For Dry Air, Pilot Operated 2 Port Solenoid Valve

Series VQ20/30

Compact & lightweight with large flow capacity

	Weight (g)	Effective area (mm²)
VQ20	46	9 (Cv0.5)
VQ30	80	17.5 (Cv1)

Series VQ30

High frequency operation possible and long operating life

High speed response 5ms or less (VQ20), 20ms or less (VQ30) (Without indicator light and surge voltage suppressor, at 0.5MPa of supply pressure) 20 million cycles (subject to clean and dry air)

Easy piping with built-in One-touch fittings

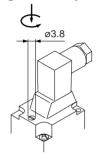
Dust and jet proof enclosure available with DIN connector

Applications: Air-blow, Blow-off of work piece, etc.

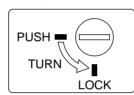
VX VN□

VQ

⚠ Precautions

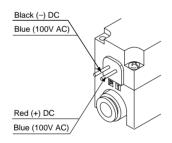

Be sure to read before handling. Refer to p.0-33 to 0-36 for Safety Instructions and common precautions.

Marning

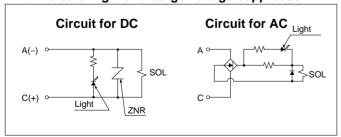

Manual Override

Regardless of electric signals to the solenoid valve, the manual override is used for switching the main valve. (DIN connector only.)

Locking slotted style



Push the manual override button with a small screw driver until it stops. Turn it in the counter-clockwise direction at 90°, and it is locked. Turn it right to release.



⚠ Caution

Connection and Electrical Circuit

With indicator light and surge voltage suppressor

⚠ Caution

How to Wire The DIN Connector

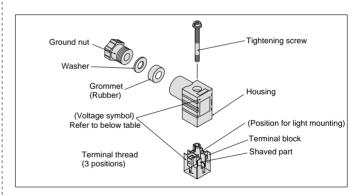
ISO#: Based on DIN 43650C (Pin gap 8mm) Connection

- Loosen the tightening screw and pull the connector off of the solenoid valve.
- ② After removing the tightening screw, divide the terminal block and housing by prying open the slot area of the lower part of the terminal block open with a screw driver.
- ③ Loosen the terminal screws of the block and insert stripped lead wires in accordance with the wiring diagram. Secure each wire by retightening the terminal screw.
- (4) Tighten the ground nut to secure the cable wire.

Change of electrical entry

Wire entry can be changed by mounting the housing in either direction (four directions at every 90°) after dividing the terminal block and the housing.

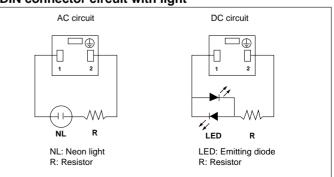
* For the indicator lighted style, be careful not to damage the light with the lead wire of the cable.


Precaution

Insert/remove the connector vertically, not at an angle.

Applicable cable

Cord O.D.: ø3.5 to ø7


(Reference) 0.5mm² 2-core and 3-core wires equivalent to JIS C 3306.

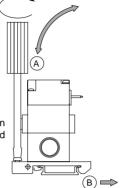
DIN connector part number (Based on DIN)

Without light		SY100-82-4						
With light								
Rated voltage	Voltage symbol	Part No.						
24V DC	24V	SY100-82-3-05						
12V DC	12V	SY100-82-3-06						
100V AC	100V	SY100-82-2-01						

DIN connector circuit with light

Manifold

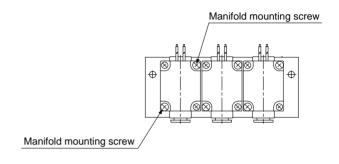
⚠ Caution


How to Mount/Remove from DIN Rail

To remove manifold from DIN rail:

- 1) Loosen the clamp screw on the "A" side of both ends of the manifold.
- Lift the "A" side of the manifold off the DIN rail and slide it in the direction of the "B" side.

