

Proposal for Air-saving System

- Contributes to CO2 emissions reduction -

Air Blow

Nozzles for Blowing

Through the use of a smaller diameter nozzle, air consumption can be

reduced by 62%

Pulse Valve

High peak pressure and low air consumption 35% reduction

Impact Blow Gun

Air consumption 85% reduction

Vacuum Equipment

Vacuum Ejector

Due to the energy-saving function, air consumption can be

reduced by 93%

Actuators

Air Saving Speed Controller

By simply mounting on your current air cylinder, air consumption can be

reduced by 25%

Air Cylinder

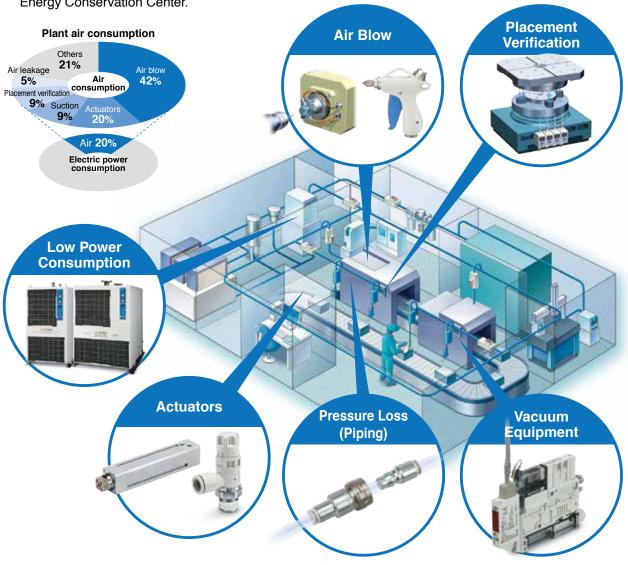
By selecting an optimal size air cylinder, air consumption can

be reduced by 29%

Booster Regulator

Power consumption

40% reduction


Successful cases of companies that implemented measures for energy saving

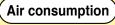
Company A performanceCompany B performanceElectricity $3000 \text{ kW} \rightarrow 1400 \text{ kW}$ Electricity $10000 \text{ kW} \rightarrow 7000 \text{ kW}$ CO20.9 t reduction/year1.7 t reduction/yearCost\$735,667 reduction/year\$1,379,375 reduction/year

We will help you save energy.

■ We will help you to improve and standardize your equipment and adopt new equipment.

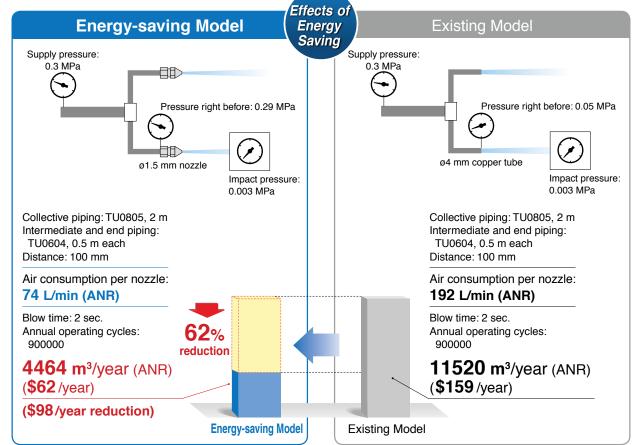
We also proactively promote activities through official organizations, such as holding seminars at the Energy Conservation Center.

Energy-saving Themes



CONTENTS

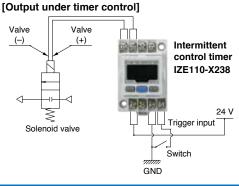
Nozzles for Blowing KN Series

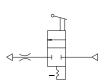

62% reduction

Air consumption can be reduced through the use of a smaller diameter nozzle.

