

Wire Colors: SMC has changed the wire colors on all of our switch products. This was done to conform to European standards that are being adopted worldwide.

Positive	Red	Brown
Negative	Black (old colors)	Blue (new colors)
Output	White	Black

Pressure Switches and Their Simplified Operation

Sourcing – PNP is often referred to as Sourcing, because the switch closes and provides the source voltage to the load

Sinking – NPN is often referred to as Sinking, because the switch closes and sinks the current to ground

- Normally Open Does not pass the signal until the set point is reached
- Normally Closed Passes current until the set point is reached
- FS or Full Scale The maximum setting minus the minimum setting.

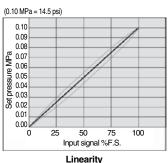
Ex. ITV1050 0.9MPa – 0.005MPa = 0.895 MPa Full Scale (130.5 psi – 0.725 psi = 129.775 psi)

Linearity – The nearness with which the plot of a signal, or variable, plotted against a prescribed linear scale approximates a straight line. Output error to reference value

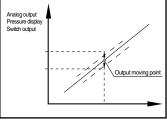
Repeatability – The ability of the instrument to provide the same output every time for the same input. Usually given as a % of the FS value

Sensitivity – Often described as the minimum change of input to which the system is capable of responding. Usually expressed in % of Full Scale

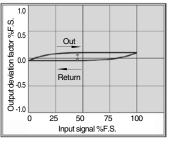
Hysteresis – The difference in output when the measured value is first approached with increasing and then decreasing values. Expressed in % of Full Scale


Impedance - Resistance of a load that hinders the flow.

Current Consumption – The amount of current needed for normal operation, does not include load current.


Watts (W) and Volt Amps (VA) – Both of these units are used to express electrical power.

Watts is for DC voltage and Volt Amps is for AC voltage.


If you have any questions on basic electronics there is an entry in the Product Application Database that explains basic electronics.

This graph shows the repeatability of an analog output, pressure display and a switch (ON-OFF) output's moving point. The pressure is increased or decreased under normal temperature (77°F (25°C)).

Repeatability

Hysteresis

NEMA Ratings (Electrical Enclosures)

An enclosure is a surrounding case constructed to provide a degree of protection to personnel against accidental contact with the enclosed equipment and to provide a degree of protection to the enclosed equipment against specified environmental conditions. These are the more common classifications as they pertain to pneumatic components such as valves.

NEMA 1 Intended for Indoor use primarily to provide a degree of protection against contact with enclosed equipment.

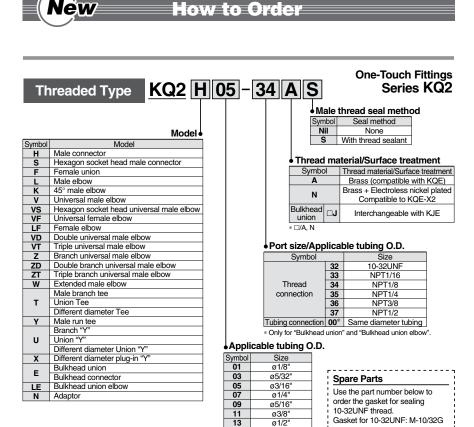
NEMA 2 Intended for indoor use primarily to provide a degree of protection against limited amounts of falling water and dirt.

NEMA 3 Intended for outdoor use to provide a degree of protection against windblown dust, rain, sleet and external ice formation.

NEMA 3R Intended for outdoor use to provide a degree of protection against falling rain, sleet and external ice formation.

NEMA 3S Intended for outdoor use to provide a degree of protection against windblown dust, rain, sleet and provide for operation of external mechanisms when ice laden.

- **NEMA 4** Intended for indoor and outdoor use primarily to provide a degree of protection against windblown dust and rain, splashing water and hose directed water.
- **NEMA 4X** Intended for indoor and outdoor use primarily to provide a degree of protection against corrosion, windblown dust and rain, splashing water and hose directed water.


NEMA 6 Intended for indoor or outdoor use primarily to provide a degree of protection against entry of water during occasional submersion to a limited depth.

