4-Channel Flow Monitor

Up to 4 flow sensors can be connected!

- Input Range Selection p. 3

Visualization of Settings

Set value (Threshold value)	F_{2}
Hysteresis value	H_{1}
Peak value	H-H1
Bottom value	H-L
Channel display	

Applicable Flow Sensor Variations

Digital Flow Switch for Air PF2A

3-Color Display Digital Flow Switch for Water PF3W-Z

PFG200 Series

3-Color Display Digital Flow Switch for Water PF3W

Digital Flow Switch for Deionized Water and Chemical Liquids PF2D

Visualization of Settings

Item and set value are displayed together.
Easy to confirm the displayed item

$\left[\begin{array}{ccc}\text { UP-SET-DOWN } \\ \Delta & \square\end{array}\right]$

Mode Examples

Easy Screen Switching

It is possible to change the settings while checking the measured value.

Simple 3-Step Setting

After selecting the channel, when the SET button is pressed and the set value (P_{-}) is displayed, the set value (threshold value) can be set.
When the SET button is pressed and the hysteresis ($\mathrm{H} _1$) is being displayed, the hysteresis value can be set.

The sub screen can be switched by pressing the down buttons.

* One additional arbitrary display mode can be added via the function settings.

Centralized Control Saves Installation Space.

66\% reduction in installation space
(Compared with the panel mounted PFG20 \square)

Accumulated Flow Measurement

A single product can manage the accumulated flow in four lines.

Flow control for each branch line

Input Range Selection (for Pressure/Flow rate)

The sensor input range can be set to the required value and displayed. (Voltage input: 1 to 5 V) Pressure switch/Flow switch can be displayed.

A is displayed for 1 V . B is displayed for 5 V .
The range can be set as required.
Refer to pages 9 and 10 for the specification of the sensors which can be connected.
For the individual specifications of each connectable sensor, refer to the Web Catalog.

For Digital Flow Switch for Air / PF2MC7

	A	B
PF2MC7501	0	500
PF2MC7102	0	1000
PF2MC7202	0	2000

Set A and B to the values shown in the table on the left.

For Flow Sensor / PFMV5
Setting of the display for analog voltage

Set A and B to the values shown in the table on the left.

Connectors

Connection and removal of wiring is easy.

Functions pp. 16 to 18

Peak/Bottom value indication function
This function constantly detects and updates the maximum (minimum) flow when the power is supplied, and allows to hold the maximum (minimum) flow value.

Key-lock function

This function prevents operation errors such as accidentally changing setting values.

External input function

The accumulated value, peak value, and bottom value can be reset remotely.

Error display function
This function displays error location and content when a problem or error has occurred.

Delay time setting
The time from when the instantaneous flow reaches the set value to when the switch output operates can be set.

Zero-cut setting

When the flow display value is close to zero, this function forces the display to zero.

Selection of power-saving mode Power-saving mode can be selected. It shifts to power-saving mode automatically when there is no button operation for 30 seconds.

Setting of security code

Users can select whether a security code must be entered to release the key lock.

Accumulated value hold

The accumulated value is not cleared even when the power supply is turned OFF.

Snap shot function

The current flow rate value can be stored to the switch output ON/OFF set point.

Output check function

It is possible to check the switch output operation and process data value.

Channel to channel copy function

The set values can be copied to other channel.

Channel select function

Flow value for the selected channel is displayed.

Channel scan function

Flow values for each channel are displayed in turn every 2 seconds.

Hub Function

Converts analog signals to digital signals and supports IO-Link
 igital signals

A currently used sensor can be used. Fieldbus

> nalog voltage 1 to 5 V
 firmation of measured values are possible.

Measurement data of sensors for 4 channels are combined and cyclically sent as a process data.
Process Data