Blow circuit that facilitates effective pressure use

Intermittent Blow Circuit IZE110-X238

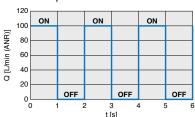

Air consumption


50% reduction

By using intermittent blow based on an intermittent control timer, air consumption can be reduced by 50%.

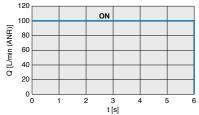
Continuous Blow Circuit

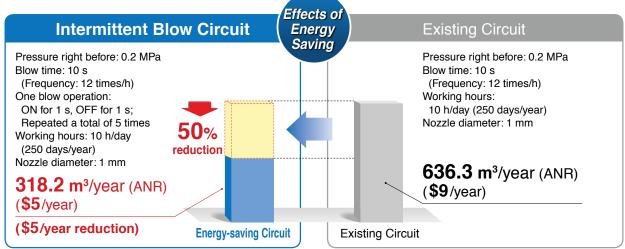
Intermittent Blow Circuit



Energy-saving Circuit

The duty ratio can be freely adjusted.


By setting the duty ratio to one that has the same blow effectiveness, air consumption can be reduced.

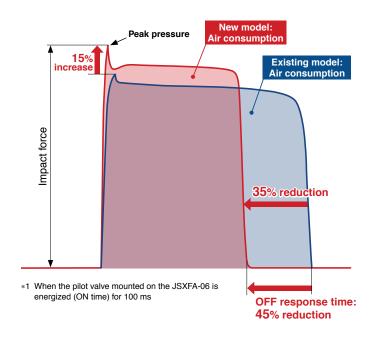

Example:

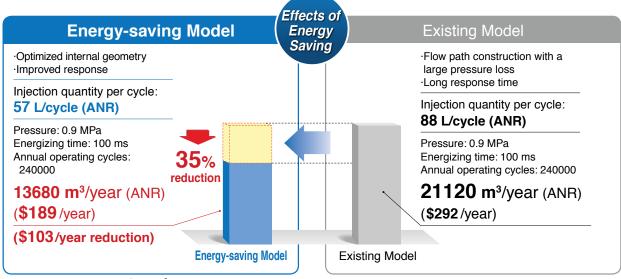
Existing Circuit

The duty ratio is equivalent to 100%.

Pulse Valve Valve for Dust Collector JSXFA Series

Peak pressure

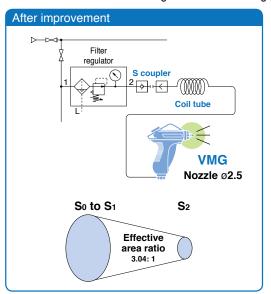

15%¹ increase

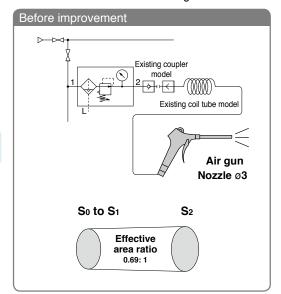

Air consumption

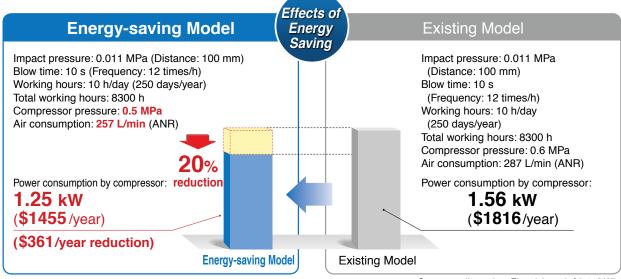
35%^{*1} reduction

High peak pressure and low air consumption

Blow Gun VMG Series


Power consumption can be reduced by 20% with the SMC blow gun + S coupler + coil tube combination.

