Rotary Cylinder Series MRQ Size: 32, 40

A rectilinear rotation unit that compactly integrates a slim cylinder and a rotary actuator.

The timing of the rectilinear and rotational movements can be set as desired.

Rotational movements are possible at the forward end, the back end, or during a rectilinear movement.

Effective output

(At 0.5MPa) Size 32 = **1**Nm Size 40 = **1.9**Nm

000

Rotation angle: **80° to 100° 170° to 190°** Backlash: Within 2° CRB1

CRBU

CRA1

CRQ

MRQ

MSQ

MSUB

Adjustable rotation angle

The rotation angle can be adjusted $\pm 5^\circ$ at each end, or $\pm 10^\circ$ at both ends.

Smooth rotary movement

Roller bearings are used in the rotating portion.

Equipped with an auto switch (mountable on both sides)

Magnet included as standard. Reed switch: D-A7/A8, Solid state switch: D-F7/J7

An air cushion is also available.

Series	S MRQ											
Linear	Output of	Rotation	L	ine	ar r	not	ion	str	oke	(m	m)	
part size	(at 0.5MPa)	angle	5	10	15	20	25	30	40	50	75	100
32	4.0001/	80° to 100°	۲	•	•	٠	•	•	•	•	•	•
52	1.02N/m	170° to 190°	۲	٠	٠	٠	•	٠	۰	٠	•	•
40	40 1.91N/m	80° to 100°	٠	•	٠	•	•	•	٠	•	•	•
40		170° to 190°	٠	٠	٠	٠	•	٠	٠	٠	•	•

Application examples

A connecting port can be selected from two positions that are available on the rotation unit.

Connecting ports are provided "IN" two positions as standard specifications.

1.5-1

Data How to Set Rotation Time

Unit Conversions

SI units are used in this catalog. The unit conversion between SI and conventional units are as follows:				
Pressure	1MPa	= 10.1972kgf/cm ²	Oscillation acceleration 100m/s ² = 10.1972G	
Cylinder thrust/load	100N	= 10.1972kgf	Standard air: Symbol (ANR)	
Torque	1Nm	= 10.1972kgfcm	Temperature 20°C {293K}, Air with	
Moment of inertia	1kgm ²	= 10.1972kgcm/s ²	an absolute pressure of 760 mmHg	
Kinetic energy	1J	= 10.1972kgcm	{101.3kPa}, and a relative humidity of 65%	

Allowable Kinetic Energy

Even if the torque that is required by the load in the rotation movement is small, the internal parts could become damaged depending on the inertia of the load. Therefore, select an appropriate model for your application by taking the load's moment of inertia, kinetic energy, and rotation time into consideration. (A chart that depicts the moments of inertia and the rotation time is provided to facilitate the selection process.)

1 Setting of Rotation Time

Set the rotation time within the adjustable rotation time range that ensures stable operation, based on the table on the right. Setting the speed higher than the upper limit could cause the actuator to stick or slip.

2 How to Calculate Moment of Inertia

Size	Allowable kinetic energy (J)	Adjustable rotation time range that ensures stable operation
32	0.023	0.2 to 1
40	0.028	0.2 to 1

Formula of moment of inertia is subject to load shape. Refer to the moment of inertia formula on p.1.5-3.

3 Selection of a Model

Select a model by applying the calculated moment of inertia to the chart below.

How to calculate the load energy

$$\mathbf{E} = \frac{1}{2} \mathbf{I} \omega^2, \ \omega = \frac{2\theta}{t}$$

*The ω that is obtained here is the terminal angular velocity of an isometric acceleration movement.

$\langle \text{How to read graph} \rangle$

Moment of inertia.....0.0025kgm²

Rotation time.....0.7S/90°, size 40 will be selected.

$\langle \text{Calculation example} \rangle$

Load shape: Column with a radius of 0.2m and a weight of 0.2kg Rotation time: 0.7s/90°

$$I = 0.2 X \frac{0.2^2}{2} = 0.004 \text{kgm}^2$$

In the chart that depicts the moment of inertia and the rotation time, find the intersecting point of the lines that extend from the locations corresponding to 0.004kg/m² on the vertical axis (moment of inertia) and to 0.9s/90° on the horizontal axis (rotation time). Select size 40 because the intersecting point is found within the selection range for size 40.