Mounting manifold to DIN rail:


- 1) Hook the mounting hook on the "B" side of the manifold base to the DIN rail.
- 2) Push side "A" onto the DIN rail and tighten the clamp screw on the "A" side of the end plate. (Tightening torque: 0.3 to 0.4Nm)

⚠ Caution

Valve Mounting

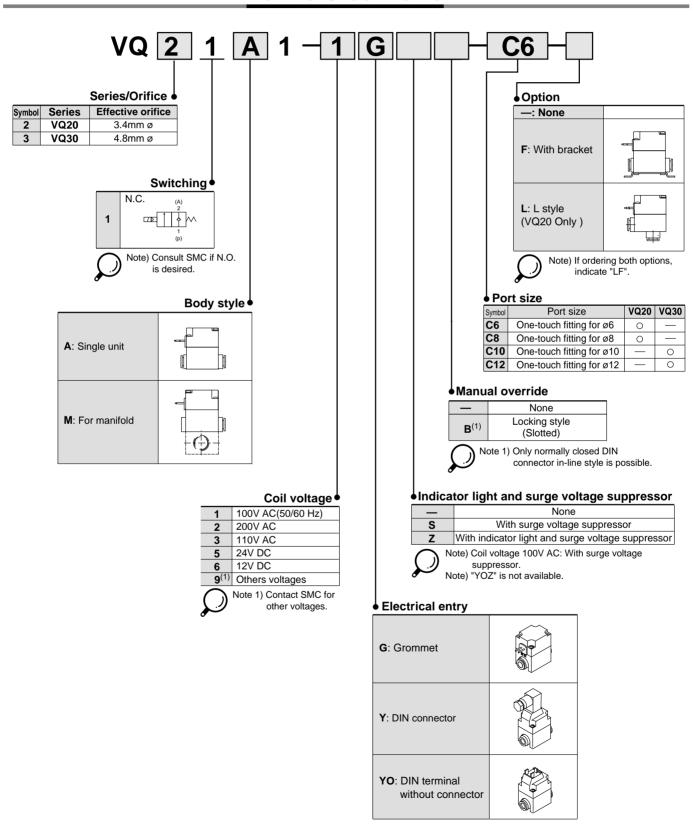
After confirming the gasket is correctly placed under the valve, tighten the mounting screws with the appropriate torque (0.2 to 0.23Nm).

⚠ Caution

Maximum Number of Valves for Simultaneous Operation

Series	P port one side supply	P port both side supply
VQ20	4	8
VQ30	2	4

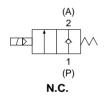
If the max. number of valves simultaneously operated exceeds the numbers above, the effective flow rates will be reduced.

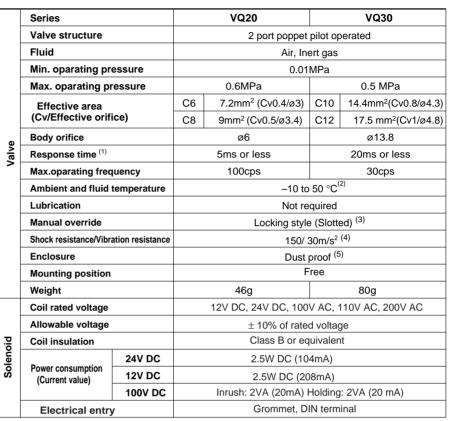


For Dry Air, Pilot Operated

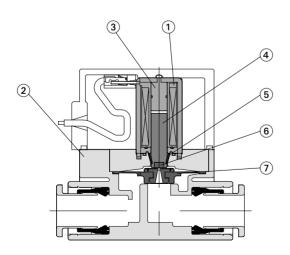
2 Port Solenoid Valve Series VQ20/30 Single Unit