Bit offset	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65	64	
Item	CH1 measured value: 16-bit signed integer																
Bit offset	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	Measurement data of sensors for 4 channels are combined and cyclically sent as a process data.
Item	CH 2 measured value: 16-bit signed integer																
Bit offset	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	
Item	CH3 measured value: 16-bit signed integer																
Bit offset	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Item	CH 4 measured value: 16-bit signed integer																
Bit offset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Item	흔				$\frac{0}{0}$ 0 $\frac{0}{0}$ $\frac{\pi}{0}$ $\frac{4}{1}$ 0			$\begin{aligned} & \frac{\infty}{0} \\ & \frac{0}{0} \\ & \frac{\mathbb{T}}{0} \\ & \frac{1}{1} \end{aligned}$	$\begin{aligned} & \stackrel{N}{5} \\ & 0 \\ & \underset{T}{U} \end{aligned}$		$\begin{aligned} & \stackrel{Y}{\square} \\ & 0 \\ & \stackrel{刃}{1} \end{aligned}$	$\stackrel{5}{5}$ 0 ¢ T	$\begin{aligned} & \stackrel{N}{5} \\ & 0 \\ & \underset{\sim}{\top} \end{aligned}$		$\stackrel{N}{5}$ $\stackrel{\rightharpoonup}{\square}$ 돈	Г O 든	Each channel has 2 outputs*1.
¢, $\underbrace{\text { L }}$																	
Diagnos item	- Internal product malfunction - Outside of zero-clear rangeDiagnosis item						- Output overcurrent				Diagnosis item		- Display upper and lower limits are exceeded. - The accumulated flow upper and lower limits are exceeded				
Implement diagnostic bits in the process data.																	

[^0]
Visualization of operation/equipment status Remote monitoring and control by communication

Automatic setting function

 [Data storage function]When replacing the sensor monitor with the same type (the same device ID), the parameters (set values) stored in the IO-Link master are automatically copied (set) to the new sensor monitor.

Displays the output communication
status and indicates the presence of
communication data

Operation and Display

Communication with master	IO-Link status indicator light	Status			Screen display*2	Description	
Yes	(*1	Normal		Operate	MINIE	Normal communication status (readout of measured value)	
	$\begin{aligned} & \text { (Flashing) } \end{aligned}$			Start up	Mant Frrt		
				Preoperate			
		IO-Link mode	Abnormal	Version does not match	$E \rho \int_{i} \frac{1}{\\|}$	IO-Link version does not match that of the master. The master uses version 1.0. * The applicable IO-Link version is 1.1.	
No				Communication disconnection		Normal communication was not received for 1 second or longer.	
	OFF	SIO mode			Mancill	General switch output	

[^1]
Series Variations

CONTENTS

3-Screen Display 4-Channel Flow Monitor PFG200 Series

How to Order p. 8
Specifications p. 9
Applicable Flow Sensors p. 11
Internal Circuits and Wiring Examples p. 11
Dimensions p. 15
Function Details p. 16
Safety Instructions Back cover

3-Screen Display 4-Channel Flow Monitor PFG200 Series

Options/Part Nos.

When only optional parts are required, order with the part numbers listed below.

Description	Part no.	Note
Power supply/Output connection cable	ZS-26-L	Length: 2 m
For PF2A5 $\square \square, ~ P F 2 W 5 ~$ Sensor connector (e-CON) PF3W5 $\square \square$	ZS-28-CA-4	$1 \mathrm{pc} .$, Finished O.D.: $\varnothing 1.15$ to $\varnothing 1.35$, Cover color: Blue
For PF2D5 $\square \square$ Sensor connector (e-CON)	ZS-28-CA-2	1 pc., Finished O.D.: ø0.9 to ø1.0, Cover color: Red
Panel mount adapter	ZS-26-B	Mounting screw (M3 x 8 L, 2 pcs.), With waterproof seal
Panel mount adapter + Front protection cover	ZS-26-C	Mounting screw (M3 x 8 L, 2 pcs.), With waterproof seal
Front protection cover	ZS-26-01	-
Power supply with M12 connector cable (Made to Order)	ZS-26-LM12	For use when using an M12 connector for IO-Link communication

Specifications

For flow switch precautions and specific product precautions，refer to the ＂Operation Manual＂on the SMC website．