4 Calculation of moment of inertia I (I: Moment of Inertia (kgm²) m: Load weight (kg))

No. of gears

 $I = m \frac{a^2 + b^2}{12}$

 Find moment of inertia I B around the rod (B).
 Replace moment of inertia I B

 $I = \left(\frac{a}{b}\right)^2 I B$

around the rod (A) with I A,

Data 3 **Theoretical Output**

5 Linear Motion Part Theoretical Output

Linear motion Part theoretical output table

Linear motion Part theoretical output table							Unit: N			
Sizo	Rod diameter Operating		Piston area			Opera	ating pressure	(MPa)		
Size	(mm)	direction	(mm²)	0.15	0.2	0.3	0.4	0.5	0.6	0.7
	40.0	OUT	804	121	161	241	322	402	482	563
32	12.2	IN	675	101	135	202	270	337	405	472
40		OUT	1256	183	251	377	502	628	754	879
40	14.2	IN	1081	162	216	324	433	541	649	757

(Formula) Thrust (N) = Piston area (mm²) x Operating pressure (MPa)

Generation power from the linear motion part

Calculation formula

$F_{1} = \eta X A_{1} X P(1)$ $F_{2} = \eta X A_{2} X P(2)$	
$A_1 = \frac{\pi}{4} D^2$	
$A_2 = \frac{\pi}{4} (D^2 - d^2)$ (4)	

 F_1 = Cylinder force generated on the extending side (N)

 F_2 = Cylinder force generated on the retracting side (N)

- $\eta = Load rate$
- \dot{A}_1 = Piston area on the extending side (mm²)
- A_2 = Piston area on the retracting side (mm²)
- D = Tube bore size (mm)
- d = Piston rod diameter (mm)
- P = Operating pressure (MPa)
- Note) As shown in the diagram below, the retracting side pressure surface area of the double acting single rod cylinder is reduced by the area that corresponds to the piston rod's cross sectional area.

Load rate n

In the process of selecting an appropriate cylinder, remember that there are sources of resistance other than the load that apply in the output direction. Even at a standstill as shown in the diagram below, the resistance that is incurred by the seals or bearings in the cylinder must be subtracted. Furthermore, during operation, the reactive force that is created by the exhaust pressure also acts as resistance.

Because resistance that counters the cylinder output vary with conditions such as the cylinder size, pressure, and speed, it is necessary to select an air cylinder of a greater capacity. For this purpose, the load ratio is used; make sure that the load ratio values listed below are obtained when selecting an air cylinder.

1) Using the cylinder for stationary operation: load ratio $\eta = 0.7$ (Fig. 1) 2) Using the cylinder for dynamic operation: load ratio $\eta = 0.5$ (Fig. 2)

3) Using a guide type for horizontal operation: load ratio $\eta = 1$ (Fig. 3)

Note) For dynamic operation, the load ratio may be set even lower if it is particularly necessary to operate the cylinder at high speeds. Setting it lower provides a greater margin in the cylinder output, thus enabling the cylinder to accelerate more quickly.

Data Theoretical Output/Side Load/Allowable Moment

$\langle \text{Graph 1} \rangle$ Cylinder output on the extending side (Double acting)

(Graph 2) Cylinder output on the retracting side (Double acting)

How to read graph

① Decide on the direction in which the cylinder output will be used (the extension or the retraction side). (See graph 1 for the extension side, and graph 2 for the retraction side.)

(2) Find the point at which the load ratio (diagonal line) and the operating pressure (horizontal line) intersect. Then, extend a vertical line from that point. (Determine the load ratio η in accordance with the load ratio η that has been determined on p.1.5-4.)

③ Extend a horizontal line from the necessary cylinder output (left diagram), and find the point at which it intersects with the vertical line of ②. The diagonal line above that intersecting point represents the inner diameter of the tube that can be used.

