Electric Actuator Large Slider Type Belt Drive

Size: 80, 100
AC Servo Motor

Max. work load 240 kg (Size 100)/75 kg (Size 80)

Stroke	Up to 3000 mm (Standara)		
$\underset{[\mathrm{mm} / \mathrm{s}]}{\text { Max. speed }}$		Max. acceleration [$\mathrm{mm} / \mathrm{s}^{\text {² }}$]	20000

Application

Please use the product in accordance with the specifications provided in the catalogs/operation manuals. It is your responsibility to check the suitability for your workpiece and equipment.

- Simplified belt replacement
- Solid state auto switches are mountable.

Low profile, Low center of gravity

Heigh: 109 mm Lerisoo/ 166 mm (Letioo)

	$[\mathrm{mm}]$	
Size	Height	Stroke
80	109	3000
100	166	

Easy replacement of the timing belt

Disconnect the housing cover retaining screw, and remove the housing cover.

Remove the belt holder by removing the belt tension adjustment bolt.

Remove the belt clamp plate, and replace the belt.

Workpiece does not interfere with the motor.

Table height > Motor height

Solid state auto switches are mountable.

(For checking the limit and the intermediate signal)

- A contact and B contact types available

- D-M9 \square W (2-color indicator), D-M9 \square, D-M9 $\square E$ (B contact type)

2-color indicator solid state auto switch
Accurate setting of the mounting position can be performed

LECSA/LECS \square-T/LECY \square Series List p .30

Series			Compatible motor		Control method			Application/Function			Compatible option
			400 W	750 W	Positioning*1	Pulse	Network direct input	Synchronous*2	Pushing operation*4	Safety function STO	Setup software
	LECSA (Pulse input type/ Positioning type)				Up to 7 points						LEC-MRC2
$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{0}{2} \\ & \frac{1}{2} \\ & \hline 0 \\ & \hline 0 \\ & \hline 1 \end{aligned}$	LECSB-T (Pulse input type/ Positioning type)				Up to 255 points						LEC-MRC2
	CC-Link LECSC-T (CC-Link direct input type)				Up to 255 points		CC-Link Ver. 1.10				LEC-MRC2
	LECSS-T (SSCNETIII/H type) Compatible with Mitsubishi Electric's servo system controller network						SSCNETII/H				LEC-MRC2
	MECHATROLINK-II LECYM						MECHATRO LINK-II				SigmaWin+ ${ }^{\text {TM }}$
	MECHATROLINK-III LECYU						MECHATRO LINK-III	*3			SigmaWin $+{ }^{\text {TM }}$

*1 For positioning types, the settings need to be changed in order to use the max. set values. Setup software (MR Configurator2 ${ }^{\text {TM }}$) LEC-MRC2 is required.
*2 Available when a Mitsubishi motion controller is used as upper level equipment
*3 Available when a motion controller is used as upper level equipment
*4 The LECSB2-T is only applicable when the control method is positioning. The point table is used to set the pushing operation settings.
When selecting the LECSS2-T, combine it with upper level equipment (such as the Simple Motion module manufactured by Mitsubishi Electric
Corporation) which has a pushing operation function.
** For customer-provided PLC and motion controller setting and usage instructions, confirm with the retailer or manufacturer.
*5 The LECSB2-T can be used by adding the "MR Configurator2 dedicated file for the LECSB-T" to the setup software (MR Configurator2 ${ }^{\text {TM: }}$ LEC-MRC2 \square). Please download this dedicated file from the SMC website.

Gain adjustment using auto tuning

Auto-tuning function

- Controls the difference between the command value and the actual action

Vibration suppression control function

- Automatically suppresses
low-frequency machine vibrations (1 to 100 Hz)

With display setting function

occupied station count.

LECSC-T

 LECSB-T

System Construction

System Construction

System Construction

Large Slider Type

Belt Drive LET-X11 Series

AC Servo Motor

CONTENTS

Large Slider Type LET-X11 Series ${ }^{\text {®. } 8}$

AC Servo Motor

Model Selection

p. 9
How to Order p. 20
Specifications p. 21
Dimensions p. 22
Auto Switch Mounting p. 24
Specific Product Precautions p. 28
AC Servo Motor Drivers LECSA/LECS \square-T/LECY \square Series
AC Servo Motor Driver LECSA/LECS \square-T Series
How to Orderp. 31
Dimensions p. 31
Specifications p. 33
Options p. 35AC Servo Motor Driver LECYM/LECYU Series

How to Order
p. 40

Dimensions
p. 40

Specifications .. p. 41
Options
p. 43

Specific Product Precautions
p. 47

CE/UKCA/UL-compliance List .. p. 49

Step 2
 Check the cycle time.

Step 3
Check the allowable moment.

Selection Example

Operating conditions

- Work load: 100 [kg]
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 300 [mm]
- Mounting orientation: Horizontal
- Motor type: Absolute encoder
- External force: 10 [N]

Check the work load-speed. <Speed-Work load graph> (page 10)
Select a model based on the work load and speed while referencing the speed-work load graph. Selection example) The LET100FRT9M-300-X11 can be temporarily selected as a possible candidate based on the graph shown on the right side.
The regeneration option may be necessary.
Refer to page 10 for the "Required Conditions for the Regeneration Option."

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.

Method 1: Check the cycle time graph (page 11)

The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time:

T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1 and T3 can be found by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio
Check that they do not exceed the upper limit, by referring to "Work Load-Acceleration/ Deceleration Graph (Guide)" (page 15).
- T2 can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4 varies depending on the motor type and load. The value below is recommended.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{300-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.90[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$
$=0.1+0.90+0.1+0.05$
$=1.15$ [s]

Step 3 Check the allowable moment. <Static allowable moment> (page 21) <Dynamic allowable moment> (page 17)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Selection example)
Select the LET100FRT9M-300-X11
from the graph on the right side. Confirm that the external force is $20[\mathrm{~N}]$ or less.
(The external force is the resistance due to cable duct, flexible trunking or air tubing.)

<Speed-Work load graph> (LET100)

L : Stroke [mm]
V : Speed $[\mathrm{mm} / \mathrm{s}]$
a1: Acceleration [mm/s²]
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed
T5: Resting time [s]
Time the product is not running
T6: Total time [s]
Total time from T1 to T5
Duty ratio: Ratio of T to T6
$T \div T 6 \times 100$

<Dynamic allowable moment>
(LET100)

Speed-Work Load Graph/Required Conditions for the Regeneration Option (Guide)

LET80/Belt Drive

Horizontal

LET100/Belt Drive

Horizontal

Vertical

Required conditions for the regeneration option (For the LET $\square \square(\mathrm{S} / \mathrm{T}) \square$)

* The regeneration option is required when using the product above the regeneration line in the graph. (It must be ordered separately.)
* Regeneration option "C" cannot be used for the LECSA.

Regeneration Option Models

Operating condition	Regenerative condition	Regeneration option
A		LEC-MR-RB-032
B	Euty ratio 100%	LEC-MR-RB-12
		LEC-MR-RB-32

Applicable Motors/Drivers

Model	Applicable model	
	Motor	Servopack (SMC driver)
LET80 \square V8	SGMJV-04A3A	SGDV-2R8A11 \square (LECYM2-V8) SGDV-2R8A21 \square (LECYU2-V8)

Regenerative resistor selection (For the LET80 \square V8)

* When using the LET80 $\square \mathrm{V} 8$, download the "AC servo drive capacity selection program/ SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* The regenerative resistor should be provided by the customer.

LET-X11 Series

AC Servo Motor

Cycle Time Graph (Guide)

LET80/Belt Drive

LET80■D

LET80ㄴ

LET80■M

LET100/Belt Drive

LET100■D

LET100 L

LET100■M

LET100 \square N

Work Load-Acceleration/Deceleration Graph (Guide)

LET80/Belt Drive: Horizontal

LET80■S4D

LET80■S4L

LET80 \square S4M

LET80/Belt Drive: Vertical
LET80■S4D

LET80■S4L

LET80■S4M

LET－X11 Series

AC Servo Motor

Work Load－Acceleration／Deceleration Graph（Guide）

LET80／Belt Drive：Horizontal

LET80■T8D

LET80■T8L

LET80ロT8M

LET80／Belt Drive：Vertical

LET80■T8D

LET80■T8L

LET80ロT8M

Work Load-Acceleration/Deceleration Graph (Guide)

LET80/Belt Drive: Horizontal

LET80 \square V8D

LET80■V8L

LET80■V8M

LET80/Belt Drive: Vertical

LET80■V8D

LET80■V8L

LET80ロV8M

LET-X11 Series

AC Servo Motor

Work Load-Acceleration/Deceleration Graph (Guide)

LET100/Belt Drive: Horizontal

LET100 \square T9D

LET100 \square T9L

LET100 \square T9M

LET100 \square T9N

LET100/Belt Drive: Vertical
LET100 \square T9D

LET100 \square T9L

LET100 \square T9M

LET100 \square T9N

Work Load by Stroke－Acceleration／Deceleration Graph（Guide）
LET80

LET100

LET-X11 Series

AC Servo Motor

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation.