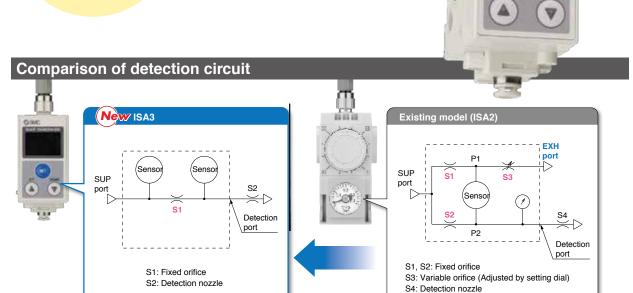

* 10% reduction with only the blow gun (VMG)


Pressure loss of 10% or less

Example of Improvement

Review the blow work and change to the SMC blow gun, S coupler, and coil tube combination to create a larger effective area.

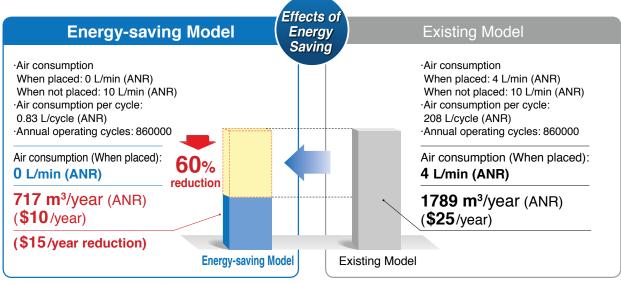
Digital Gap Checker ISA3 Series



00000

Air consumption

60%
reduction


Air consumption when a workpiece is seated is now 0 L/min due to the new detection principle.

Due to the new detection principle, the need for air to be exhausted from the product has been eliminated. This makes the flow consumption 0 L/min when a workpiece is seated.

The result is a great reduction in air consumption compared with the existing model.

* Conditions: Unseated for 5 seconds and seated for 20 seconds (For the G type)

Air Cylinder JMB Series

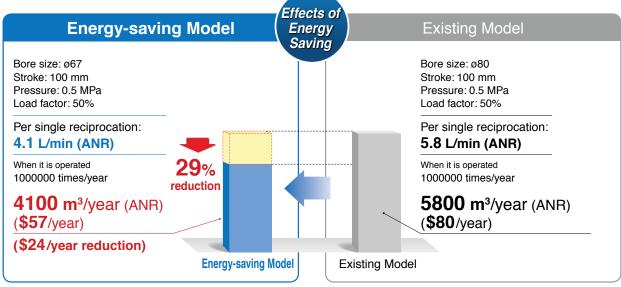
29% reduction

Air consumption can be reduced by selecting an optimal size air cylinder.

Intermediary Bore Sizes

Air consumption can be reduced by up to 29%

Bore size (mm)	ø 40	ø 45	ø 50	ø 56	ø 63	ø 67	ø 80	ø 85	ø100
Air consumption L/min (ANR)	1.4	1.8	2.2	2.8	3.6	4.1	5.8	6.6	9.1
Conditions/Supply pressure: 0.5 MPa Load factor: 50%, At 100 mm stroke		18% re	eduction	22% re	duction	29% re	duction	27% re	eduction


Example Bore size for 85 kg workpieces

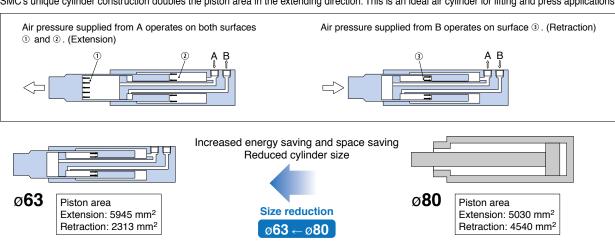
Conditions/Supply pressure: 0.5 MPa, Load factor: 50%