6 Theoretical Output of the Rotating Part Table of Theoretical Output of the Rotating Part

CRB1 CRBU CRA1 CRQ MRQ MSQ MSUB

7 The allowable lateral load and the moment at the tip of the piston rod

An excessive amount of lateral load or moment applied to the piston rod could cause a malfunction or internal damage. The allowable load range varies by conditions such as the installed orientation of the cylinder body or whether an arm lever is attached to the tip of the piston rod. Find the allowable value from the diagram shown below and operate the rotary cylinder within that value. 1) Using the cylinder body installed horizontally:

To operate the rotary cylinder with the cylinder body installed horizontally, make sure that the total load that is applied to the tip of the piston rod will be within the value indicated in the table below. If the center of gravity of the total load is not in the center of the shaft, provide a balance weight as illustrated below so that moment in the rotational direction would not be applied to the tip of the piston rod.

Allowable side load on the piston end

Sizo	Stroke of linear part									
3120	5	10	15	20	25	30	40	50	75	100
32	14	14	13	13	13	12	12	11	10	9
40	23	23	22	21	21	20	19	18	16	15

2) Using the cylinder body installed vertically:

To operate the rotary cylinder with the cylinder body installed vertically, the total load that is applied to the tip of the piston rod must be within the thrust of the rectilinear portion in which the load ratio is taken into consideration. (Refer to p.1.5-4 for further information on load rate.)

If the center of gravity of the total load is not in the center of the shaft, it is necessary to calculate the moment. Make sure that the moment is within the value shown in the table below.

Unit: N

8Air Consumption

Results are determined by measuring the factors through 1 complete cycle over one minute.

Rotatary Motion Part	Angle of rotation: 90°, 180°

Sizo	Angle of rotation Inner volume		ume Operating pressure (MPa)								
Size	(Degree)	(cm ³)	0.15	0.2	0.3	0.4	0.5	0.6	0.7		
32	80° to 100°	4.88	0.024	0.029	0.039	0.048	0.058	0.068	0.077		
52	170° to 190°	8.46	0.042	0.05	0.067	0.084	0.1	0.117	0.134		
40	80° to 100°	9.22	0.046	0.055	0.073	0.091	0.109	0.128	0.146		
40	170° to 190°	15.90	0.079	0.095	0.126	0.157	0.189	0.22	0.251		

Unit: *t*/min (ANR)

Linear Motion Part

Linear Mo	otion Part								ι	Jnit: ℓ/min (ANR)
Sizo	Chroling (man)	Inner volu	ıme (cm ³)			Opera	ating pressure	(MPa)		
Size	Stroke (mm)	Head side	Rod side	0.15	0.2	0.3	0.4	0.5	0.6	0.7
	5	4	3.4	0.018	0.022	0.029	0.037	0.044	0.051	0.059
	10	8	6.7	0.036	0.044	0.058	0.073	0.087	0.102	0.116
	15	12.1	10.1	0.055	0.066	0.088	0.11	0.132	0.154	0.176
	20	16.1	13.5	0.073	0.088	0.117	0.146	0.176	0.205	0.234
32	25	20.1	16.9	0.092	0.11	0.147	0.183	0.22	0.256	0.293
	30	24.1	20.2	0.11	0.132	0.175	0.219	0.263	0.307	0.35
	40	32.2	27	0.147	0.176	0.235	0.293	0.351	0.41	0.468
	50	40.2	33.7	0.183	0.22	0.293	0.366	0.439	0.512	0.585
	75	60.3	50.6	0.275	0.33	0.439	0.549	0.658	0.768	0.877
	100	80.4	67.5	0.367	0.44	0.586	0.732	0.878	1.02	1.17
	5	6.3	5.4	0.029	0.035	0.046	0.058	0.069	0.081	0.093
	10	13	11	0.058	0.07	0.093	0.116	0.139	0.162	0.185
	15	19	16	0.087	0.104	0.139	0.174	0.208	0.243	0.277
	20	25	22	0.116	0.139	0.185	0.231	0.277	0.324	0.37
40	25	31	27	0.145	0.174	0.231	0.289	0.347	0.405	0.462
	30	38	32	0.174	0.209	0.278	0.347	0.416	0.485	0.555
	40	50	43	0.232	0.278	0.37	0.463	0.555	0.647	0.74
	50	63	54	0.29	0.348	0.463	0.578	0.694	0.809	0.924
	75	94	81	0.435	0.521	0.694	0.868	1.04	1.21	1.39
	100	126	108	0.58	0.695	0.926	1.16	1.39	1.62	1.85

9Air Requirements

The required air volume, which is the amount of air that is required for operating the rotary cylinder at the prescribed speed, is necessary for selecting the

F.R.L. equipment or the pipe size.