How to Order Valve




Standard Specifications

Symbol



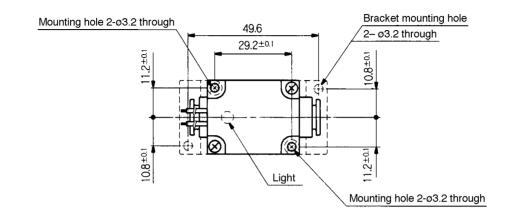
- Note 1) According to JISB8375-1981. (Supply pressure: 0.5MPa, Without light and surge voltage suppresser)
- Note 2) Use dry air to prevent condensation when operating at low temperatures.
- Note 3) Manual override is available only for DIN terminal style.
- Note 4) Shock resistance: No malfunction resulted from the impact test using a drop impact tester. The test was performed on the axis and right angle directions of the main valve and armature, for both energized and de-energized states. (Valve in the initial stage.)

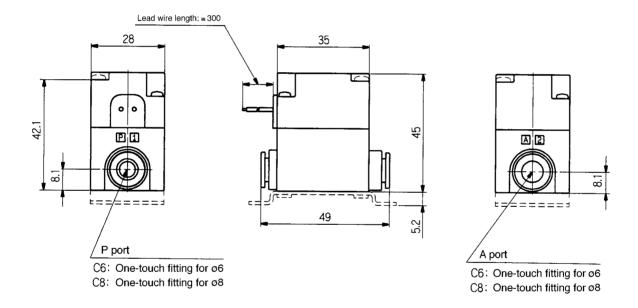
Vibration resistance: No malfunction occurred in a one-sweep test between 8.3 and 2000Hz. Test was performed at both energized and de-energized states to the axis and right angle directions of the main valve and armature. (Value in the initial stage.)

Note 5) DIN connector style: Applicable to dust and jet proof (IP65).

Construction

Component Parts

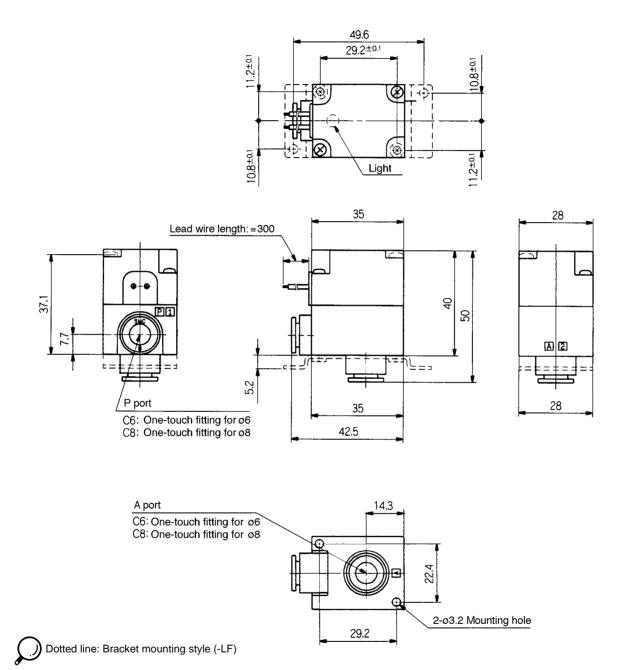

No.	Description	Material
1	Solenoid coil	
2	Body	Resin
3	Fixed armature	Stainless Steel
4	Armature	Stainless Steel
5	Return spring	Stainless Steel
6	Poppet	NBR
7	Diaphragm assembly	NBR, Resin



Dimensions/Series VQ20

In-line style/Grommet(G)