		Series	PFG20 \square Series						
Applicable SMC flow sensor			PF2A510	PF2A550	PF2A511	PF2A521	PF2A551	PF2（3）W504	PF2（3）W520
Rated flow range			1 to $10 \mathrm{~L} / \mathrm{min}$	5 to $50 \mathrm{~L} / \mathrm{min}$	10 to $100 \mathrm{~L} / \mathrm{min}$	20 to $200 \mathrm{~L} / \mathrm{min}$	50 to $500 \mathrm{~L} / \mathrm{min}$	0.5 to $4 \mathrm{~L} / \mathrm{min}$	2 to $16 \mathrm{~L} / \mathrm{min}$
Instantaneous flow rate display／Set flow rate range			0 to $11 \mathrm{~L} / \mathrm{min}$	0 to $55 \mathrm{~L} / \mathrm{min}$	0 to $110 \mathrm{~L} / \mathrm{min}$	0 to $220 \mathrm{~L} / \mathrm{min}$	0 to $550 \mathrm{~L} / \mathrm{min}$	0.35 to $4.50 \mathrm{~L} / \mathrm{min}$ （Flow under $0.35 \mathrm{~L} / \mathrm{min}$ is displayed as＂ 0.00 ＂）	1.7 to $17.0 \mathrm{~L} / \mathrm{min}$ （Flow under $1.7 \mathrm{~L} / \mathrm{min}$ is displayed as＂ 0.0 ＂）
Instantaneous flow rate displayMMin．setting unit			$0.1 \mathrm{~L} / \mathrm{min}$	$0.5 \mathrm{~L} / \mathrm{min}$	$1 \mathrm{~L} / \mathrm{min}$	$2 \mathrm{~L} / \mathrm{min}$	$5 \mathrm{~L} / \mathrm{min}$	$0.05 \mathrm{~L} / \mathrm{min}$	$0.1 \mathrm{~L} / \mathrm{min}$
Accumulated flow display／Set flow rate range			0 to 999，999，999 L				0 to 9，999，999．99 $\times 10^{3} \mathrm{~L}$	0 to 99，999，999．9 L	0 to 999，999，999 L
Accumulated flow display／Min．setting unit			1L				10 L	0.1 L	1 L
Accumulated pulse flow rate exchange value			0．1L／pulse	0．5 L／pulse	$1 \mathrm{~L} /$ pulse	2 L／pulse	$5 \mathrm{~L} /$ pulse	0.05 L	0.1 L
Unit			L／min，cfm（depends on selected range）					$\mathrm{L} / \mathrm{min}, \mathrm{gal} / \mathrm{min}$（depends on selected range）	
	㝕	When used as a switch output device	12 to 24 VDC $\pm 10 \%$ with 10% ripple（p－p）or less						
		When used as an IO－Link device	18 to 30 VDC，including ripple（p－p）10\％＊1						
		urrent consumption	55 mA or less						
		otection	Polarity protection						
		ver supply voltage for sensor＊1	［Power supply voltage］－1．5 V						
		ver supply current for sensor＊2	Max． 110 mA （However，the total power supply current for the four inputs is 440 mA or less，and the total power supply current when used as an 10 －Link device is 200 mA or less）．						
		play accuracy（Linearity）	$\pm 5.0 \%$ F．S．Max．＊${ }^{4}$						
		peatability	$\pm 3.0 \%$ F．S．Max．＊4						
		mperature characteristics	$\pm 0.5 \%$ F．S．Max．（Reference： $25^{\circ} \mathrm{C}$ ）						
		utput type	NPN or PNP open collector output： 5 outputs						
		tput mode	Hysteresis mode，Window comparator mode，Accumulated output，Accumulated pulse output，Error output，Output OFF						
		witch operation	Normal output，Reversed output						
		ax．load current	80 mA						
		x．applied voltage（NPN only）	30 VDC						
		nal voltage drop（Residual voltage）	1.5 V or less（at load current of 80 mA ）						
		lay time＊3	5 ms or less，variable from 0 to $60 \mathrm{~s} / 0.01 \mathrm{~s}$ increments						
		steresis	Variable from 0＊5						
		otection	Over current protection						
		put type	Voltage input： 1 to 5 VDC（Input impedance： $1 \mathrm{M} \Omega$ ）						
		mber of inputs	4 inputs（Check the＂Internal Circuits and Wiring Examples＂on pages 11 to 14．）						
		nnection method	e－CON						
		otection	Over voltage protection（up to a voltage of 26．4 VDC）						
External input＊8			Voltage free input： 0.4 V or less（Reed or Solid state）for 30 ms or longer						
－		splay type	LCD						
		umber of screens	3－screen display（Main screen，Sub screen x 2）						
		splay color	Main screen：Red／Green，Sub screen：Orange						
		mber of display gits	Main screen： 4 digits（ 7 segments），Sub screen（Left）： 4 digits（some digits are 11 －segments， 7 segments for other）， Sub screen（Right）： 5 digits（some digits are 11－segments， 7 segments for other）						
		dicator light	Lights up when switch output is turned ON．OUT1，OUT2：Orange						
Digital filter＊6			Variable from 0 to $30 \mathrm{~s} / 0.01 \mathrm{~s}$ increments						
年		closure	Front face：IP65（when panel－mounted），Others：IP40						
		thstand voltage	1000 VAC for 1 minute between terminals and housing						
		sulation resistance	$50 \mathrm{M} \Omega$ or more（ 500 VDC measured via megohmmeter）between terminals and housing						
		erating temperature range	Operating： 0 to $50^{\circ} \mathrm{C}$ ，Stored：-10 to $60^{\circ} \mathrm{C}$（No condensation）						
		erating humidity range	Operating／Stored： 35 to 85\％RH（No condensation）						
S	anda	ards	CE／UKCA marking						
	Bod	dy	51 g （Excludes power supply and output cable）						
		wer supply／Output cable	60 g						
		CON（1 pc．）	2 g						
		－Link type	Device						
		－Link version	V1．1						
		mmunication speed	COM2（38．4 kbps）						
		nfiguration file	IODD file＊7						
		nimum cycle time	4.8 ms						
		ocess data length	Input data： 10 bytes，Output data： 0 bytes						
		request data communication	Yes						
		ta storage function	Yes						
		ent function	Yes						
		ndor ID	131 （0 x 0083）						