The amount of air requirement of rotary actuator = 0.06 x V x (P/0.1013)/t $\ell/min(ANR)$

V: Inner volume = cm^3

P: Absolute pressure = {Operating pressure (MPa) + 0.1013}

t: Operating time = s

Calculate the required air volume separately for the linear motion part and the rotary motion part. The required air volume for operating the linear motion and rotary motion parts simultaneously is the total of the individually obtained values. Calculation example: Obtain the required air volume to be used from the operation chart shown below.

Model: MRQBS32-50CA-A73 Operating pressure: 0.5MPa

CRB1

CRA1

³m: L Ex.) A73HL 5m: Z Ex.) A73HZ

—: N Ex.) A80CN

Consult SMC when using F7BA★.

Rotary Cylinder Series MRQ

Standard Specifications

Fluid	Air (Non-lube)
Max. operating pressure	0.7 MPa
Min. operating pressure	0.15 MPa
Ambient and fluid temperature	0° to 60°C (No condensation)
Mounting	Basic style, Rod side flange style

Linear motion, Rotary motion/Specifications

Linear motion	ear motion Bore size (mm)		40	CRB1
	Piston speed	50 to 50	00mm/s	
	Cushion	With air cushion, V	Vithout air cushion	CKDU
	Port size	Rc(P	T)1/8	CRA1
Rotary motion	Output torque (At 0.5 MPa)	1Nm	1.9Nm	
	Stable rotation time regulation range	0.2 to	CRQ	
	Cushion	-	_	
8 . A	Allowable kinetic energy	0.023J	0.028J	MRQ
4 8 4	Port size	Rc (PT)1/8, M5 X 0.8 (The		
	Backlash	2° 0	MSQ	
		· · · · · · · · · · ·		

led explanation of effective output, refer to the description on p.1.5-5.

Applicable Auto switch

Function	Auto switch with contact point	Auto switch without contact point
Linear motion part/ Rotary motion part	Grommet (Vertical cable access) D-A7□, A80, A79W Grommet (Horizontal cable access) D-A7□H, A80H Connector D-A73C, A80C	Grommet (Vertical cable access) D-F7⊡V Grommet (Horizontal cable access) D-F7□, J79, J79W, F-7⊡W F7□F, F7BAL, F7NTL Connector D-J79C

For further explanation, refer to the description on p.2.11-1.

Linear Motion/Standard Motion

Size	Standard stroke (mm)	
32/40	5, 10, 15, 20, 25, 30, 40, 50, 75, 100	

Refer to p.1.5-18 for other intermediate strokes.

Weight

-					
Size	Rotation angle	Basic weight (kg)	Add'l stroke weight (kg/mm)	Flange (kg)	
32	80° to 100°	1.4	0.004	0.5	0.5
52	170° to 190°	1.5	0.004	0.5	
40	80° to 100° 2.1		0.005	0.5	
40	170° to 190°	2.3	0.005	0.5	

Calculation method: (Ex) MRQBS32-50CA

Basic weight
 Stroke additional weight

 $\cdots 1.4 \text{ kg}$ $\cdots 0.004 \text{ X } 50 = 0.2 \text{ kg}$ Total 1.6 kg

Weight of a single auto switch

Neight of a single auto switch Unit: g				
Applicable	Auto switch model		Length of lead wire	
auto switch			0.5m	3m*
	D-A7□, A80, D-A7□H, A80H		10	52
Reed switch	D-A73C, A80C		12	54
	D-A79W		11	53
	D-J79, J79W	2 wire	11	49
Solid state switch	D E7	3 wire	12	56
	D-F1	4 wire	14	56

* Write "L" at the end of the part number for 3 meters of lead wire. (Available for all the types. 3 meter type is standard for "D-F7BAL", "F79LF" and "F7NTL".)