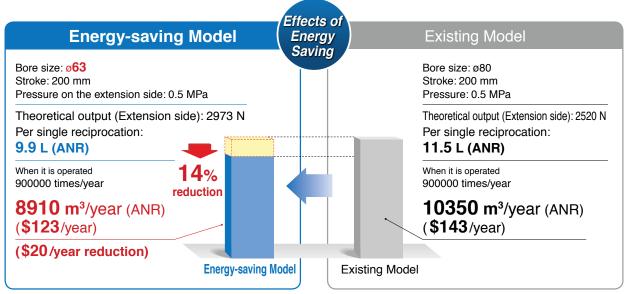
Bore size (mm)	Theoretical output (N)	Output for load factor of 50% (kg)	Judgment					
ø63	1559	79.5	Not acceptable (Insufficient)					
ø80	2513	128.2	Acceptable (Excessive)					
When intermediary bore size ø67 is used								
ø 67	1763	89.9	OK					

Existing size: ø80

Could be switched to intermediary bore size **Ø67**

Double Power Cylinder MGZ Series


Air consumption) reduction

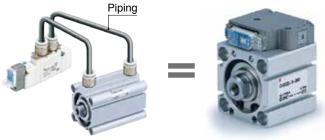

Air consumption can be reduced by 14% due to the reduced cylinder size.

It is possible to reduce air consumption in the retracting direction, compared with a standard cylinder with equivalent output in the extending direction, due to the doubled piston area in the extending direction.

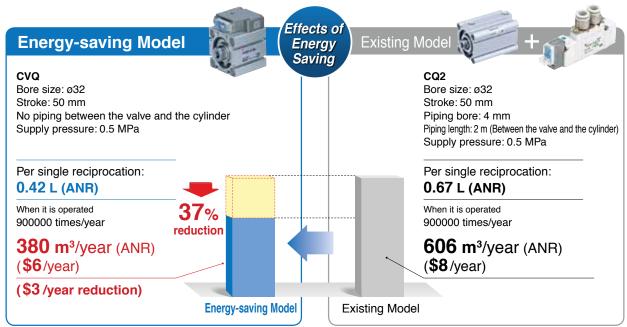
Double extension output power!

SMC's unique cylinder construction doubles the piston area in the extending direction. This is an ideal air cylinder for lifting and press applications.

Compact Cylinder with Solenoid Valve CVQ Series


Air consumption

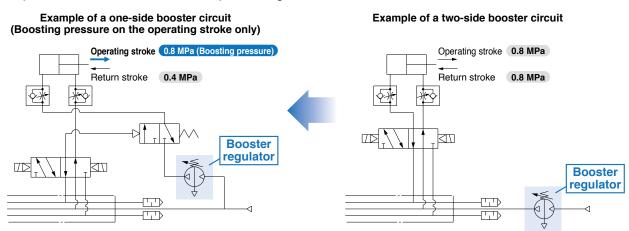
37% reduction

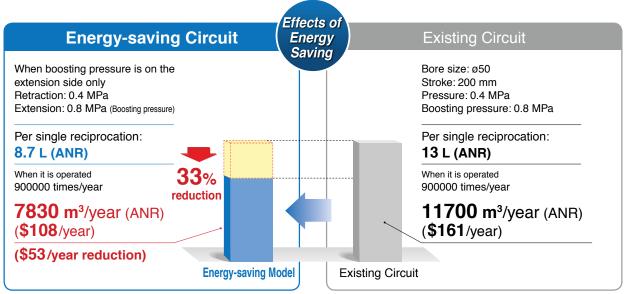

Energy Saving

Air consumption between the valve and cylinder can be reduced by approximately 37%.

Valve and compact cylinder integrated for compactness

Booster Regulator VBA Series


Air consumption


33%
reduction

Air consumption can be reduced by 33% due to the optimization of the booster circuit.