＊1 Check the power supply voltage range of the connected sensor．
＊2 Over current on DC（＋）side and DC（－）side of the sensor input connector results in breakage of the product．
＊3 Value without digital filter（at 0 ms ）

131 （0 x 0083）
＊4 The system accuracy when combined with an applicable flow sensor．
＊5 If the applied pressure fluctuates around the set value，the hysteresis must be set to a value more than the amount of fluctuation，or chattering will occur．

For flow switch precautions and specific product precautions, refer to the "Operation Manual" on the SMC website.

		Series	PFG20 \square Series					
Applicable SMC flow sensor			PF2(3)W540	PF2(3)W511	PF3W521	PF2D504	PF2D520	PF2D540
Rated flow range			5 to $40 \mathrm{~L} / \mathrm{min}$	10 to $100 \mathrm{~L} / \mathrm{min}$	50 to $250 \mathrm{~L} / \mathrm{min}$	0.4 to $4 \mathrm{~L} / \mathrm{min}$	1.8 to $20 \mathrm{~L} / \mathrm{min}$	4 to $40 \mathrm{~L} / \mathrm{min}$
Instantaneous flow rate display/Set flow rate range			3.5 to $45.0 \mathrm{~L} / \mathrm{min}$ (Flow under $0.35 \mathrm{~L} / \mathrm{min}$ is displayed as " 0.00 ")	7 to $110 \mathrm{~L} / \mathrm{min}$ (Flow under $7 \mathrm{~L} / \mathrm{min}$ is displayed as " 0 ")	20 to $280 \mathrm{~L} / \mathrm{min}$ (Flow under $20 \mathrm{~L} / \mathrm{min}$ is displayed as "0")	0.25 to $4.50 \mathrm{~L} / \mathrm{min}$ (Flow under $0.25 \mathrm{~L} / \mathrm{min}$ is displayed as " 0.00 ")	1.3 to $21.0 \mathrm{~L} / \mathrm{min}$ (Flow under $1.3 \mathrm{~L} / \mathrm{min}$ is displayed as " 0.0 ")	2.5 to $45.0 \mathrm{~L} / \mathrm{min}$ (Flow under 2.5 L/min is displayed as " 0.0 ")
Instantaneous flow rate display/Min. setting unit			$0.5 \mathrm{~L} / \mathrm{min}$	$1 \mathrm{~L} / \mathrm{min}$	$2 \mathrm{~L} / \mathrm{min}$	$0.05 \mathrm{~L} / \mathrm{min}$	$0.1 \mathrm{~L} / \mathrm{min}$	$0.5 \mathrm{~L} / \mathrm{min}$
Accumulated flow display/Set flow rate range			0 to 999,999,999L			0 to 99,999,999.9 L	0 to 999,	99,999 L
Accumulated flow display/Min. setting unit			1 L			0.1 L	1 L	
Accumulated pulse flow rate exchange value			0.5 L	1 L	2 L	0.05 L	0.1 L	0.5 L
Unit			$\mathrm{L} / \mathrm{min}, \mathrm{gal} / \mathrm{min}$ (depends on selected range)			$\mathrm{L} / \mathrm{min}, \mathrm{gal} / \mathrm{min}$ (depends on selected range)		
		When used as a switch output device	12 to 24 VDC $\pm 10 \%$ with 10% ripple (p-p) or less					
		When used as an IO-Link device	18 to 30 VDC, including ripple (p-p) 10\%*1					
		rrent consumption	55 mA or less					
		otection	Polarity protection					
		er supply voltage for sensor*1	[Power supply voltage] -1.5 V					
		er supply current for sensor*2	Max. 110 mA (However, the total power supply current for the four inputs is 440 mA or less, and the total power supply current when used as an IO-Link device is 200 mA or less).					
		play accuracy (Linearity)	$\pm 5.0 \%$ F.S. Max. ${ }^{4}$					
		peatability	$\pm 3.0 \%$ F.S. Max.*4					