VQ21A1-□**G**□-□-□

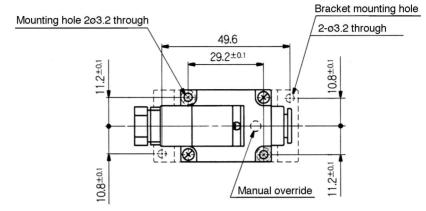


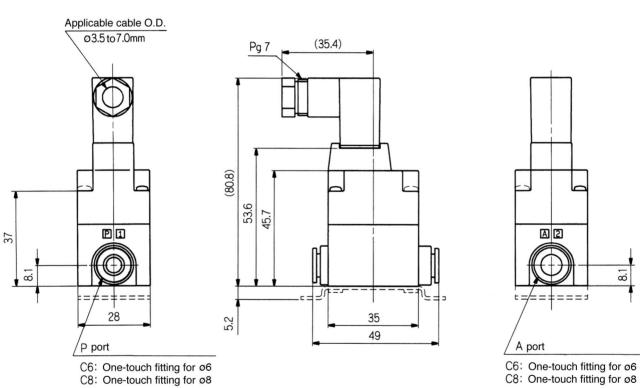
Dimensions/Series VQ20

L style/Grommet (G)

VQ21A1-□**G**□-**□**-**L**□

VX

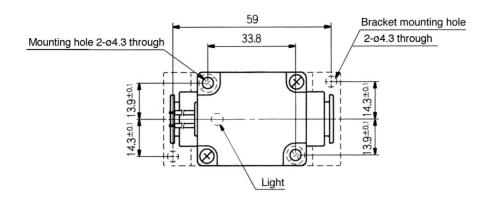

VN□

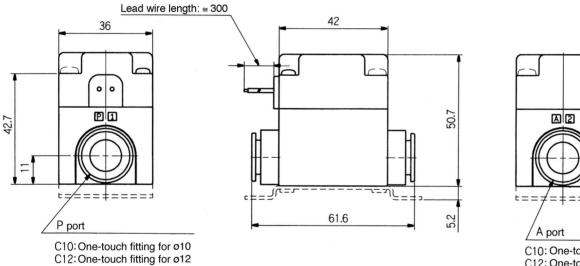

VQ

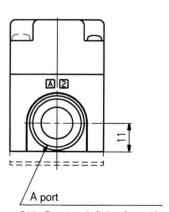
Dimensions/Series VQ20

In-line/DIN connector (Y)

VQ21A1-□**Y**□□- □ -□






Dimensions/Series VQ30

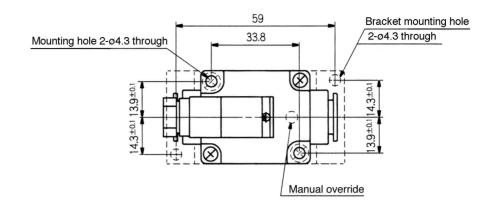
In-line/Grommet (G)