Acceleration/Deceleration —— $2500 \mathrm{~mm} / \mathrm{s}^{2} \quad-5000 \mathrm{~mm} / \mathrm{s}^{2} \quad----10000 \mathrm{~mm} / \mathrm{s}^{2} \quad \cdots \cdots \cdot-20000 \mathrm{~mm} / \mathrm{s}^{2}$

Model Selection LET－X11 Series
 AC Servo Motor

These graphs show the amount of allowable overhang（guide unit）when the center of gravity of the workpiece overhangs in one direction．When selecting the overhang，refer to the＂Calculation of Guide Load Factor＂or the Electric Actuator Model Selection Software for confirmation．
Dynamic Allowable Moment

LET-X11 Series

AC Servo Motor

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LET-X11
Size: 80/100
Mounting orientation: Horizontal/Bottom/Wall/Vertical
Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

3. $L x=500 \mathrm{~mm}, \mathrm{Ly}=\mathbf{2 0 0} \mathbf{~ m m}, \mathrm{Lz}=1450 \mathrm{~mm}$
4. The load factor for each direction can be found as follows.
$\alpha x=0 / 500=0$
$\alpha y=50 / 200=0.25$
$\alpha z=200 / 1450=0.14$
5. $\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z=0.39 \leq 1$

AC Servo Motor $\operatorname{LECS} \square / L E C Y \square$ Series

Large Slider Type Belt Drive

 LET-X11 Series

Driver LECD \square Series

LET 100 FR T9 D-300 \square - 2 B2 \square-X11

Motor mounting position

FR	Right
FL	Left
RR	Rear, Right
RL	Rear, Left

* The motor can be selected from 4 positions on the left and right, with the belt side facing the front and the guide side facing the back.

6 Motor option

Nil
\mathbf{B}

il	Without option
\mathbf{B}	With lock

7 Cable type ${ }^{* 1 * 2}$
Nil

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible)

*1 A motor cable and encoder cable are included with the product. (A lock cable is also included if motor option "B: With lock" is selected.)
*2 Standard connector orientation of cable
. S4, T \square : "Counter axis side (B)"

- V8: "Axis side (A)"
(Refer to pages 35 and 43 for details.)

Symbol	Motor type	Output [W]	Actuator size	Compatible drivers
S4	AC servo motor (Incremental encoder)	400	80	LECSA2-S4
T8	AC servo motor (Absolute encoder)	400		$\begin{aligned} & \text { LECSB2-T8 } \\ & \text { LECSC2-T8 } \\ & \text { LECSS2-T8 } \end{aligned}$
V8				LECYM2-V8 LECYU2-V8
T9		750	100	$\begin{aligned} & \hline \text { LECSB2-T9 } \\ & \text { LECSC2-T9 } \\ & \text { LECSS2-T9 } \end{aligned}$

4

4	Lead [mm] (Reducer type)		
Symbol LET80 LET100 Reduction ratio			
\mathbf{D}	43.33	80	$1 / 3$
\mathbf{L}	26	48	$1 / 5$
\mathbf{M}	14.44	26.67	$1 / 9$
\mathbf{N}	-	16	$1 / 15$

* "N" cannot be selected for the LET80.

* For details, refer to the applicable stroke table below.

*1 The selectable length varies depending on the motor type.
*2 The shape of the cable differs depending on the motor type.

(9) Driver type*

Nil	Compatible drivers	Power supply voltage [V]
A2	LECSA2-S4	200 to 230
B2	LECSB2-T \square	200 to 240
C2	LECSC2-T \square	200 to 230
S2	LECSS2-T \square	200 to 240
M2	LECYM2-V8	200 to 230
U2	LECYU2-V8	200 to 230

*1 When a driver type is selected, a cable is included. Select the cable type and cable length.
$10 \mathrm{l} / \mathrm{O}$ cable length [m]*1

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected.
Refer to pages 36 and 44 if an I/O cable is required.

Applicable Stroke Table

- Standard

* Please contact SMC for non-standard strokes as they are produced as special orders.

For auto switches, refer to pages 24 to 27.

Compatible Drivers

Driver type	Pulse input type/ Positioning type	Pulse input type/ Positioning type	CC-Link direct input type		MMECHATROLINK-II type	IMECHATROLINK-III type
Series	LECSA	LECSB-T	LECSC-T	LECSS-T	LECYM	LECYU
Number of point tables	Up to 7	Up to 255	Up to 255 (2 stations occupied)	-	-	-
Pulse input	\bigcirc	\bigcirc	-	-	-	-
Applicable network	-	-	CC-Link	SSCNETII/H	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Incremental 17-bit encoder	Absolute 22-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder	$\begin{array}{r} \mathrm{Abs} \\ 20 \text {-bit } \end{array}$	olute encoder
Communication function	USB communication	USB communicatio	RS422 communication	USB communication	USB communication,	RS-422 communication
Power supply voltage [V]	$\begin{gathered} 200 \text { to } 230 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 200 \text { to } 240 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 200 \text { to } 230 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 200 \text { to } 240 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \\ \hline \end{gathered}$	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	31				40	

Specifications

Model			LET80 $\square(\mathrm{S4} / \mathrm{T} 8 / \mathrm{V} 8)$			LET100 \square T9			
	Stroke [mm]*1		300 to 1000 (Every 100st), 1200, 1500 to 3000 (Every 500st)			300 to 1000 (Every 100st), 1200, 1500 to 3000 (Every 500st)			
	Max. work load [kg]	Horizontal	15	45	75	1.5	25	100	240
		Vertical	10	21	40	1.5	15	40	70
	Speed [mm/s]*2		2160	1300	720	4000	2400	1330	800
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		20000						
	Positioning repeatability [mm]		± 0.08						
	Equivalent lead [mm]		43.33	26	14.44	80	48	26.67	16
	Reduction ratio		1/3	1/5	1/9	1/3	1/5	1/9	1/15
	Impact/Vibration resistance [m/s ${ }^{2}$]*3		50/5						
	Actuation type		Belt						
	Guide type		Linear guide						
	Static allowable moment*4 [$\mathrm{N} \cdot \mathrm{m}$]	Mep (Pitching)	380			1157			
		Mey (Yawing)	380			1157			
		Mer (Rolling)		114		529			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40						
	Operating humidity range [\%RH]		90 or less (No condensation)						
	Regeneration option		May be required depending on speed and work load						
	Enclosure		IP20						
	Motor output [W]/Size [mm]		400/口60			750/ $\square 80$			
	Motor type		AC servo motor (200 VAC)						
	Encoder*7		Motor type S4: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type T8: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$) (For LECSB2-T \square, LECSS2-T \square) Motor type T8: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$) (For LECSC2-T \square) Motor type V8: Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)			Motor type T9: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$) (For LECSB2-T \square, LECSS2-T \square) Motor type T9: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$) (For LECSC2-T \square)			
	Power [W]*5		Max. power 1275			Max. power 1100			
	Type*6		Non-magnetizing lock						
	Holding force		The rated torque of the lock is the same as the rated torque of the motor. (force \times motor inverse efficiency at 100%)						
	Power [W] at $20^{\circ} \mathrm{C}$		Motor type S4: 7.9 Motor type T8: 7.9 Motor type V8: 6.0			Motor type T9: 10			
	Rated voltage [V]		24 VDC $_{-10 \%}^{0}$						

*1 Please contact SMC for non-standard strokes as they are produced as special orders.
*2 For details, refer to the "Speed-Work Load Graph (Guide)" on page 10.
*3 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*4 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.
If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.
*5 Indicates the max. power during operation (including the driver). When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
*6 Only when motor option "With lock" is selected
*7 The resolution will change depending on the driver type.

* Sensor magnet position is located in the table center. For detailed dimensions, refer to the "Auto Switch Mounting Position" on page 24.
Do not allow collisions at either end of the table traveling distance. Also, when performing positioning operation, do not command a range of [LET80: 22 mm , LET100: 25 mm] from both ends.
* For the manufacturing of intermediate strokes, please contact SMC. (LET80/Manufacturable stroke range: 300 to 3000 mm, LET100/ Manufacturable stroke range: 300 to 3000 mm)

Weight

Size	Motor type	Lead	Stroke [mm]													Additional weight with lock [kg]
			300	400	500	600	700	800	900	1000	1200	1500	2000	2500	3000	
80	S4, T8	D	17.3	19.0	20.6	22.1	23.8	25.5	27.1	28.8	32.0	36.9	45.2	53.4	61.5	0.4
		L, M	18.5	20.2	21.9	23.4	25.1	26.7	28.3	30.0	33.3	38.1	46.4	54.6	62.7	
	V8	D	17.2	18.9	20.5	22.0	23.7	25.4	27.0	28.7	31.9	36.8	45.1	53.3	61.4	0.6
		L, M	18.4	20.1	21.8	23.3	25.0	26.6	28.2	29.9	33.2	38.0	46.3	54.5	62.6	
100	T9	D, L	43.8	46.7	49.7	52.4	55.3	58.1	61.1	64.0	69.7	78.3	92.7	107.1	121.5	1.0
		M	45.2	48.0	51.0	53.7	56.6	59.5	62.4	65.3	71.0	79.6	94.0	108.4	122.8	
		N	45.6	48.4	51.4	54.1	57.0	59.9	62.8	65.7	71.4	80.0	94.4	108.8	123.2	

Dimensions: Belt Drive

LET80/100-X11

Size	L	A1	A2	A3	DS	M	H1	D1			D2		D3		D4	D5
80	440	44	100	122	22	98	109.4	M5 x 0.8 depth 7.5			6 H 7 depth 5		M6 x 1.0 depth 12		25	62
100	600	50	140	165	25	135	166	M8 x 1.25 depth 12			8 H 7 depth 7		M8 x 1.25 depth 12		35	95
Size	D6	W1	W2	W3	HP1	HP2	HW1	HW2	HW3	TP1	TP2	TP3	3 ${ }^{\text {T1 }}$	T2	T3	V
80	23	119	40	3.9	86	60	35	3	2.4	116	76	55	200	68	7	60
100	33	184	80	5.2	95	106	40	5	2.8	169	99	90	280	107	9	80

Size	Motor type	Lead	W4		W5	X1	X2
			Without lock	With lock			
80	S4	D	355.5	384.1	53	78	52
		L, M	392.5	421.1	73		81
	T8	D	343.6	380.4	53	78	52
		L, M	380.6	417.4	73		81
	V8	D	343.8	383.8	53	78	52
		L, M	380.8	420.8	73		81
100	T9	D, L	468.3	508.6	78	120	81
		M	477.8	518.1	83.5		101
		N	490.3	530.6			101

LET-X11 Series

AC Servo Motor

Side Supports
MY-S50A

Side Support Intervals
[mm]

Size	W1	W2
$\mathbf{8 0}$	162	140
$\mathbf{1 0 0}$	228	206

* The side supports consist of a set of right and left brackets.