Possible to exchange basic style with flange style

Specify with the part numbers shown below when ordering flange parts

-1		5 5 5 1	
Size	Part No.	Attached parts: Flange	1 piece
32	P317010-7	Hexagon socket head cap screw	4 pieces
40	P317020-7		15

order Nade	P.1.5-18 to	o 1.5-19
	I	

MSUB

Series MRQ

Rotating direction

When pressure is applied from the arrow-marked side, the rod rotates clockwise.

Allowable lateral load to the piston rod end

Using friction fittings makes it easier to mount the load to the piston rod end.

Rotation angle adjustable range/Rotation angle

- Note) The diagram shows the rotation angle with a reference position set at random. Each rotation angle end can be adjusted 5°.
 - When the cylinder is pressurized from port B, range E can be adjusted by regulating angle adjustment screw C. When the cylinder is pressurized from port A, range F can be adjusted by regulating angle adjustment screw D.

Manufacturers of friction fittings/Models

Size	Miki Pully (ETP bushing)	Eyesell (Mechanical lock)	Nabeya Industry (Clamp lock)
32	ETP-K-12	MA12 X 26	CLH-12 X 18
40	ETP-K-14	MA14 X 28	CLH-14 X 23
Consult the manufacturers concerning further information			

 Consult the manufacturers concerning further informatic like on specifications.

Backlash

The rotary motion part has a double-rack construction. The pinion gear has a hexagonal hole, and a slight clearance exists between this hole and the hexagonal flats of the piston rod. This clearance generates a backlash in the rotational direction of the piston rod.

Size	Adjusting angle per 1 rotation of angle adjusting screw	
32	5.7°	
40	4.8°	

▲ Caution

The angle adjustment bolt is adjusted to a random position within the adjustable rotating range. Therefore, it must be readjusted to obtain the angle that suits your application.

1.5-10

Construction/Parts List

*Part unnecessary for models without a cushion

6

3. 38

45 (4) (2)

CRB1
CRBU
CRA1
CRQ
MRQ
MSQ
MSUB

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminium alloy	Anodized
2	Cover	Aluminium alloy	Anodized
3	Plate	Aluminium alloy	Chromated
(4)	Packing	NBR	
5	End cover	Aluminium alloy	Anodized
6	Piston	Stainless steel	Soft nitriding
7	Pinion gear	Chrome molybdnum steel	Soft nitriding
8	Wearing	Resin	
9	Magnet	Magnet	
10	Bearing color	Aluminium alloy	Anodized
11	Steady brace cover	Aluminium alloy	Anodized
12	Tube	Aluminium alloy	Anodized
13	Head cover	Aluminium alloy	Anodized
(14)	Rod cover	Aluminium alloy	Platinum silver
(15)	Piston	Aluminium alloy	Chromated
16	Piston rod	Stainless steel	Soft nitriding
17	Non-rotating guide	Sintered metallic	Soft nitriding
(18)	Flange	Aluminium alloy	Platinum silver
19	O ring	NBR	
20	Rod packing guide	Aluminium alloy	Anodized
21	Color	Aluminium alloy	Anodized
22	Cushion ring	Rolled steel	Electroless nickel plated
23	O ring retainer	Aluminium alloy	Chromated
24	O ring	NBR	
25	Cushion valve Ass'y	Steel wire	
26	Wearing	Resin	
27)	Hexagon socket head cap screw	Chrome molybdnum steel	Nickel plated
28	Plastic magnet	Magnet	
29	Switch mounting nut	Rolled steel	
30	Switch spacer	Resin	
31	Plug	Brass	Electroless nickel plated
32	Rod packing	NBR	
33	Piston packing	NBR	