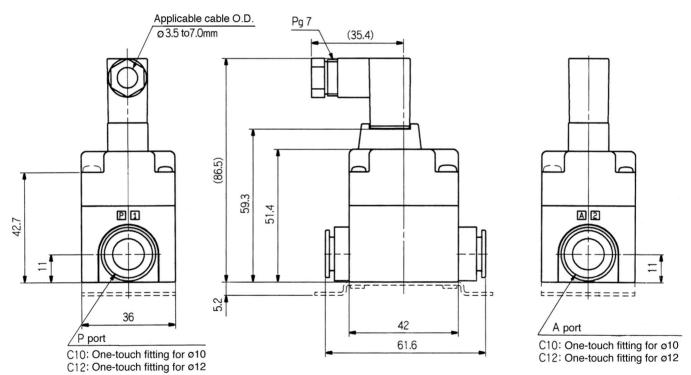
VQ31A1-□**G**□-□□-□

VX

 $VN\square$

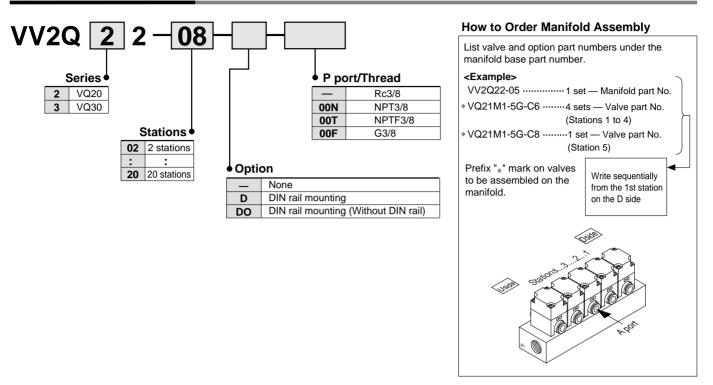
VQ

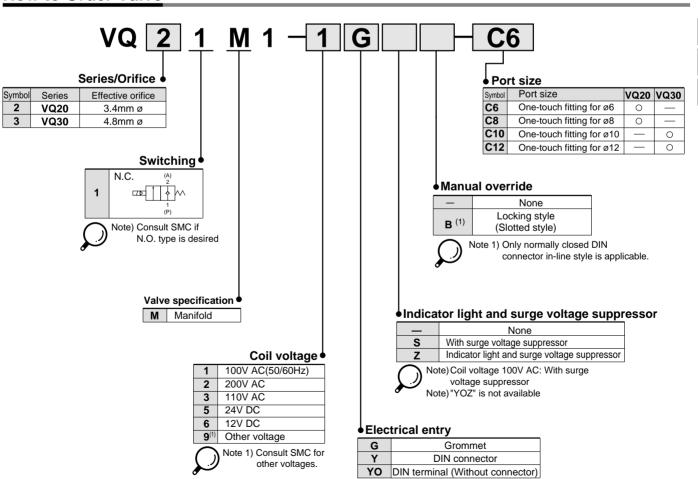

C10: One-touch fitting for Ø10 C12: One-touch fitting for Ø12


Dotted line: Bracket mounting style (-F)

Dimensions/Series VQ30

DIN connector (Y)

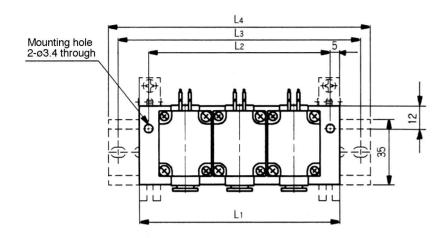

VQ31A1-□**Y**□□-□-□

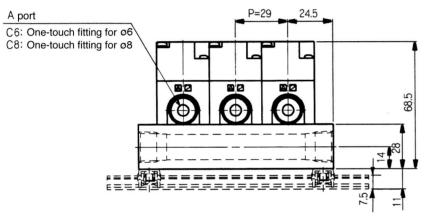


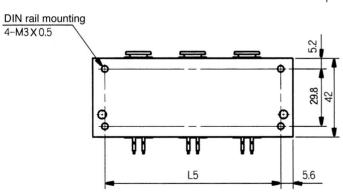
Dotted line: Bracket mounting style (-F)

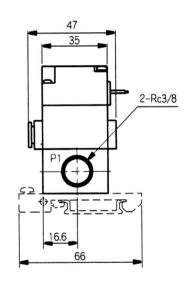
How to Order Manifold

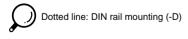
How to Order Valve

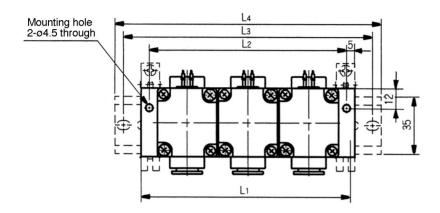

VX

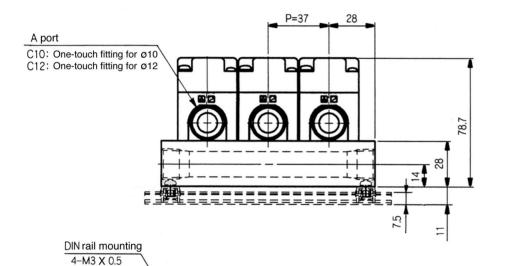

VN□

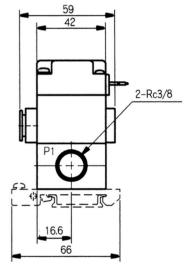

VQ

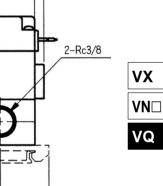

Dimensions


Plug lead unit manifold (VV2Q22-)