Usage Guide for Side Supports

When mounting with the side supports, be sure to use the number of side supports (N) and the support spacing (L1) shown in the figure and table below as a guide.

* Number of side supports: N is the combined number of left and right supports.

Stroke	Screw size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{mm}$]	$\begin{gathered} \mathrm{L} 1 \\ {[\mathrm{~mm}]} \end{gathered}$	Number of side supports: \mathbf{N} [pcs.]	
				80	100
Up to 600	M8 $\times 1.25$	12.5	15	6	8
Up to 900				8	10
Up to 1200				10	12
Up to 2000				12	14
Up to 3000				14	16

* Secure the side supports using the support spacing (L) in the table above.

Electric Actuator Mounting T-nuts

The T-nuts are used for mounting using the T-slots of the actuator.
When mounting with T-nuts only, mount the product while referring to (9) (Mount using more than the number of T-nuts used to secure the body.) in the "Handling" section of the Specific Product Precautions.

* The T-nuts are the same size for the LET80 and 100.

Thread size Symbol Thread 08 M8

LET－X11 Series
 Auto Switch Mounting

Auto Switch Mounting Position

Model	Size	A	B	C	Operating range
LET80	80	97	100	200	6
LET100	100	137	140	280	7

＊The operating range is a guideline including hysteresis，not meant to be guaranteed．There may be large variations（as much as $\pm 30 \%$ ）

Auto Switch Mounting（Size：80，100）

When mounting an auto switch，first，hold a switch spacer between your fingers and press it into the slot．When doing this，confirm that it is set in the correct mounting orientation，or reinsert it if necessary．Next，insert the auto switch into the slot and slide it until it is positioned under the switch spacer．
After confirming the mounting position，use a flat head watchmaker＇s screwdriver to tighten the included auto switch mounting screw．

Auto Switch Mounting Screw Tightening Torque［ $\mathrm{N} \cdot \mathrm{m}$ ］

Auto switch model	Tightening torque
D－M9 $\square(\mathbf{V})$ $\mathbf{D}-\mathbf{M 9} \square \mathbf{W}(\mathbf{V})$	0.10 to 0.15

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	ue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch Direct Mounting Type D－M9NE（V）／D－M9PE（V）／D－M9BE（V）

Grommet

－Output signal turns on when no magnetic force is detected．
－Can be used for the actuator adopted by the solid state auto switch D－M9 series（excluding special order products）

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Specifications

D－M9 \square E，D－M9 \square EV（With indicator light）						
Auto switch model	D－M9NE	D－M9NEV	D－M9PE	D－M9PEV	D－M9BE	D－M9BEV
Electrical entry direction	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC	or less		－	24 VDC（10	to 28 VDC）
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON．					
Standard	CE／UKCA marking					

Oilproof Flexible Heavy－duty Lead Wire Specifications

Auto switch model		D－M9NE（V）	D－M9PE（V）	D－M9BE（V）
Sheath	Outside diameter［mm］	ø2．6		
Insulator	Number of cores	3 cores（B	lue／Black）	2 cores（Brown／Blue）
	Outside diameter［mm］	$ø 0.88$		
Conductor	Effective area［ mm^{2} ］	0.15		
	Strand diameter［mm］	$\varnothing 0.05$		
Min．bending radius［mm］（Reference values）		17		

＊Refer to the Web Catalog for solid state auto switch common specifications．
＊Refer to the Web Catalog for lead wire lengths．

Weight

［g］

Auto switch model		D－M9NE（V）	D－M9PE（V）	D－M9BE（V）
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

＊1 The 1 m and 5 m options are produced upon receipt of order． on products that are compliant with international standards．
PLC．Programmable Logic Controller

Refer to the SMC website for details

Dimensions

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)				
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$						
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)					
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$						
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15						
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$						
Min. bending radius [mm] (Reference values)						17		

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 $\square W$

D-M9 $\square W V$

Design

\triangle Warning

1. When mounting it vertically, at an angle, or in other situations where there is a height difference, install safety measures from the outside. (Latches, movable bolts, fall prevention devices, etc.)

- Design the structure so that the human body does not come into direct contact with the driven object or moving parts of the actuator. Install a protective cover to prevent direct contact with the human body, or if there is a risk of contact, install a sensor or the like to ensure a safe structure such as an emergency stop before contact is made.
Even after the actuator has stopped, do not approach the movable range until it is sufficiently safe.
The load may fall due to a power outage or a broken belt, which may cause serious damage to the human body or the machine. - Be sure to select a motor with brake. - Implement safety measures externally to prevent damage from falling due to broken belt.
(Latches, movable bolts, fall prevention devices, etc.)

\triangle Caution

1. Do not apply a load in excess of the specification limits. Select a suitable actuator by work load and allowable moment. If a load in excess of the specification limits is applied to the guide, adverse effects such as the generation of play in the guide, reduced accuracy, or reduced service life of the product may occur.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
The product can be damaged. The components, including the motor, are manufactured to precise tolerances. Even a slight deformation may cause a malfunction or seizure.

Selection

\triangle Warning

1. Do not increase the speed in excess of the specification limits.

Select a suitable actuator by the relationship between the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, adverse effects such as the generation of noise, reduced accuracy, or reduced service life of the product may occur.
2. When the product repeatedly cycles with partial strokes (100 mm or less), lubrication can run out. Operate it at a full stroke at least once a day or every a thousand cycles.
3. When external force is to be applied to the table, it is necessary to add the external force to the work load as the total carried load when selecting a size. When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table will increase, which may lead to the malfunction of the product.
4. Use the acceleration/deceleration within the range that does not exceed the specification limit.
This can cause malfunctions such as tooth skipping of the belt.
5. Do not operate the motor in a state where the torque exceeds 100% of the rated value without reaching the set speed.
This can cause malfunctions such as tooth skipping of the belt.

Selection

Warning

6. If the actuator is to be installed in a position other than horizontal installation, use an actuator with a lock.
If you use an actuator without a lock, there is no holding force when the power or servo is turned off, so the workpiece may drop.

Handling

Warning

1. Do not allow the table (slider) to hit the end of stroke. If an incorrect input instruction is given, such as using it outside the specification range or changing the driver setting/ origin position to give an operation instruction outside the actual stroke, the table (slider) can conflict. Perform a trial run to confirm that the table does not hit the end of stroke.
If the table collides with the stroke end, the guide, belt, housing, etc., will be damaged and will not operate normally. Also, take measures against drops since the workpiece will drop freely due to its own weight when it is vertical.

\triangle Caution

1. The actual speed of this actuator is affected by the work load and stroke.
Check the model selection section of the catalog.
2. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
3. Do not dent, scratch, or cause other damage to the body or table mounting surfaces.
Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.
4. Do not apply strong impact or an excessive moment while mounting the product or a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
5. Keep the flatness of the mounting surface within $0.1 \mathrm{~mm} /$ 500 mm .
If a workpiece or base does not sit evenly on the body of the product, play in the guide or an increase in the sliding resistance may occur.
In the case of overhang mounting (including cantilever), use a support plate, etc., to avoid deflection of the actuator body.
6. When installing this product, fix it with more side supports and T-nuts than the number of installations. Reducing the number of mounting units will affect performance, such as increasing the displacement of the table.
7. Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range.
Particularly during the transportation

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Handling

\triangle Caution

8. When mounting the actuator, use bolts with adequate size and tighten them with adequate torque.

Tightening the screws with a higher torque than the maximum may cause malfunction, whilst tightening with a lower torque can cause the displacement of the mounting position or fall.

* Number of side supports: N is the combined number of left and right supports.

Stroke	Bolt size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	$\begin{array}{\|c\|} \hline \mathrm{L} 1 \\ {[\mathrm{~mm}]} \end{array}$	Mounting quantity	
				80	100
Up to 600	M8 x 1.25	$12.5 \pm 10 \%$	15	6	8
Up to 900				8	10
Up to 1200				10	12
Up to 2000				12	14
Up to 3000				14	16

* Fix the support interval (L) of the side support at equal intervals.
* Please use MY-S50A for the side support used for installation.

Workpiece mounting

Size	Bolt size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{mm}]$	L (Max. screw-in depth) $[\mathrm{mm}]$
$\mathbf{8 0}$	$\mathrm{M} 5 \times 0.8$	3	9
$\mathbf{1 0 0}$	$\mathrm{M} 8 \times 1.25$	12.5	15

9. Do not operate by fixing the table and moving the actuator body.
10. Vibration may occur during operation, this could be caused by the operating conditions.
If it occurs, adjust response value of auto tuning of driver to be lower.
During the first auto tuning noise may occur, the noise will stop when the tuning is complete.
11. When the fluctuations in the load are caused during operation, malfunction, noise, or alarm generation may occur. (In the case of the AC servo motor)
The gain tuning may not be suitable for fluctuating loads. Adjust the gain properly by following the instructions in the driver manual.
12. When lifting the product, be careful not to overturn or drop it.
Doing so may damage the product.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*1	\bigcirc	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts

* For lubrication, use lithium grease No. 2.