1 st Numeral: Degree of protection with respect to persons and solid objects		2 nd Numeral: Degree of protection with respect to harmful ingress of water								
		Non protected	Dripping water	Dripping water +/- 15°	Spraying water +/- 60°	Splashing water 360 °	Water jets	Heavy seas	Immersion	Submersion
Not protected	0	IP00	IP01	IP02						
Solid objects > ø50mm	1	IP10	IP11	IP12	IP13					
Solid objects > ø12mm	2	IP20	IP21	IP22	IP23					
Solid objects > ø2.5mm	3	IP30	IP31	IP32	IP33	IP34				
Solid objects > ø1.0mm	4	IP40	IP41	IP42	IP43	IP44	IP 45	IP 46		
Dust protected	5					IP54	IP 55	IP 56		
Dust tight	6						IP	IP	IP	IP
Ŭ							65	66	67	68

IP Ratings (Electrical Enclosures)

Note: find IP rating and follow across and up to find degree of combined protection. IP65 and NEMA 4 are roughly equivalent

Tube-Tube Type KQ2 H 05-00 A

One-touch fittings

	Model					
Symbol	Model					
н	Straight					
п	Different diameter straight					
	Elbow					
L	Plug-in elbow					
	Reducer elbow					
R	Plug-in reducer					
т	Union tee					
•	Different diameter tee					
TW	Cross union					
	Union "Y"					
U	Plug-in "Y"					
	Different diameter union "Y"					

Applicable tubing O.D.

Symbol	Size
01	ø1/8"
03	ø5/32"
05	ø3/16"
07	ø1/4"
09	ø5/16"
11	ø3/8"
13	ø1/2"

-• I	Port size/Applicable tubing O.D							
	Symb	ol	Size					
4	<u>د</u>		Same diameter tubing					
1.5		99	Same diameter rod					
	a p	01	ø1/8"					
	g ia	03	ø5/32"					
1	h F. a	05	ø3/16"					
ļĝ	티블링	07	ø1/4"					
2	Bella	09	ø5/16"					
	r ubing (Hou) connection Different dia. Tubing (Reducer)	11	ø3/8"					
H	- 2	13	ø1/2"					
ŗ	Accessory							
1	Symb	loc	Name					
÷.	KQ2N KQ2C		Nipple					
1			Reducer nipple					
1			Tube cap					

KQ2P Plug

FRL Cheat Sheet

1. Filter					
	Port Size	Part No. W/ Manual	Drain Pa	rt No. W/Auto Drain	
	/8" NPT	AF20-N01-CZ	-A /	F20-N01C-CZ-A	
	/4" NPT	AF20-N02-CZ	-A /	AF20-N02C-CZ-A	
	/8" NPT	AF30-N03-Z-A	\	AF30-N03D-Z-A	
1	/2" NPT	AF40-N04-Z-A	\	AF40-N04D-Z-A	
3	/4" NPT	AF50-N06-Z		AF50-N06D-Z	
1	"NPT	AF60-N10-Z		AF60-N10D-Z	
2. Regulator					
	Port Size	Part Number W/O g	auge Pa	rt Number W/gauge	
	/8" NPT	AR20-N01H-Z	-A A	R20-N01GH-Z-A	
	/4" NPT	AR20-N02H-Z	-A A	R20-N02GH-Z-A	
3	%" NPT	AR30-N03H-Z	2-A A	R30-N03GH-Z-A	
1	/2" NPT	AR40-N04H-Z	ζ-Α β	R40-N04GH-Z-A	
3	/4" NPT	AR50-N06H-Z AR60-N10H-Z		R50-N06GH-Z	
1	" NPT			R60-N10GH-Z	
3. Lubricator		Port Size			
1				art Number	
		1/8" NPT	AL2	20-N01-3CZ-A	
		1/4" NPT	AL2	20-N02-3CZ-A	
	3/8" NPT		AL30-N03-3Z-A		
t encounter		1/2" NPT		40-N04-3Z-A	
		3/4" NPT		50-N06-3Z	
-		1" NPT	AL	60-N10-3Z	

4. Brackets

Air Prep Unit Port Size	Spacer	Spacer-T
1/8" NPT (AC20 Series)	Y200-A	Y200T-A
1/4" NPT (AC20 Series)	Y200-A	Y200T-A
3/8" NPT (AC30 Series)	Y300-A	Y300T-A
1/2" NPT (AC40 Series)	Y400-A	Y400T-A
3/4" NPT (AC50 Series)	Y500-A	Y500T-A
1" NPT (AC60 Series)	Y600	Y600T