Boost an insufficiently powered portion with a booster regulator

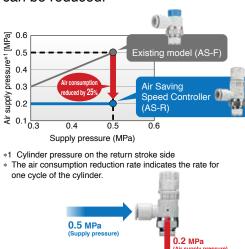
Optimized booster circuit: Now with a space-saving booster circuit

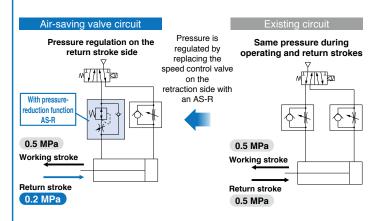
Air Saving Speed Controller AS-R/AS-Q Series

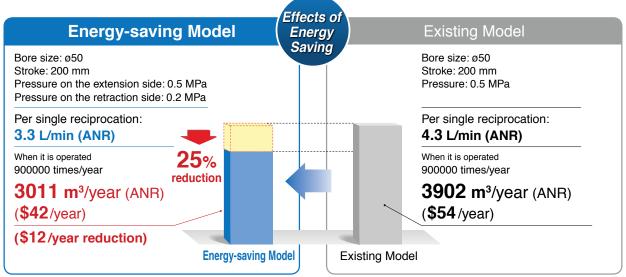
Air consumption

25% reduction

Reduce air consumption just by mounting to your current air cylinder!


Mounting and operation are the same as a regular speed controller.


With pressurereduction function


AS-R Series

By reducing the pressure on the return stroke to 0.2 MPa, air consumption can be reduced.

When it is not necessary to apply force at the end of the working stroke, by using a lifter, pusher, etc.

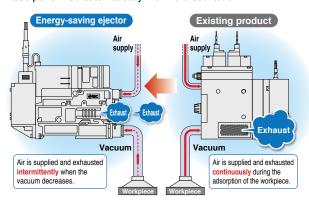
Vacuum Ejector ZK2 Series

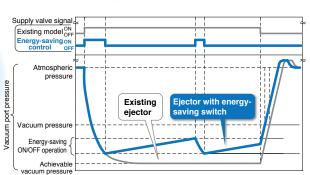
93% reduction^{*1}

Energy-saving Ejector

The digital pressure switch for vacuum with energy-saving function cuts supply air when the pressure reaches the desired vacuum.

Digital pressure switch for vacuum with energy-saving function


*1 Based on SMC's measuring conditions


The digital pressure switch

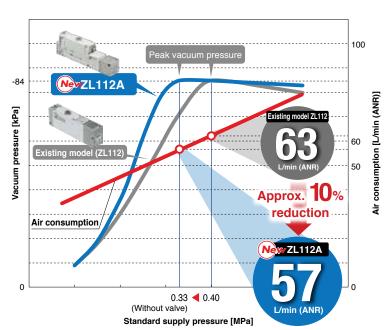
with energy-saving function can reduce

air consumption by 90%*2. *2 Based on SMC's measuring conditions

While the suction signal is ON, the ON/OFF operation of the supply valve is also performed automatically within the set value.

Effects of **Energy-saving Model Existing Model** Energy Saving ·Air consumption: 58 L/min (ANR) ·Air consumption: 85 L/min (ANR) Vacuum suction flow rate: 61 L/min (ANR) Vacuum suction flow rate: 44 L/min (ANR) ·Vacuum generation time: 0.6 s/cycle ·Vacuum generation time: 6 s/cycle (Vacuum is continuously generated and air is consumed for 6 s (1 cycle)) (Vacuum is continuously generated and air is consumed for 6 s (1 cycle)) ·Annual operating cycles: 1100000 ·Annual operating cycles: 1100000 (450 cycles/h, 10 h/day, 250 days/year) (450 cycles/h, 10 h/day, 250 days/year) Air consumption (When placed): Air consumption (When placed): 58 L/min (ANR) 85 L/min (ANR) reduction 638 m³/year (ANR) **9350** m³/year (ANR) (**\$9**/year) (**\$129**/year) (\$120/year reduction) **Energy-saving Model Existing Model**