2. Loose or mechanical play in fixed parts or fixing screws

- Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn, out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt

Belt corner has become rounded and frayed threads stick out
c. Belt partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible

AC Servo Motor Drivers
 * For details, refer to page 49
 LISTED
 * Exdudes the LECYMLECYU LECSA/LECS $\square-T / L E C Y \square$ Series

Pulse Input Type/Positioning Type p. 31

Incremental Type/LECSA Series

CC-Link Direct Input Type p. 31

Absolute Type/LECSC-T Series
CC-Link

LISTED

MECHATROLINK-II Type
Absolute Type/LECYM Series
HMMECHATROLINK-II

With STO sub-function

Absolute Type/LECSB-T Series

With STO sub-function

SSCNETII/H Type

Absolute Type/LECSS-T Series

With STO sub-function

MECHATROLINK-III Type

Absolute Type/LECYU Series
HMECHATROLINK-III

With STO sub-function

AC Servo Motor Driver

 Incremental Type (\in 皆

LISTED
RoHS
Absolute Type

* For details, refer to page 49. * Only the LECSA and

LECSB-T ${ }_{\text {(Pulse }}$ Input TypelPositioning Type) $/ L E C S C-T_{\text {(CC-Link Direct Input }}$ Type)/

How to Order
For LECSA

* If an I/O connector is required, order the part number "LE-CSNA" separately. If an I/O cable is required, order the part number "LEC-CSNA-1" separately.
- Compatible motor type

Symbol	Type	Capacity	Encoder
S4	AC servo motor $\left(\right.$ S4 $\left.^{* 1}\right)$	400 W	Incremental

*1 The symbol shows the motor type (actuator).

For LECSB-T/LECSC-T/LECSS-T

Power supply voltage

2	200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ (For LECSB2-T/LECSS2-T)
	200 to 230 VAC, 50/60 Hz (For LECSC2-T)

* If an I/O connector is required, order the part number "LE-CSN \square " separately.
* If an I/O cable is required, order the part number "LEC-CSN \square-1" separately.
(Since the electric actuator will not operate without forced stop (EM2) wiring when using the LECSB-T in any mode other than positioning mode, an I/O connector or an I/O cable is required.)
- Compatible motor type

Symbol	Type	Capacity	Encoder
T8	AC servo motor (T8*1)	400 W	Absolute
T9	AC servo motor (T9*1)	750 W	

*1 The symbol shows the motor type (actuator).

Dimensions

LECSA \square

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3	USB communication connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector

Dimensions
LECSS2－T \square

＊Battery included

LECSS2－T8

Connector name	Description
CN1A	Front axis connector for SSCNET III／H
CN1B	Rear axis connector for SSCNET IIIH
CN2	Encoder connector
CN3	I／O signal connector
CN4	Battery connector
CN5	USB communication connector
CN8	STO input signal connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

Dimensions				
Model	W	L	D	M
LECSS2－T8	40	170	5	6
LECSS2－T9	60	185	6	12

LECSA/LECS \square-T Series

Specifications

For power supply/control signal wiring examples, refer to the "Operation Manual" on the SMC website.

LECSA Series

Compatible motor capacity [W]	LECSA2-S4
	400
Compatible encoder	Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$)
Main \quad Power voltage [V]	Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)
power Allowable voltage fluctuation [V]	Single phase 170 to 253 VAC
supply Rated current [A]	4.5
Control Control power supply voltage [V]	24 VDC
power Allowable voltage fluctuation [V]	21.6 to 26.4 VDC
supply Rated current [A] Rap	0.5
Parallel input	6 inputs
Parallel output	4 outputs
Max. input pulse frequency [pps]	1 M (for differential receiver), 200 k (for open collector)
In-position range setting [pulse]	0 to ± 65535 (Command pulse unit)
Error excessive	± 3 rotations
Function Torque limit	Parameter setting
Communication	USB communication
Point table	Up to 7 points
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 55 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\text {C }}$]	-20 to 65 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M Ω]	Between the housing and SG: 10 (500 VDC)
Weight [g]	700

LECSB-T Series

Model		LECSB2-T8	LECSB2-T9
Compatible motor capacity [W]		400	750
Compatible encoder		Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$)	
Main power supply	Power voltage [V]	Three phase 200 to 240 VAC ($50 / 60 \mathrm{~Hz}$), Single phase 200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)	
	Allowable voltage fluctuation [V]	Three phase 170 to 264 VAC ($50 / 60 \mathrm{~Hz}$), Single phase 170 to 264 VAC ($50 / 60 \mathrm{~Hz}$)	
	Rated current [A]	2.6	3.8
Control power supply	Control power supply voltage [V]	Single phase 200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)	
	Allowable voltage fluctuation [V]	Single phase 170 to 264 VAC	
	Rated current [A]	0.2	
Parallel input		10 inputs	
Parallel output		6 outputs	
Max. input pulse frequency [pps]		4 M (for differential receiver), 200 k (for open collector)	
Function	In-position range setting [pulse]	0 to ± 65535 (Command pulse unit)	
	Error excessive	± 3 rotations	
	Torque limit	Parameter setting or external analog input setting (0 to 10 VDC)	
	Communication	USB communication, RS422 communication*1	
	Point table	Up to 255 points	
	Pushing operation	Point table no. input method, Up to 127 points	
Operating temperature range [${ }^{\circ} \mathrm{C}$]		0 to 55 (No freezing)	
Operating humidity range [\%RH]		90 or less (No condensation)	
Storage temperature range [${ }^{\circ} \mathrm{C}$]		-20 to 65 (No freezing)	
Storage humidity range [\%RH]		90 or less (No condensation)	
Insulation resistance [$\mathrm{M} \Omega$]		Between the housing and SG: 10 (500 VDC)	
Safety function		STO (IEC/EN 61800-5-2)	
Safety standards*2		EN ISO 13849-1 Category 3 PL e, IEC 61508 SIL 3, EN 62061 SIL CL3, EN 61800-5-2	
Weight [g]		1000	1400

*1 USB communication and RS422 communication cannot be performed at the same time.
*2 The safety level depends on the set value of the driver parameter [Pr. PF18 STO diagnosis error detection time] and whether STO input diagnosis by TOFB output is performed or not. Refer to the LECSB-T operation manual for details.

For power supply／control signal wiring examples， refer to the＂Operation Manual＂on the SMC website．

Specifications

LECSC－T Series

＊1 If the system comprises of both CC－Link Ver． 1.00 and Ver． 1.10 compliant cables，Ver． 1.00 specifications are applied to the overall cable length and the cable length between stations．
＊2 USB communication and RS422 communication cannot be performed at the same time．
LECSS－T Series

Model	LECSS2－T8	LECSS2－T9
Compatible motor capacity［W］	400	750
Compatible encoder	Absolute 22－bit encoder （Resolution： $4194304 \mathrm{p} / \mathrm{rev}$ ）	
Main ${ }^{\text {Pr }}$ Power voltage［V］	Three phase 200 to 240 VAC（ $50 / 60 \mathrm{~Hz}$ ），Single phase 200 to 240 VAC（ $50 / 60 \mathrm{~Hz}$ ）	
power Allowable voltage fluctuation［V］	Three phase 170 to 264 VAC（ $50 / 60 \mathrm{~Hz}$ ），Single phase 170 to 264 VAC（ $50 / 60 \mathrm{~Hz}$ ）	
supply ${ }^{\text {R }}$ Rated current［A］	2.6	3.8
Control Control power supply voltage［V］	Single phase 200 to 240 VAC（ $50 / 60 \mathrm{~Hz}$ ）	
power Allowable voltage fluctuation［V］	Single phase 170 to 264 VAC	
supply ${ }^{\text {R }}$ Rated current［A］	0.2	
Applicable Fieldbus protocol	SSCNET III／H（High－speed optical communication）	
Communication function	USB communication	
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］	0 to 55 （No freezing）	
Operating humidity range［\％RH］	90 or less（No condensation）	
Storage temperature range［ ${ }^{\circ} \mathrm{C}$ ］	－20 to 65 （No freezing）	
Storage humidity range［\％RH］	90 or less（No condensation）	
Insulation resistance［M Ω ］	Between the housing and SG： 10 （ 500 VDC）	
Safety function	STO（IEC／EN 61800－5－2）	
Safety standards＊1	EN ISO 13849－1 Category 3 PL d，EN 61508 SIL 2，EN 62061 SIL CL2，EN 61800－5－2	
Weight［g］	1000	1400

[^0]
LECSA/LECS \square-T Series

Options

Motor cable, Lock cable, Encoder cable (LECSA, LECS \square-T common)

Cable length (L) [m]	
2	2
5	5
A	10

Product no.	ØD
LE-CSB-S $\square \mathbf{A}$	4.7
LE-CSB-S $\square \mathbf{B}$	
LE-CSB-R $\square \mathbf{A}$	4.5
LE-CSB-R $\square \mathbf{B}$	

LE-CSE- $\square \square$: Encoder cable

*1 If using an actuator with a lock, a lock cable is required.

Weight

Product no.	Length [m]	Weight [g]
LE-CSM-S2 \square	2	180
LE-CSM-S5 \square	5	400
LE-CSM-SA \square	10	800
LE-CSM-R2 \square	2	180
LE-CSM-R5 \square	5	400
LE-CSM-RA \square	10	800

Weight

Product no.	Length [m]	Weight [g]
LE-CSB-S2 \square	2	80
LE-CSB-S5 \square	5	200
LE-CSB-SA \square	10	400
LE-CSB-R2 \square	2	80
LE-CSB-R5 \square	5	200
LE-CSB-RA \square	10	400

Weight

Product no.	Length [m]	Weight $[\mathrm{g}]$
LE-CSE-S2 \square	2	220
LE-CSE-S5 \square	5	600
LE-CSE-SA \square	10	1200
LE-CSE-R2 \square	2	220
LE-CSE-R5 \square	5	600
LE-CSE-RA \square	10	1200

I/O connector (Without cable, Connector only)

Driver typed		LE-CSNA	LE-CSNB	LE-CSNS		
		N*		$\xrightarrow{\square}$	Weight	
A	LECSA \square, LECSC2-T \square	$\square \sim \stackrel{N}{\mathrm{~m}}$	$\square: \stackrel{\text { i }}{\text { i }}$	\square ¢	Product no.	Weight [g]
B	LECSB2-T \square	-	\square -	人-	LE-CSNA	25
S	LECSS2-T \square		C-L -		LE-CSNB	30
		$\xrightarrow{39}$			LE-CSNS	16

[^1]* Applicable conductor size: AWG24 to 30
* If using the LECSB-T in any mode other than positioning mode, forced stop (EM2) wiring is required in all cases. (The electric actuator will not operate without the wiring.)
Prepare an I/O connector or an I/O cable in advance.