		mperature characteristics	$\pm 0.5 \%$ F.S. Max. (Reference: $25^{\circ} \mathrm{C}$)					
		tput type	NPN or PNP open collector output: 5 outputs					
뭄		tput mode	Hysteresis mode, Window comparator mode, Accumulated output, Accumulated pulse output, Error output, Output OFF					
$\left\lvert\, \begin{aligned} & E \\ & \mathbf{O} \end{aligned}\right.$		itch operation	Normal output, Reversed output					
\cdots		x. load current	80 mA					
\bar{z}		x applied voltage (NPN only)	30 VDC					
$\frac{2}{\bar{\circ}}$		nal voltage drop (Residual voltage)	1.5 V or less (at load current of 80 mA)					
$\left\|\begin{array}{c} 0 \\ \hline 0 \end{array}\right\|$		lay time*3	5 ms or less, variable from 0 to $60 \mathrm{~s} / 0.01 \mathrm{~s}$ increments					
高		steresis	Variable from $0 * 5$					
		otection	Over current protection					
		ut type	Voltage input: 1 to 5 VDC (Input impedance: $1 \mathrm{M} \Omega$)					
		mber of inputs	4 inputs (Check the "Internal Circuits and Wiring Examples" on pages 11 to 14.)					
		nnection method	e-CON					
		otection	Over voltage protection (up to a voltage of 26.4 VDC)					
External input*8			Voltage free input: 0.4 V or less (Reed or Solid state) for 30 ms or longer					
$\begin{aligned} & \frac{7}{\pi} \\ & \frac{0}{n} \\ & 0 \end{aligned}$		splay type	LCD					
		mber of screens	3-screen display (Main screen, Sub screen x 2)					
		splay color	Main screen: Red/Green, Sub screen: Orange					
	Nu	mber of display gits	Main screen: 4 digits (7 segments), Sub screen (Left): 4 digits (some digits are 11 -segments, 7 segments for other), Sub screen (Right): 5 digits (some digits are 11-segments, 7 segments for other)					
		dicator light	Lights up when switch output is turned ON. OUT1, OUT2: Orange					
Digital filter*6			Variable from 0 to $30 \mathrm{~s} / 0.01 \mathrm{~s}$ increments					
		closure	Front face: IP65 (when panel-mounted), Others: IP40					
		thstand voltage	1000 VAC for 1 minute between terminals and housing					
		ulation resistance	$50 \mathrm{M} \Omega$ or more (500 VDC measured via megohmmeter) between terminals and housing					
		erating temperature range	Operating: 0 to $50^{\circ} \mathrm{C}$, Stored: -10 to $60^{\circ} \mathrm{C}$ (No condensation)					
	Ope	erating humidity range	Operating/Stored: 35 to 85\% RH (No condensation)					
Standards			CE/UKCA marking					
$\begin{array}{\|l\|} \hline \text { I } \\ : O \\ 00 \\ 3 \\ \hline \end{array}$	Bod	dy	51 g (Excludes power supply and output cable)					
		wer supply/Output cable	60 g					
		CON (1 pc.)	2 g					
		Link type	Device					
		Link version	V1.1					
		mmunication speed	COM2 (38.4 kbps)					
		nfiguration file	IODD file*7					
		nimum cycle time	4.8 ms					
		ocess data length	Input data: 10 bytes, Output data: 0 bytes					
		request data communication	Yes					
		ta storage function	Yes					
		ent function	Yes					
		ndor ID	131 (0 $\times 0083$)					