Equation L1= (n-1) X 29+49 L2=L1-10 L3=L4-10.5 L5=L1-11.2


Dimensions	Dimensions n: Station (Max.20																		n: S	tation (I	Иах.20)
L	n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
L1		49	78	107	136	165	194	223	252	281	310	339	368	397	426	455	484	513	542	571	600
L2		39	68	97	126	155	184	213	242	271	300	329	358	387	416	445	474	503	532	561	590
Lз		75	100	137.5	162.5	187.5	212.5	250	275	300	337.5	362.5	387.5	425	450	475	500	537.5	562.5	587.5	625
L4		85.5	110.5	148	173	198	223	260.5	285.5	310.5	348	373	398	435.5	460.5	485.5	510.5	548	573	598	635.5
L5		37.8	66.8	95.8	124.8	153.8	182.8	211.8	240.8	269.8	298.8	327.8	356.8	385.8	414.8	443.8	472.8	501.8	530.8	559.8	588.8


Dimensions

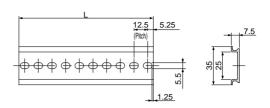
Plug lead unit manifold (VV2Q32-)

Equation $L_1 = (n-1) \times 37 + 56$ L2=L1-10 L3=L4-10.5 L5=L1-11.2

Dimen	Dimensions n: Station (Max. 2															/lax. 20)					
L	/ =	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	L1	56	93	130	167	204	241	278	315	352	389	426	463	500	537	574	611	648	685	722	759
	L2	46	83	120	157	194	231	268	305	342	379	416	453	490	527	564	601	638	675	712	749
	L ₃	75	112.5	150	187.5	225	261.5	300	337.5	375	412.5	450	487.5	525	562.5	587.5	625	662.5	700	737.5	775
	L4	85.5	123	160.5	198	235.5	273	310.5	348	385.5	423	460.5	498	535.5	573	598	635.5	673	710.5	748	785.5
	L5	44.8	81.8	118.8	155.8	192.8	229.8	266.8	303.8	340.8	377.8	414.8	451.8	488.8	525.8	562.8	599.8	636.8	673.8	710.8	747.8

29.8

5.6

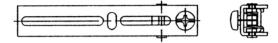

Manifold Options

DIN rail AXT100-DR-□

*Suffix the number from DIN rail dimentions table below. Refer to manifold dimentions drawings for L dimention.

Each manifold can be mounted on a DIN rail. Order with the option symbol "-D" to specify DIN rail mounting style.

The DIN rail is approximately 30mm longer than the length of manifold.



L din	nen	sio	าร															L=1	12.5n	+10.5
Station	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
No.	6	9	12	15	18	21	24	27	30	33	36	39	42	45	47	50	53	56	59	62
L	85.5	123	160.5	198	235.5	273	310.5	348	385.5	423	460.5	498	535.5	573	598	635.5	673	710.5	748	785.5

DIN rail mounting bracket VVQZ100-DB-5

This bracket is used for mounting the manifold on the DIN rail. DIN rail mounting bracket is attached on the manifold.

1 set of DIN rail mounting brackets for 1 manifold includes 2 brakets.

Blank plate AXT835-35A(For VQ20) AXT837-35A(For VQ30)

Mount a blank plate on valve manifold when a valve is disassembled for maintenance purpose, or when spare valve unit is supposed to be mounted in the future.