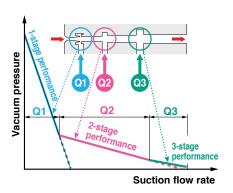
Multistage Ejector ZL112A Series

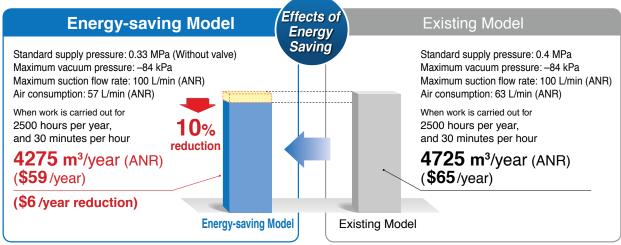

Air consumption

10% reduction

Air consumption can be reduced by 10%

due to the optimization of the diffuser flow path.



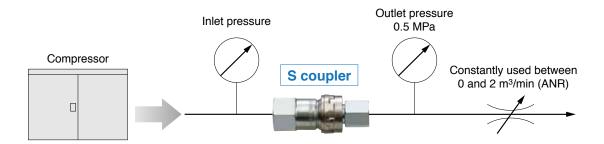


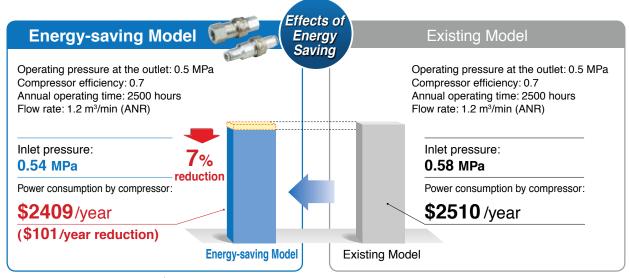
3-stage diffuser construction

Suction flow rate increased by 250%

(Versus ø1.3, 1-stage model)

S Couplers KK130 Series



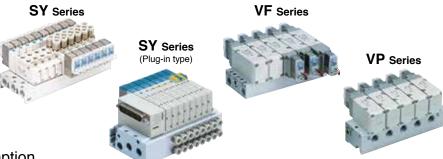

Pressure loss

7% reduction

The built-in valve is of a special shape, resulting in reduced pressure loss.

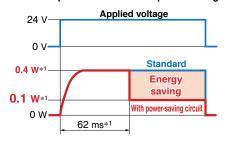
Corresponding value: Electricity unit \$0.14/kWh

15


3/4/5-Port Solenoid Valve

Power consumption

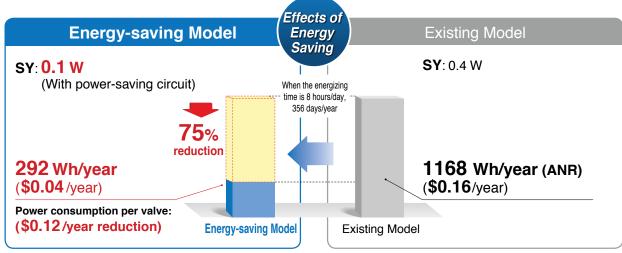
75%
reduction


The power-saving circuit can reduce the consumption of electric power when the device is energized.

Reduces power consumption when energized

Power consumption can be reduced by approx. 1/4 by reducing the wattage required to hold the valve in an energized state. (Effective energizing time is over 62 ms*1 at 24 VDC.) Refer to the electrical power waveform as shown below.

Electrical power waveform with power-saving circuit


*1 SY/SYJ series

Low Power Consumption Valve

Energy-saving Product

		Power consumption W*2		
Type	Model	Standard	With power- saving circuit	
	SJ2000	0.55	0.23	
	SJ3000	0.4	0.15	
4/5-port	New SY3000/5000/7000	0.4	0.15	
	SY3000/5000/7000/9000	0.4	0.1	
	SYJ3000/5000/7000	0.4	0.1	
	VF1000/3000/5000	1.55	0.55	
	SYJ300/500/700	0.4	0.1	
3-port	VP300/500/700	1.55	0.55	
	V100	0.4	0.1	

*2 With DC light

Corresponding value: Electricity unit \$0.14/kWh

Refrigerated Air Dryer *IDF Series*

100

steel heat

Double energy-saving function series

Power consumption

76%
reduction

The addition of a second reheater + digital scroll results in high energy savings.