*6 The response time indicates when the set value is 90% in relation to the step input.
*7 The configuration file can be downloaded from the SMC website.
*8 This setting is only possible for the PFG200/PFG201.
*9 Products with tiny scratches, marks, or display color or brightness variations which do not affect the performance of the product are verified as conforming products.

PFG200 Series

Applicable Flow Sensors

Internal Circuits and Wiring Examples

PFG20

0

- NPN open collector 5 outputs + External input

1

- PNP open collector 5 outputs + External input

Internal Circuits and Wiring Examples

2

- IO-Link/NPN open collector 1 output + NPN open collector 4 outputs

When used as an IO-Link device

When used as a switch output device

PFG200 Series

Internal Circuits and Wiring Examples

PFG20

3

- IO-Link/PNP open collector 1 output + PNP open collector 4 outputs

When used as an IO-Link device

When used as a switch output device

Internal Circuits and Wiring Examples

When using the PF3W5 \square-1T (with temperature sensor) and measuring instantaneous flow and temperature simultaneously

Example) PF3W520-03-1T (2 units) + PFG200-M (for 4 analog outputs with 2 units)

* When connecting the flow rate analog output and temperature analog output using a digital flow switch with a temperature sensor, use two e-con connectors per sensor.

PFG200 Series

Dimensions

Sensor connector (4P x 4)

	Pin no.	Terminal
	(1)	DC (+)
	(2)	N.C
	(3)	DC (-)
	(4)	IN (1 to 5 V)

Connector (Option)

Pin no.	Terminal	
	PFG200/PFG201	PFG202/PFG203
1	DC (+)	L+
2	DC (-)	L-
3	CH1_OUT1	C/Q (CH1_OUT1)
4	CH1_OUT2	
5	CH2_OUT1	
6	CH3_OUT1	
7	CH4_OUT1	
8	Auto-shift input	N.C.

Power supply/Output connection cable (Accessory)

Power supply with M12 connector/Output cable (Made to Order)

* For use when using an M12 connector for IO-Link communication

Pin no.
Connector pin assignment

Front protection cover + Panel mount adapter

Panel fitting dimensions Applicable panel thickness:
0.5 to 8 mm

PFG200 Series
 Function Details

Display examples of the main and sub (set value) screens of each mode. (When $100 \mathrm{~L} / \mathrm{min}$ range is selected)

Hysteresis mode, Reversed output

Window comparator mode, Normal output

Window comparator mode, Reversed output

PFG200 Series

Function Details

A Peak/Bottom value indication function
This function constantly detects and updates the maximum
(minimum) flow when the power is supplied, and allows to hold the maximum (minimum) flow value.
When the © and © buttons are simultaneously pressed for 1 second or longer, while "holding", the held value will be reset.

B Key-lock function

This function prevents operation errors such as accidentally changing setting values.

C External input function

The accumulated flow, peak value, and bottom value can be reset remotely.
Accumulated value external reset: The accumulated flow value is reset via external input signal.
In accumulated increment mode, the accumulated value will reset to and increase from zero.
In accumulated decrement mode, the accumulated value will reset to and decrease from the set value.

* When the accumulated value is stored to memory, every time the accumulated value external reset is activated, the memory will be accessed. Take into consideration that the max. number of times the memory can be accessed is 970,000 times. The total number of external inputs and the accumulated value memorizing time interval should not exceed 970,000 times.
Peak/Bottom value reset: The peak value and bottom value are reset.

D Error display function

This function displays error location and content when a problem or error has occurred.

Error name	Error code	Description	Action
Over current error		The load current applied to the switch output has exceeded the maximum value. *1 indicates the channel with an error.	Turn the power off and remove the cause of the over current. Then supply the power again.
Above the upper limit of the display range	HHT	The flow rate or temperature exceeds the upper limit of the setting range.	Decrease the flow rate or temperature.
Below the lower limit of the display range	LLL	The flow rate or temperature exceeds the lower limit of the setting range. A sensor may be disconnected or mis-wired.	Decrease the flow rate or temperature. Check the sensor connection.
Accumulated flow error	999999999	The accumulated flow has exceeded the accumulated flow range.	Reset the accumulated flow.
System error		Internal data error	Turn the power off and then on again. If the failure cannot be solved, please contact SMC for investigation.