Options

SSCNET III optical cable（LECSS2－T \square ）

＊LE－CSS－\square is MR－J3BUS $\square M$
manufactured by Mitsubishi Electric Corporation．

Weight

Product no．	Length $[\mathrm{m}]$	Weight $[\mathrm{g}]$
LE－CSS－L	0.15	100
LE－CSS－K	0.3	100
LE－CSS－J	0.5	200
LE－CSS－1	1	200
LE－CSS－3	3	200

I／O cable

Weight

Product no．	Weight［g］
LEC－CSNA－1	303
LEC－CSNB－1	472
LEC－CSNS－1	221

＊LEC－CSNA－1：10126－3000PE（connector）／10326－52F0－008（shell kit） manufactured by 3M Japan Limited or equivalent
LEC－CSNB－1：10150－3000PE（connector）／10350－52F0－008（shell kit） manufactured by 3M Japan Limited or equivalent
LEC－CSNS－1：10120－3000PE（connector）／10320－52F0－008（shell kit） manufactured by 3M Japan Limited or equivalent
＊Conductor size：AWG24
＊If using the LECSB－T in any mode other than positioning mode，forced stop（EM2）wiring is required in all cases．（The electric actuator will not operate without the wiring．）
Prepare an I／O connector or an I／O cable in advance．

Cable O．D．

Product no．	\varnothing D
LEC－CSNA－1	11.1
LEC－CSNB－1	13.8
LEC－CSNS－1	9.1

Dimensions／Pin Nos．

Product no．	W	H	T	U	Pin no． n
LEC－CSNA－1	39	37.2	12.7	14	14
LEC－CSNB－1		52.4		18	26
LEC－CSNS－1		33.3		14	21

Wiring

LEC－CSNA－1：Pin nos． 1 to 26
LEC－CSNB－1：Pin nos． 1 to 50
LEC－CSNS－1：Pin nos． 1 to 20

Connector pin no．		Pair no． of wire	Insulation color	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{6} \\ & 4 \end{aligned}$	1	1	Orange	－	Red
	2			－	Black
	3	2	Light gray	\square	Red
	4			－	Black
	5	3	White	\square	Red
	6			－	Black
	7	4	Yellow	\square	Red
	8			\square	Black
	9	5	Pink	\square	Red
	10			\square	Black
	11	6	Orange	$\square \square$	Red
	12			－	Black
	13	7	Light gray	$\square \square$	Red
	14			－	Black
	15	8	White	\square	Red
	16			$\square \square$	Black
	17	9	Yellow	－	Red
	18			$\square \square$	Black

Connector pin no ．		Pair no． of wire	$\begin{gathered} \text { Insulation } \\ \text { color } \end{gathered}$	Dot mark	$\begin{gathered} \text { Dot } \\ \text { color } \end{gathered}$
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{6} \\ & 4 \end{aligned}$	19	10	Pink	$\square \square$	Red
	20			$\square \square$	Black
	21	11	Orange	$\square \square \square$	Red
	22				Black
	23	12	Light gray	$\square \square \square$	Red
	24			－\quad－	Black
	25	13	White	$\square \square \square$	Red
	26			■■m	Black
	27	14	Yellow	$\square \square \square$	Red
	28			$\square \square \square$	Black
	29	15	Pink	$\square \square \square$	Red
	30			■ $=$	Black
	31	16	Orange	EnEm	Red
	32			－mmm	Black
	33	17	Light gray	Emmm	Red
	34			Emmm	Black

Connector pin no．		Pair no． of wire	$\begin{array}{\|c\|} \hline \text { Insulation } \\ \text { color } \end{array}$	Dot mark	$\begin{array}{\|c\|} \hline \text { Dot } \\ \text { color } \end{array}$
$\begin{aligned} & \frac{0}{0} \\ & : \frac{0}{6} \\ & 4 \end{aligned}$	35	18	White	－mmm	Red
	36			－mmm	Black
	37	19	Yellow		Red
	38			－mmm	Black
	39	20	Pink	－mmm	Red
	40			■■■■	Black
	41	21	Orange	$\square \square \square \square($ Continuos）	Red
	42			$\square ■ \square \square \square($ Coninuous）	Black
	43	22	Light gray	$\square ■ \square \square($ Coninuous）	Red
	44			－mmen（Coninuous）	Black
	45	23	White	$\square \square \square \square($ Coninuous）	Red
	46			－mmm（Coninuous）	Black
	47	24	Yellow	$\boldsymbol{- m} \boldsymbol{\square}$（Continuous）	Red
	48			$\square \square \square \square$（Continuos）	Black
	49	25	Pink	$\square \square \square \square($ Coninuous）	Red
	50			－mmem（Continuous）	Black

LECSA/LECS \square-T Series

Options

Regeneration option (LECS \square common)

LEC - MR - RB - 12

Regeneration option type

$\mathbf{0 3 2}$	Allowable regenerative power 30 W
$\mathbf{1 2}$	Allowable regenerative power 100 W
$\mathbf{3 2}$	Allowable regenerative power 300 W

* Confirm regeneration option to be used in "Model Selection."
* The regeneration option "LEC-MR-RB-32" cannot be used with the LECSA.

LEC-MR-RB-032

Weight

Product no.	Weight [kg]
LEC-MR-RB-032	0.5

* MR-RB032 manufactured by Mitsubishi Electric Corporation

LEC-MR-RB-12

Weight

Product no.	Weight [kg]
LEC-MR-RB-12	1.1

* MR-RB12 manufactured by Mitsubishi Electric Corporation

LEC-MR-RB-32

Weight

Product no.	Weight [kg]
LEC-MR-RB-32	2.9

Options

Setup software (MR Configurator2 ${ }^{\text {TM }}$) (LECSA, LECS \square-T common)

display language

Nil	Japanese version
\mathbf{E}	English version
\mathbf{C}	Chinese version

* SW1DNC-MRC2- \square manufactured by Mitsubishi Electric Corporation Refer to Mitsubishi Electric Corporation's website for operating environment and version upgrade information.
MR Configurator2 ${ }^{\text {TM }}$ is a registered trademark or trademark of Mitsubishi Electric Corporation

Adjustment, waveform display, diagnostics, parameter reading/writing, and test operations can be performed on a PC.
Hardware Requirements*1*3

Equipment		Description
OS		```Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 11\) Education Operating System Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 11\) Enterprise Operating System Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 11\) Pro Operating System Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 11\) Home Operating System Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 10\) Education Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 10\) Enterprise Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 10\) Pro Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 10\) Home Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 10\) loT Enterprise 2016 LTSB*2 Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR}\) 8.1 Enterprise Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR}\) 8.1 Pro Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 8.1\) Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 8\) Enterprise Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 8\) Pro Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 8\) Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 7\) Enterprise Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 7\) Ultimate Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 7\) Professional Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 7\) Home Premium Microsoft \({ }^{\circledR}\) Windows \({ }^{\circledR} 7\) Starter```
CPU (Recommended)	Windows ${ }^{\text {® }} 11$	2-core or higher 64-bit compatible processor or System on a Chip (SoC)
	Other than Windows ${ }^{\text {® }} 11$	Desktop PC: Intel ${ }^{\circledR}$ Celeron ${ }^{\circledR}$ processor 2.8 GHz or higher Laptop: Intel ${ }^{\circledR}$ Pentium ${ }^{\circledR} \mathrm{M}$ processor 1.7 GHz or higher
Memory (Recommended)	Windows ${ }^{\circledR} 11$	4 GB or more (64-bit OS)
	Other than Windows ${ }^{\text {® }} 11$	1 GB or more (32-bit OS) 2 GB or more (64-bit OS)
Available HD space		1.5 GB or more
Display		Resolution: 1024×768 or more, Must be capable of high color (16-bit) display Connectable with the PCs listed above
USB cable		LEC-MR-J3USB
Ethernet cable		Cable type: Category 5e or higher, (Double shielded/STP) Straight cable Standards: IEEE 802.3 (1000BASE-T) or ANSI/TIA/EIA-568-B (Category 5e) Connector: Shielded RJ-45

*1 On some PCs, this software may not run properly.
*2 Only the 64-bit edition is supported.
*3 Surrogate pair characters and environment-dependent characters cannot be used.
Setup Software Compatible Drivers

Compatible driver	Setup software	
	MR Configurator ${ }^{\text {TM }}$	MR Configurator2 ${ }^{\text {TM }}$
	LEC-MR-SETUP221■	LEC-MRC2 \square
LECSA	\bigcirc	\bigcirc
LECSB2-T \square	-	\bigcirc
LECSC2-T \square	-	\bigcirc
LECSS2-T \square	-	\bigcirc

LECSA/LECS $\square-T$ Series

Options

USB cable ($\mathbf{3} \mathbf{~ m}$)

(LECSA, LECSB-T, LECSC-T, LECSS-T common)

LEC-MR - J3USB

* MR-J3USBCBL3M manufactured by Mitsubishi Electric Corporation Weight: 140 g

Cable for connecting the PC and driver when using the setup software (MR Configurator2 ${ }^{\text {TM }}$)
Do not use any cable other than this cable.

STO cable (3 m)

(Only for LECSB2-T \square and LECSS2-T \square)
 LEC - MR - D05UDL3M

* MR-D05UDL3M-B manufactured by Mitsubishi Electric Corporation

Cable for connecting the driver and device, when using the safety function
Do not use any cable other than this cable.