Energy-saving design

76 (1 kW)*1 reduction

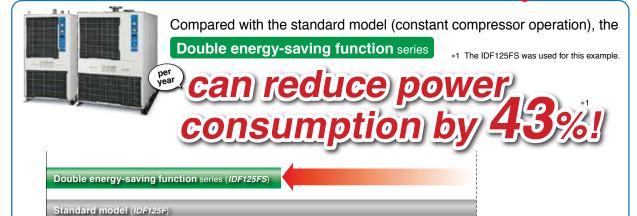
*1 Operating conditions: The IDF125FS in energy-saving operation mode

Ambient temperature 32°C Inlet air temperature 40°C

Inlet air pressure 0.7 MPa Air flow rate = Rated flow x 0.4

Power supply frequency 60 Hz Power supply voltage 200 V Set dew point = 30°C

Existing dryer
Second re-heater only (Standard model)


Reduced

Double energysaving function series

Load factor (%)

Example 1 year (Spring to Winter) Power consumption

Reduced

* [Trial calculation conditions] Days of operation per year = 240 days (60 days each in spring, summer, autumn, and winter),
Operating hours per day = 12 hours

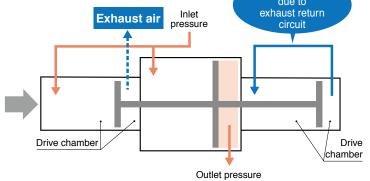
For details about the dryer operating conditions for each season, refer to the Web Catalog (IDF \square FS series.).

Booster Regulator (Size: 10A) VBA-X3145

Air consumption
40%
reduction*1

- 3 piston construction
- The drive chamber on one side can be operated by the exhaust return circuit.

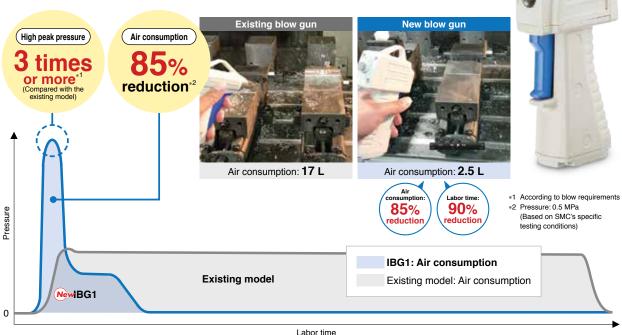
0 air consumption


*1 Based on SMC's measuring conditions

Operation noise: 65 dB (A)*2

*2 Based on SMC's measuring conditions

15 dB (A) reduction compared with the existing model (VBA series)


- Exhaust noise: Reduced noise due to exhaust of reused low-pressure air
- Metal noise: Reduced noise due to the adoption of a construction in which the internal switching part doesn't come into contact with any metal parts

* Please contact your local sales representative for more details.

Air Saving Impact Blow Gun IBG1 Series

Increased impact force due to higher peak pressure Drastic reduction in air consumption and labor time

Global Manufacturing, Distribution and Service Network

Worldwide Subsidiaries

EUROPE

AUSTRIA

SMC Pneumatik GmbH (Austria)

BELGIUM

SMC Pneumatics N.V./S.A.

BULGARIA

SMC Industrial Automation Bulgaria EOOD

CROATIA

SMC Industrijska Automatika d.o.o.

CZECH REPUBLIC

SMC Industrial Automation CZ s.r.o.