If the error cannot be reset after the above measures are taken, or errors other than those above are displayed, please contact SMC for investigation.

E Delay time setting

The time from when the instantaneous flow reaches the set value to when the switch output operates can be set.
Setting the delay time can prevent the switch output from chattering.

0.00 s
0.05 to 0.1 s (Increments of 0.01 s$)$
0.1 to 1.0 s (Increments of 0.1 s$)$
1 to 10 s (Increments of 1 s$)$
20 s
30 s
40 s
50 s
60 s

F Zero-cut setting (F14)

When the flow display value is close to zero, this function forces the display to zero. The range to display zero can be changed within the range of 0.0 to 10.0%.
Example: When the PF2A711 (100/Lmin range), zero-cut value $=1.0 \%, 0$ is displayed in the range of -9 to 9 kPa .

G Power-saving mode (F80)

Power-saving mode can be selected.
It shifts to power-saving mode automatically when there is no button operation for 30 seconds.
The product is set to normal mode (Power-saving mode is OFF) at the time of factory shipment.
(When in power-saving mode, [ECo] will flash in the sub screen and the operation light will be ON (only when the switch is ON).)

H Setting of security code (F81)

Users can select whether a security code must be entered to release the key lock.
At the time of factory shipment, it is set so that a security code is not required.

I Accumulated value hold

The accumulated value is not cleared even when the power supply is turned OFF.
The accumulated value is memorized every 5 minutes during measurement and continues from the last memorized value when the power supply is turned ON again.
The life time of the memory device is 970,000 access times. Take this into consideration before using this function.

Function Details

Snap shot function

The current flow rate value can be stored to the switch output ON/OFF set point.
When the items on the Sub display (left) are selected in either 3 step setting mode, Simple setting mode or Setting of each function mode, by pressing the (®) and (©) buttons simultaneously for 1 second or longer, the value of the sub display (right) will show "----", and the values corresponding to the current flow rate are automatically displayed.

Output mode	Configurable items	Sub display (left)	Snap shot function
Hysteresis mode	Set value		\bigcirc
	Hysteresis	H_1/HED	\bigcirc
Window comparator mode	Set value		\bigcirc
	Hysteresis		\times
Accumulated output mode	Set value	H1, HL, n , nc	\times

K Output check function

The output is forced ON/OFF when starting the system or during maintenance. This enables confirmation of the wiring and prevents system errors due to unexpected output.

* Also, the increase or decrease of the flow will not change the ON/OFF status of the output while the forced output function is activated.

L Channel to channel copy function (F95)

Information that can be copied includes the following:
F0 (system setting): Connected range, displayed unit
F1 (OUT1 setting), F3 (digital filter), F10 (sub-screen setting), F14 (zero-cut setting)
When CH 1 is copied to $\mathrm{CH} 2, \mathrm{CH} 3$, and CH 4 , information on OUT1 in CH 1 will be copied.
When CH 2 (CH 3 , or CH 4) is copied to CH 1 , information on OUT1 in $\mathrm{CH} 2(\mathrm{CH} 3$, or CH 4$)$ will be copied only to OUT1 in CH 1 .

* When the channel to channel copy function is used, the copied pressure set value may vary by ± 1 digit.
Example) When copying CH 1 to another channel

M Channel select function

Flow value for the selected channel is displayed.
The function setting of each channel is performed on the selected channel.

N Channel scan function

Flow values for each channel are displayed in turn every 2 seconds.

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
Danger: Danger indicates a hazard with a high hevelof fisk which, if not avoided, will result in death or serious injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements"
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

\triangle Caution

SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

[^0]: *1 During SIO mode, only CH 1 has 2 switch outputs. $\mathrm{CH} 2-4$ has one output each.

[^1]: *1 In IO-Link mode, the IO-Link indicator is ON or flashes. *2 When the sub screen is set to Mode

 * "ModE LoC" is displayed when the data storage lock is enabled. (Except for version mismatch or when in SIO mode)