Battery

Replacement batteries must be purchased from Mitsubishi Electric Corporation.

Part no.: MR-J3BAT
 manufactured by Mitsubishi Electric Corporation

Battery for replacement
Absolute position data is maintained by installing the battery to the driver.

Weight: 30 g

* The MR-J3BAT is a single battery that uses a lithium metal battery ER6V.

When transporting lithium metal batteries and devices with built-in lithium metal batteries by a method subject to UN regulations, it is necessary to apply measures according to the regulations stipulated in the United Nations Recommendations on the Transport of Dangerous Goods, the Technical Instructions (ICAO-TI) of the International Civil Aviation Organization (ICAO), and the International Maritime Dangerous Goods Code (IMDG CODE) of the International Maritime Organization (IMO). If a customer is to transport such products, it is necessary for them to confirm the latest regulations, or the laws and regulations of the country of transport, on their own in order to apply the proper measures.

Part no.: MR-BAT6V1SET
 manufactured by Mitsubishi Electric Corporation

Battery for replacement
Absolute position data is maintained by installing the battery to the driver.

Weight: 60 g

* The MR-BAT6V1SET is an assembled battery that uses a lithium metal battery 2CR17335A.
When transporting lithium metal batteries and devices with built-in lithium metal batteries by a method subject to UN regulations, it is necessary to apply measures according to the regulations stipulated in the United Nations Recommendations on the Transport of Dangerous Goods, the Technical Instructions (ICAO-TI) of the International Civil Aviation Organization (ICAO), and the International Maritime Dangerous Goods Code (IMDG CODE) of the International Maritime Organization (IMO). If a customer is to transport such products, it is necessary for them to confirm the latest regulations, or the laws and regulations of the country of transport, on their own in order to apply the proper measures.

Battery Types and Compatible Drivers

Compatible driver	Battery type	
	MR-J3BAT	MR-BAT6V1SET
LECSB \square-T \square	-	\bigcirc
LECSC \square-T \square	\bigcirc	-

HMECHATROLINK Compatible
AC Servo Motor Driver
Absolute Type LECYM/LECYU Series
(MMECHATROLINK-III Type)
CE UK

* For details, refer to page 49.

How to Order

* If an l/O connector (CN1) is required, order the part number "LE-CYNA" separately.
* If an I/O cable (CN1) is required, order the part number "LEC-CSNA-1" separately.
- Compatible motor type

Symbol	Type	Capacity	Encoder
V8	AC servo motor (V8*1)	400 W	Absolute

*1 The symbol shows the motor type (actuator).

Power supply voltage d

2	200 to 230 VAC, $50 / 60 \mathrm{~Hz}$

Dimensions

MMECHATROLINK-II type
LECYM2-V8

MMECHATROLNK-III type

LECYU2-V8

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3*1	Digital operator connector
CN6A	MECHATROLINK-I communication connector
CN6B	MECHATROLINK-I communication connector
CN7	PC connector
CN8	Safety connector

*1 Digital operator is JUSP-OP05A-1-E manufactured by YASKAWA Electric Corporation. When using the digital operator, it should be provided by the customer.

Motor capacity	Hole position	Mounting dimensions				Mounting hole
		A	B	C	D	
V8 (400 W)	(2)(3)	5	5	5	5	$\varnothing 5$

* The mounting hole position varies depending on the motor capacity.

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3*1	Digital operator connector
CN6A	MECHATROLINK-IIcommunication connector
CN6B	MECHATROLINK-IIcommunication connector
CN7	PC connector
CN8	Safety connector

*1 Digital operator is JUSP-OP05A-1-E manufactured by YASKAWA Electric Corporation. When using the digital operator, it should be provided by the customer.

Motor capacity	Hole position	Mounting dimensions				Mounting hole
		A	B	C	D	
V8 (400 W)	(2)(3)	5	5	5	5	$\varnothing 5$

* The mounting hole position varies depending on the motor capacity.

Specifications

For power supply/control signal wiring examples, refer to the "Operation Manual" on the SMC website.

MMECHATROLINK-II Type

Model			LECYM2-V8
Compatible motor capacity [W]			400
Compatible encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)
Main circuit power supply	Power voltage [V]		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)
	Allowable voltage fluctuation [V]		Three phase 170 to 253 VAC
Control power supply	Power voltage [V]		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)
	Allowable voltage fluctuation [V]		Single phase 170 to 253 VAC
Power supply capacity (at rated output) [A]			2.8
Input circuit			NPN (Sink circuit)/PNP (Source circuit)
Parallel input (7 inputs)	Number of optional allocations	$\begin{gathered} 7 \\ \text { inputs } \end{gathered}$	[Initial allocation] - Homing deceleration switch (/DEC) - External latch (/EXT 1 to 3) - Forward run prohibited (P-OT), reverse run prohibited (N-OT) [Can be allocated by setting the parameters] - Forward external torque limit (/P-CL), reverse external torque limit (/N-CL) Signal allocations can be performed, and positive and negative logic can be changed.
Parallel output (4 outputs)	Number of fixed allocations	1 output	- Servo alarm (ALM)
	Number of optional allocations	3 outputs	[Initial allocation] - Lock (/BK) [Can be allocated by setting the parameters] - Positioning completion (/COIN) - Speed limit detection (/VLT) - Speed coincidence detection (/V-CMP) - Rotation detection (/TGON) - Warning (/WARN) - Servo ready (/S-RDY) - Near (/NEAR) - Torque limit detection (/CLT) Signal allocations can be performed, and positive and negative logic can be changed.
MECHATROLINK communication	Communication protocol		MECHATROLINK- II
	Station address		41 H to 5FH
	Transmission speed		10 Mbps
	Transmission cycle		$250 \mu \mathrm{~s}, 0.5 \mathrm{~ms}$ to 4 ms (Multiples of 0.5 ms)
	Number of transmission bytes		17 bytes, 32 bytes
	Max. number of stations		30
	Cable length		Overall cable length: 50 m or less, Cable length between the stations: 0.5 m or more
Command method	Control method		Position, speed, or torque control with MECHATROLINK-II communication
	Command input		MECHATROLINK-II command (Motion, data setting, monitoring, or adjustment)
Function	Gain adjustment		Tuning-less/Advanced auto tuning/One-parameter tuning
	Communication setting		USB communication, RS-422 communication
	Torque limit		Internal torque limit, external torque limit, and torque limit by analog command
	Encoder output		Phase A, B, Z: Line driver output
	Emergency stop		CN8 Safety function
	Overtravel		Dynamic brake stop, deceleration to a stop, or free run to a stop at P-OT or N-OT
	Alarm		Alarm signal, MECHATROLINK-II command
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)
Operating humidity range [\%RH]			90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-20 to 85 (No freezing)
Storage humidity range [\%RH]			90 or less (No condensation)
Insulation resistance [M Ω]			$10 \mathrm{M} \Omega$ (500 VDC)
Safety function			STO (IEC 61800-5-2)
Safety standards*1			EN ISO 13849-1 Category 3 PL d, IEC 61508 SIL2, IEC 62061 SIL CL2, IEC 61800-5-2
Weight [g]			1000

*1 Refer to the LECYM operation manual for details.

For power supply/control signal wiring examples, refer to the "Operation Manual" on the SMC website.

Specifications

MMECHATROLINK-III Type

Model		LECYU2-V8
Compatible motor capacity [W]		400
Compatible encoder		Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)
Main circuit power supply	Power voltage [V]	Three phase 200 to 230 VAC (50/60 Hz)
	Allowable voltage fluctuation [V]	Three phase 170 to 253 VAC
Control power supply	Power voltage [V]	Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)
	Allowable voltage fluctuation [V]	Single phase 170 to 253 VAC

Positioning completion (/COIN)

- Speed limit detection (/VLT)

Speed coincidence detection (V-CMP)
Rotation detection (/TGON)

- Warning (WARN)
- Servo ready (/S-RDY)

Near (INEAR)

- Torque limit detection (/CLT)

Signal allocations can be performed, and positive and negative logic can be changed.

MECHATROLINK communication	Communication protocol	MECHATROLINK-III
	Station address	03H to EFH
	Transmission speed	100 Mbps
	Transmission cycle	$125 \mu \mathrm{~s}, 250 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 750 \mu \mathrm{~s}, 1 \mathrm{~ms}$ to 4 ms (Multiples of 0.5 ms)
	Number of transmission bytes	16 bytes, 32 bytes, 48 bytes
	Max. number of stations	62
	Cable length	Cable length between the stations: 0.5 m or more, 75 m or less
Command method	Control method	Position, speed, or torque control with MECHATROLINK-III communication
	Command input	MECHATROLINK-III command (Motion, data setting, monitoring, or adjustment)
Function	Gain adjustment	Tuning-less/Advanced auto tuning/One-parameter tuning
	Communication setting	USB communication, RS-422 communication
	Torque limit	Internal torque limit, external torque limit, and torque limit by analog command
	Encoder output	Phase A, B, Z: Line driver output
	Emergency stop	CN8 Safety function
	Overtravel	Dynamic brake stop, deceleration to a stop, or free run to a stop at P-OT or N-OT
	Alarm	Alarm signal, MECHATROLINK-III command
Operating temperature range [${ }^{\circ} \mathrm{C}$]		0 to 55 (No freezing)
Operating humidity range [\%RH]		90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]		-20 to 85 (No freezing)
Storage humidity range [\%RH]		90 or less (No condensation)
Insulation resistance [M 2]		$10 \mathrm{M} \Omega(500 \mathrm{VDC})$
Safety function		STO (IEC 61800-5-2)
Safety standards*1		EN ISO 13849-1 Category 3 PL d, IEC 61508 SIL2, IEC 62061 SIL CL2, IEC 61800-5-2
Weight [g]		1000

*1 Refer to the LECYU operation manual for details.