Component Parts

No.	Description	Material	Note
34	Piston packing	NBR	
35	Cushion packing	NBR	
36	O ring	NBR	
37)	O ring	NBR	
38	O ring	NBR	
39	O ring	NBR	
40	Hexagon socket head cap screw	Stainless steel	
(41)	Hexagon socket head cap screw	Stainless steel	
(42)	Hexagon socket head cap screw	Stainless steel	
(43)	Hexagon socket head cap screw	Stainless steel	
(44)	Cross-recessed pan head small screw	Steel wire	Nickel plated
(45)	Cross-recessed pan head small screw	Steel wire	Zinc chromate
(46)	Hexagonal socket head retaining ring	Steel wire	Electroless nickel plated
(47)	Compact hexagon nut	Stainless steel	
(48)	Hexagon nut with flange	Steel wire	Electroless nickel plated
(49)	Seal washer	Steel wire	
50	Steel ball	Steel wire	
51)	R-shape snap ring	Steel wire	Zinc chromated
52	R-shape snap ring	Steel wire	Zinc chromated
53	R-shape snap ring	Steel wire	Zinc chromated
54)	Bearing	Bearing steel	
55	Bearing	Bearing steel	
56	Shell type needle roller bearing	Bearing steel	
57	Thrust needle roller bearing	Bearing steel	
58	Bearing ring	Bearing steel	

Spare Parts List

Decorintion	Size		
Description	32	40	
	P31701-1	P31702-1	
Spare parts Ass'y	The parts of the above-mentioned number		
	(4) (8) (19) (26) (32) (33)	34 36 37 38 39 49	

Series MRQ

Basic Style/MRQBS32

The dimensions below shows an actuator with a rotation angle of 80° to 100° style.

 30
 35
 16
 Auto switch

 116+Stroke
 34
 48

 (198+Stroke)
 34
 48

The dimension on the left shows an actuator with a rotation angle of 80° to 100° style with a stroke of 15mm.

Mounting screw dimensions (Distinction of stroke)

MRQBS32-□CA-A7/A8······SMRQ32, #1(#1+(#1/ SET #010)+ #4)

Rotary Cylinder Series MRQ

Flange Style/MRQFS32

The dimensions below shows an actuator with a rotation angle of 80° to 100° style.

Mounting screw dimensions (Distinction of stroke)

CAD MRQ

MRQFS32······SMRQ32, #3 (Flange only)

Series MRQ

Size40

Basic Style/MRQBS40

The dimensions below shows an actuator with a rotation angle of 80° to 100° style.

The dimension on the left shows an actuator with a rotation angle of 80° to 100° style with a stroke of 15mm.

Mounting screw dimensions (Distinctions of stroke)

MRQBS40-□CA-A7/A8······SMRQ40, #1(#1+(#1/SET #010)+ #4)

Rotary Cylinder Series MRQ

Flange Style/MRQFS40

The dimensions below shows an actuator with a rotation angle of 80° to 100° style.

Mounting screw dimensions (Distinctions of stroke)

MRQFS40······SMRQ40, #3 (Flange only)

Series MRQ Made to Order Specifications -X1 to X5

nsult SMC for the detailed specifications, dimensions and delivery.

Part no.

P317010-13

*One set of the actuator requires two sets of the hexagon socket head cap screws.

32

40

1 pc.

1 pc.

1 pc.

screw

flange

Seal washer

Hexagon nut with

Size S 77 32 116 198 40 128.5 216.5 Series MRQ Made to Order Specifications -X10

Consult SMC for further information on specifications, dimensions and delivery.

CRB1
CRBU
CRA1
CRQ
MRQ
MSQ
MSUB

Acceptable side loading to the tip of piston rod F

	Size 32	Size 40
Stroke	F(N)	F(N)
105	9	15
110		14
115	8	
120		
125		
130		13
140		
150	7	12
175		
200	5	11

Set at the closer factors to those indicated in the table for the acceptable side loading of strokes not indicated in the table.

Number of auto switches mounted

Linear motion Rotation	0	1	2
0	_	0S	02
1	S0	SS	S2
2	20	2S	
n	n0	nS	n2

Combinations of made to order products No.1 to 4 are available. Consult SMC for further information.