DENMARK

SMC Pneumatik A/S

ESTONIA

SMC Pneumatics Estonia

FINLAND

SMC Pneumatics Finland OY

FRANCE

SMC Pneumatique S.A.

GERMANY

SMC Pneumatik GmbH

GREECE

SMC Hellas EPE

HUNGARY

SMC Hungary Ipari Automatizálási Kft.

SMC Pneumatics (Ireland) Ltd.

ITALY

SMC Italia S.p.A.

KAZAKHSTAN

LLP "SMC Kazakhstan"

LATVIA

SMC Pneumatics Latvia SIA

LITHUANIA

UAB "SMC Pneumatics"

NETHERLANDS

SMC Pneumatics B.V.

NORWAY

SMC Pneumatics Norway AS

POLAND

SMC Industrial Automation Polska Sp. z o.o.

ROMANIA

SMC Romania S.r.I.

RUSSIA

SMC Pneumatik LLC.

SLOVAKIA

SMC Priemyselná Automatizácia, Spol s.r.o.

SLOVENIA

SMC Industrijska Avtomatika d.o.o.

SPAIN / PORTUGAL

SMC España, S.A.

SWEDEN

SMC Pneumatics Sweden AB

SWITZERLAND

SMC Pneumatik AG

TURKEY

SMC Pnömatik Sanayi Ticaret ve Servis A.Ş.

SMC Pneumatics (U.K.) Ltd.

ASIA / OCEANIA

AUSTRALIA

SMC Pneumatics (Australia) Pty. Ltd.

SMC (China) Co., Ltd.

SMC Pneumatics (Guangzhou) Ltd.

HONG KONG SMC Pneumatics (Hong kong) Ltd.

INDIA SMC Pneumatics (India) Pvt. Ltd.

INDONESIA PT. SMC Pneumatics Indonesia

JAPAN

SMC Corporation

MALAYSIA

SMC Pneumatics (S.E.A.) Sdn. Bhd.

NEW ZEALAND

SMC Pneumatics (N.Z.) Ltd.

PHILIPPINES

Shoketsu SMC Corporation

SINGAPORE

SMC Pneumatics (S.E.A.) Pte. Ltd.

SOUTH KOREA

SMC Pneumatics Korea Co., Ltd.

SMC Pneumatics (Taiwan) Co., Ltd.

THAILAND

SMC (Thailand) Ltd.

UNITED ARAB EMIRATES

SMC Pneumatics Middle East FZE

VIETNAM

SMC Pneumatics (VN) Co., Ltd

AFRICA

SOUTH AFRICA

SMC Pneumatics (South Africa) Pty Ltd

NORTH, CENTRAL & **SOUTH AMERICA**

ARGENTINA

SMC Argentina S.A.

BOLIVIA

SMC Pneumatics Bolivia S.R.L.

BRAZIL

SMC Pneumáticos do Brasil Ltda.

CANADA

SMC Pneumatics (Canada) Ltd.

CHILE SMC Pneumatics (Chile) S.A.

COLOMBIA

SMC Colombia Sucursal de SMC Chile, S.A. MEXICO

SMC Corporation (Mexico) S.A. de C.V.

SMC Corporation Peru S.A.C.

USA

SMC Corporation of America

VENEZUELA SMC Neumatica Venezuela S.A.

U.S. & Canadian Sales Offices

WEST Austin Albany Dallas Atlanta Los Angeles **Birmingham Phoenix Boston Portland** Charlotte San Jose Knoxville **Nashville** CENTRAL **New Jersey** Chicago Rochester Cincinnati **Tampa** Cleveland **Detroit** CANADA Vancouver **Des Moines Grand Rapids Toronto** Indianapolis Sales Branches Windsor Montreal Regional Distribution Centers **Kansas City** Milwaukee Central warehouse Minneapolis St. Louis 0 0 e c

C S

© 2020 SMC Corporation of America, All Rights Reserved.