Options

Motor cable, Motor cable for lock option, Encoder cable (LECYM/LECYU common)

Cable description

M	Motor cable
B	Motor cable for lock option
E	Encoder cable
(With battery case)	

* For encoder cable, the suffix "- \square " (Motor capacity) is not necessary.
- Direction of connector

* The cable entry direction is axis side only.

Cable length (L) [m]d

$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

LE-CYM- $\square \square \mathrm{A}-\square$: Motor cable

LE-CYB- $\square \square A-\square:$ Motor cable for lock option

Weight

Product no.	Length [m]	Weight [g]	Note
LE-CYM-S3A-7	3	250	400 W
LE-CYM-S5A-7	5	390	
LE-CYM-SAA-7	10	750	
LE-CYM-SCA-7	20	1500	
LE-CYM-R3A-7	3	220	
LE-CYM-R5A-7	5	350	
LE-CYM-RAA-7	10	670	
LE-CYM-RCA-7	20	1300	

Weight

Product no.	Length [m]	Weight [g]	Note
LE-CYB-S3A-7	3	240	
LE-CYB-S5A-7	5	390	
LE-CYB-SAA-7	10	750	
LE-CYB-SCA-7	20	1490	
LE-CYB-R3A-7	3	220	W
LE-CYB-R5A-7	5	350	
LE-CYB-RAA-7	10	670	
LE-CYB-RCA-7	20	1300	

LE-CYE- $\square \square$ A: Encoder cable

Weight

Product no.	Length [m]	Weight [g]
LE-CYE-S3A	3	230
LE-CYE-S5A	5	360
LE-CYE-SAA	10	680
LE-CYE-SCA	20	1250
LE-CYE-R3A	3	220
LE-CYE-R5A	5	330
LE-CYE-RAA	10	660
LE-CYE-RCA	20	1240

Product no.	\varnothing D
LE-CYE-S $\square \mathbf{A}$	6.5
LE-CYE-R $\square \mathbf{A}$	6.8

* LE-CYM-S \square A- \square is JZSP-CSM0 $\square-\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD LE-CYB-S $\square A-\square$ is JZSP-CSM1■-DI-E manufactured by YASKAWA CONTROLS CO., LTD. LE-CYE-SDA is JZSP-CSP05-DD-E manufactured by YASKAWA CONTROLS CO., LTD.

AC Servo Motor Driver $L E C Y Y_{U}^{M}$ Series

Options
I/O connector (Without cable, Connector only)

Weight

Product no.	Weight [g]
LE-CYNA	25

* LE-CYNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent
* Conductor size: AWG24 to 30

I/O cable

Weight

Product no.	Weight [g]

* LEC-CSNA-1: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent
* Conductor size: AWG24

Wiring
LEC-CSNA-1: Pin nos. 1 to 26

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	$\begin{aligned} & \text { Dot } \\ & \text { color } \end{aligned}$		$\begin{aligned} & \text { ector } \\ & \text { no. } \\ & \hline \end{aligned}$	Pair no. of wire	Insulation color	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	1	1	Orange	\square	Red	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{6} \\ & \hline \end{aligned}$	11	6	Orange	■	Red
	2			\square	Black		12			-	Black
	3	2	Light gray	\square	Red		13	7	Light gray	$\square \square$	Red
	4			-	Black		14			-	Black
	5	3	White	\square	Red		15	8	White	■	Red
	6			\square	Black		16			$\square \square$	Black
	7	4	Yellow	\square	Red		17	9	Yellow	$\square \square$	Red
	8			\square	Black		18			$\square \square$	Black
	9	5	Pink	\square	Red		19	10	Pink	E	Red
	10			\square	Black		20			$\square \square$	Black

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \hline \frac{0}{0} \\ & 4 \end{aligned}$	21	11	Orange	\# $\square_{\text {- }}$	Red
	22			$\square \square \square$	Black
	23	12	Light gray	$\square \square \square$	Red
	24			-	Black
	25	13	White	- $\square_{\text {E }}$	Red
	26			■ m	Black

Cable O.D.
Dimensions/Pin No.

Product no.	\varnothing D
LEC-CSNA-1	11.1

Product no.	W	H	T	U	Pin no. n
LEC-CSNA-1	39	37.2	12.7	14	14

LECY ${ }_{U}^{M}$ Series

Options

* LEC-CYM- \square is JEPMC-W6002- $\square \square$-E manufactured by YASKAWA CONTROLS CO., LTD.
* LEC-CYU- \square is JEPMC-W6012- $\square \square-E$ manufactured by YASKAWA CONTROLS CO., LTD.

M MECHATROLINK-II cable

Weight

Product no.	Length $[\mathrm{m}]$	Weight $[\mathrm{g}]$
LEC-CYM-J	0.5	50
LEC-CYM-1	1	80
LEC-CYM-3	3	200

Weight

Product no.	Length $[\mathrm{m}]$	Weight $[\mathrm{g}]$
LEC-CYU-L	0.2	21
LEC-CYU-J	0.5	41
LEC-CYU-1	1	75
LEC-CYU-3	3	205

Terminating connector for $\mathbf{M M}^{\text {MECHATROLINK-II }}$

LEC-CYRM

* LEC-CYRM is JEPMC-W6022-E manufactured by YASKAWA CONTROLS CO., LTD.

Options

LECYM2 LECYU2
Drivers

Setup software（SigmaWin＋TM）（LECYM／LECYU common）
Please download the SigmaWint ${ }^{\text {TM }}$ via our website．
SigmaWint ${ }^{T M}$ is a registered trademark or trademark of YASKAWA Electric Corporation．

Adjustment，waveform display，parameter reading／writing，and test operations can be performed on a PC． Compatible PCs
When using the setup software（SigmaWin $+^{\text {TM }}$ ），use an IBM PC／AT compatible PC that meets the following operating conditions．

Hardware Requirements

Equipment		Setup software（SigmaWin $+^{\text {TM }}$ ）Ver． 5	Setup software（SigmaWin $+^{\text {TM }}$ ）Ver． 7
$\stackrel{* 1,2,3,4}{P C}$	OS	Windows ${ }^{\circledR}$ XP＊5 $^{* 5}$ ，Windows Vista ${ }^{\circledR}$ ，Windows ${ }^{\circledR} 7$ （32－bit／64－bit）	Compatible with 64－bit OS －Windows 11，Windows 10 ，Windows $8.1 * 7$ ，Windows 7 SP1＊8 Compatible with 32 －bit OS －Windows 10 ，Windows $8.1^{* 7}$ ，Windows 7 SP1＊8
	Available HD space	350 MB or more（When the software is installed， 400 MB or more is recommended．）	500 MB or more
	Communication interface	Uses the USB port	
Display		XVGA monitor（ 1024×768 or more，used with small font） 256 color or more（ 65536 color or more is recommended） Connectable with the PCs listed above	Resolution： 1280×800 or more（Recommended） Connectable with the PCs listed above
Keyboard		Connectable with the PCs listed above	
Mouse		Connectable with the PCs listed above	
Printer		Connectable with the PCs listed above	
USB cable		LEC－JZ－CVUSB＊6	
Other		Adobe Reader Ver． 5.0 or higher（＊Excludes Ver．6．0）	－

＊1 Windows，Windows Vista ${ }^{\circledR}$ ，Windows ${ }^{\circledR} 7$ ，Windows ${ }^{\circledR} 8.1$ ，Windows ${ }^{\circledR} 10$ ，and Windows ${ }^{\circledR} 11$ are registered trademarks of Microsoft Corporation in the United States and／or other countries．
＊2 On some PCs，this software may not run properly．
＊3 Not compatible with 64－bit Windows ${ }^{\circledR}$ XP and 64 －bit Windows Vista ${ }^{\circledR}$
＊4 For Windows ${ }^{\circledR}$ XP，install and run the software as an administrator．
＊5 For PCs that have HotfixQ328310 installed，installation of the software is likely to fail．In such cases，install HotfixQ329623 instead．
＊6 Order a USB cable separately．
＊7 WindowsUpdate KB2919442，KB2919355，and KB2999226 are required．
＊8 WindowsUpdate KB2999226 is required．

Battery（LECYM／LECYU common）

Replacement batteries must be purchased from YASKAWA Electric Corporation．

Part no．：JZSP－BA01
 manufactured by YASKAWA Electric Corporation

Battery for replacement

Absolute position data is maintained by installing the battery to the battery case of the encoder cable．

Weight： 10 g

USB cable（ 2.5 m ）

LEC－JZ－CVUSB

＊JZSP－CVS06－02－E manufactured by YASKAWA CONTROLS CO．，LTD．
Cable for connecting the PC and driver when using the setup software（SigmaWin $+^{\text {TM }}$ ）
Do not use any cable other than this cable．

＊The JZSP－BA01 is a single battery that uses a lithium metal battery ER3V．
When transporting lithium metal batteries and devices with built－in lithium metal batteries by a method subject to UN regulations，it is necessary to apply measures according to the regulations stipulated in the United Nations Recommendations on the Transport of Dangerous Goods，the Technical Instructions（ICAO－TI）of the International Civil Aviation Organization（ICAO），and the International Maritime Dangerous Goods Code（IMDG CODE）of the International Maritime Organization （IMO）．If a customer is to transport such products，it is necessary for them to confirm the latest regulations，or the laws and regulations of the country of transport，on their own in order to apply the proper measures．

Cable for safety function device（3 m）

LEC－JZ－CVSAF
＊JZSP－CVH03－03－E manufactured by YASKAWA CONTROLS CO．，LTD． Cable for connecting the driver and device when using the safety function Do not use any cable other than this cable．

Weight： 160 g

LECSA/LECS $\square-T / L E C Y \square$ Series Specific Product Precautions 1

\triangle
Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Design / Selection

. Warning

1. Be sure to apply the specified voltage.

Otherwise, malfunction or breakage may occur. If the applied voltage is lower than the specified voltage, it is possible that the load will not be able to be moved due to an internal voltage drop of the driver. Please check the operating voltage before use.
2. Do not operate the product beyond the specifications.

Otherwise, a fire, malfunction, or actuator damage may result. Please check the specifications before use.
3. Install an emergency stop circuit.

Please install an emergency stop outside of the enclosure so that the system operation can be stopped immediately and the power supply can be intercepted.
4. In order to prevent any damage caused by the breakdown or malfunction of the driver and its peripheral devices, a backup system should be established in advance by giving a multiple-layered structure or a failsafe design to the equipment, etc.
5. If the danger of human injury is expected due to abnormal heat generation, smoking, ignition, etc., of the driver and its peripheral devices, cut off the power supply of the product and the system immediately.
6. The parameters of the driver are set to initial values.

Please change the parameters according to the specifications of the customer's equipment before use. Refer to the operation manual for parameter details.

Handling

© Warning

1. Do not touch the inside of the driver and its peripheral devices.
Doing so may cause an electric shock or damage to the driver.
2. Do not perform the operation or setting of the product with wet hands.
Doing so may cause an electric shock.
3. Products with damage or those missing any components should not be used.
An electric shock, fire, or injury may result.
4. Use only the specified combination between the electric actuator and the driver.
Failure to do so may cause damage to the actuator or the driver.
5. Be careful not to be hit by workpieces while the actuator is moving.
It may cause an injury.
6. Do not connect the power supply or power on the product before confirming the area to which the workpiece moves is safe.
The movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after the power has been disconnected, as it is very hot. Doing so may lead to a burn due to the high temperature.
8. Before installation, wiring, and maintenance, the voltage should be checked with a tester 5 minutes after the power supply has been turned off.
Otherwise, an electric shock, fire, or injury may result.

Handling

\triangle Warning

9. Static electricity may cause a malfunction or break the driver. Do not touch the driver while power is supplied.
When touching the driver for maintenance, take sufficient measures to eliminate static electricity.
10. Do not use the product in an area where dust, powder dust, water, chemicals, or oil is in the air.
It will cause failure or malfunction.
11. Do not use the product in an area where a magnetic field is generated.
It will cause failure or malfunction.
12. Do not install the product in an environment containing flammable gas, explosive gas, or corrosive gas. It could lead to fire, explosion, or corrosion.
13. Radiant heat from strong heat sources, such as a furnace, direct sunlight, etc., should not be applied to the product.
It will cause failure of the driver or its peripheral devices.
14. Do not use the product in an environment subject to a temperature cycle.
It will cause failure of the driver or its peripheral devices.
15. Do not use the product in a place where surges are generated.
When there are units that generate a large amount of surge around the product (e.g. solenoid type lifters, high-frequency induction furnaces, motors, etc.), this may cause deterioration or damage to the product's internal circuit. Avoid sources of surge generation and crossed lines.
16. Do not install the product in an environment under the effect of vibrations and impacts.
It will cause failure or malfunction.
17. When a surge-generating load, such as a relay or solenoid valve, is driven directly, use a product that incorporates a surge absorption element.

Installation

© Warning

1. Install the driver and its peripheral devices on a fireproof material.
Direct installation on or near a flammable material may cause a fire.
2. Do not install the product in a place subject to vibrations and impacts.
It will cause failure or malfunction.
3. The driver should be mounted on a vertical wall in a vertical direction. Also, be sure not to cover the driver's suction/exhaust ports.
4. Install the driver and its peripheral devices on a flat surface.
If the mounting surface is distorted or uneven, an unacceptable force may be added to the housing, etc., causing problems.

LECSA/LECS $\square-T / L E C Y \square$ Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Power Supply

\triangle Caution

1. Use a power supply that has low noise between lines and between the power and ground.
In cases where noise is high, an isolation transformer should be used.
2. To prevent lightning surges, appropriate measures should be taken. Ground the surge absorber for lightning separately from the grounding of the driver and its peripheral devices.

Wiring

© Warning

1. The driver will be damaged if a commercial power supply ($100 / 200 \mathrm{~V}$) is added to the driver's servo motor power (U, V, and W). Be sure to check wiring for mistakes when the power supply is turned on.
2. Connect the ends of the U, V, and W wires of the motor cable correctly to the phases (U, V, and W) of the servo motor power. If these wires do not match up, the servo motor cannot be controlled.

Grounding

\triangle Warning

1. For grounding the actuator, connect the copper wire of the actuator to the driver's protective earth (PE) terminal and connect the copper wire of the driver to the earth via the control panel's protective earth (PE) terminal. Do not connect them directly to the control panel's protective earth (PE) terminal.

2. In the unlikely event that a malfunction is caused by the ground, please disconnect it.
Maintenance

. Warning

1. Perform a maintenance and inspection periodically.

Confirm wiring and screws are not loose.
Loose screws or wires may cause unintentional malfunction.
2. Conduct an appropriate functional inspection after completing the maintenance and inspection.
At times where the equipment or machinery does not operate properly, conduct an emergency stop of the system. Otherwise, an unexpected malfunction may occur and it will become impossible to ensure safety. Conduct a test of the emergency stop in order to confirm the safety of the equipment.
3. Do not disassemble, modify, or repair the driver and its peripheral devices.
4. Do not put anything conductive or flammable inside the driver.
It may cause a fire.
5. Do not conduct an insulation resistance test or withstand voltage test on this product.
6. Ensure sufficient space for maintenance activities.

Design the system allowing the required space for maintenance and inspection.

CE/UKCA/UL-compliance List
 * For CE, UKCA, and UL-compliant products, refer to the tables below.

Controllers " "o": Compliant "x": Not compliant

Compatible motor	Series	$\begin{aligned} & \text { C } \\ & \text { UK } \\ & \text { CA } \end{aligned}$	$\text { c }{ }_{\text {ULSTED }}^{\text {LUS }}$	
			Compliance	Certification No. File No.)
$A C$ servo motor	LECSA	\bigcirc	\bigcirc	E466261
	LECSB-T	\bigcirc	\bigcirc	E466261
	LECSC-T	\bigcirc	\bigcirc	E466261
	LECSS-T	\bigcirc	\bigcirc	E466261
	LECYM	\bigcirc	\times	-
	LECYU	\bigcirc	\times	-

Actuators "O": Compliant

* If the actuator is ordered separately, it does not comply with UL standards.
- Actuators (When ordered with a controller) "O": Compliant "-": Not applicable

Compatible motor	Series	LECSA*			LECSB-T*1			LECSC-T*1		
		$\begin{aligned} & \text { C } \\ & \text { UK } \\ & \text { CA } \end{aligned}$	${ }^{7} \mathrm{~N}_{\text {us }}$		$\begin{aligned} & \text { C } \\ & \text { UK } \\ & \text { CA } \end{aligned}$	${ }^{4}{ }^{\circ}$		$\begin{aligned} & \text { C } \\ & \text { UK } \end{aligned}$	${ }_{C}{ }^{\circ}$	
			Compliance	Certificaion No. File No.)		Compliance	Certificaion No. File No.)		Compliance	Certification No. FiFie No.)
AC servo motor	LET	\bigcirc	N/A	-	\bigcirc	N/A	-	\bigcirc	N/A	-
Compatible motor	Series	LECSS-T*1			LECYM-V			LECYU-V		
		$\begin{aligned} & \text { C } \\ & \text { UK } \end{aligned}$	${ }^{\text {cin }}$		$\begin{aligned} & \text { C } \\ & \text { UK } \end{aligned}$	${ }_{c} \mathrm{NJ}_{\text {us }}$		$\begin{aligned} & \text { C } \\ & \text { UK } \\ & \text { CA } \end{aligned}$	${ }^{7} \mathrm{NH}_{\text {us }}$	
			Compliance	Certification No. (Fie No.)		Compliance	Certification No. File No.)		Compliance	Certifacion No. Filie No.)
AC servo motor	LET	\bigcirc	N/A	-	\bigcirc	N/A	-	\bigcirc	N/A	-

[^2]Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Danger indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.

Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
\triangle Caution:
Caution indicates a hazard with a low level of risk which if not avoided, could result in minor or moderate injury.

© Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Our products cannot be used beyond their specifications. Our products are not developed, designed, and manufactured to be used under the following conditions or environments. Use under such conditions or environments is not covered.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Use for nuclear power, railways, aviation, space equipment, ships, vehicles, military application, equipment affecting human life, body, and property, fuel equipment, entertainment equipment, emergency shut-off circuits, press clutches, brake circuits, safety equipment, etc., and use for applications that do not conform to standard specifications such as catalogs and operation manuals.
10. Use for interlock circuits, except for use with double interlock such as installing a mechanical protection function in case of failure. Please periodically inspect the product to confirm that the product is operating properly.
*1) ISO 4414: Pneumatic fluid power - General rules and safety requirements for systems and their components ISO 4413: Hydraulic fluid power - General rules and safety requirements for systems and their components IEC 60204-1: Safety of machinery - Electrical equipment of machines - Part 1: General requirements ISO 10218-1: Robots and robotic devices - Safety requirements for industrial robots - Part 1:Robots etc.
\triangle Caution
We develop, design, and manufacture our products to be used for automatic control equipment, and provide them for peaceful use in manufacturing industries.
Use in non-manufacturing industries is not covered.
Products we manufacture and sell cannot be used for the purpose of transactions or certification specified in the Measurement Act.
The new Measurement Act prohibits use of any unit other than SI units in Japan.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements"
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

[^0]: ＊1 Refer to the LECSS－T operation manual for details．

[^1]: * LE-CSNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent
 LE-CSNB: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent
 LE-CSNS: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by 3M Japan Limited or equivalent

[^2]: *1 There is a "UL Listed" mark on the AC servo motor driver body

