


## **Proposal for**

# Energy Saving in Factories

Helping you optimize your air pressure



### **Environment**

### **Eco-Management**

### SMC Group Code of Conduct – Initiatives on Environmental Issues

We recognize that preservation of global environment is an essential condition for our company's existence and activities as well as a common issue for all humanity. We will work on preserving and improving the environment where people can live safely with rich nature.

- 1 We will strive to develop and supply environment-friendly products.
- 2 We will consider protection of environment throughout the whole process of business operation.
  - We will comply with regulations on banned substances.
  - We will ensure proper treatment of wastewater and air exhaustion, and disposal of waste, and will work on reducing waste.
  - We will be thorough in our effort to save natural resources and energy.

#### **Environmental Policy**

- We will identify the environmental impacts of our business activities, products and services and strive to reduce environmental burden and prevent pollution, and to make continual improvement of our environmental management system.
- We will comply with all environment-related laws, regulations and agreements, and enhance collaboration with our customers, neighbors and local communities.
- 3 We will minimize the environmental impacts from our design, development and production activities.
  - (1) We will promote the development of environment-friendly products.
  - (2) We will use energy efficiently to prevent global warming.
  - (3) We will promote the reduction and recycling of waste.
- We will ensure that the action plans are implemented properly to achieve the environmental objectives and goals.
- 5 We will make this policy known to all as well as release it to the general public.



This is a logo of SMC's environmental preservation activities. It is a heart-shaped design with a blue earth and a young leaf. The mark appears on our Environmental Policy as well as on documents and bulletins to enhance awareness among our employees.

#### **CSR Promotion System**

SMC has established a CSR Committee chaired by the President and has been taking initiatives in responding to customer requests and inquiries on CSR-related issues.

#### Main Tasks of the CSR Committee

- 1 To plan, develop and manage policies related to CSR and other matters.
- 2 To respond to questionnaires on CSR, etc., from users and corresponding to audits (site visits).
- 3 To conduct audits on the progress of implementation of policies related to CSR, etc.
- To take necessary measures based on the progress of implementation of policies and audit results related to CSR, etc.

### **Environmental Training**

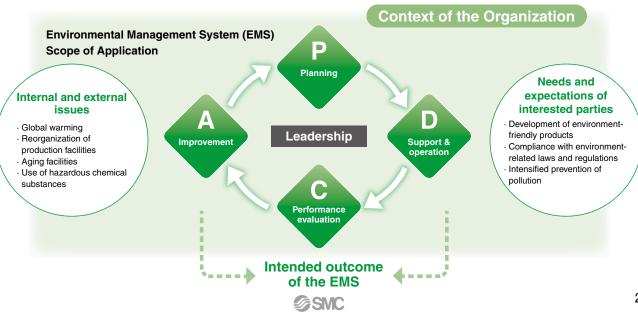
SMC offers educational seminars and practical training on environmental issues for its employees, and also provides environmental training for environment-related partner companies. In addition, employees who hold their country's qualifications continuously attend follow-up training to enhance the quality of their knowledge and technical abilities.

#### Training conducted in FY2018

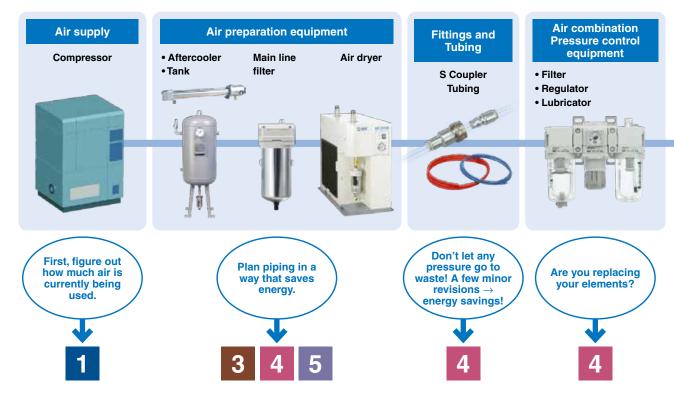
| Environmental training for employees                             | 7,219 attendees |
|------------------------------------------------------------------|-----------------|
| Emergency response training                                      | 99 attendees    |
| Training for front-line workers                                  | 458 attendees   |
| Participation in external environment-related training sessions  | 19 attendees    |
| Environmental training for environment-related partner companies | 138 companies   |



### **Environmental Objectives, FY2018 Results and Evaluation**

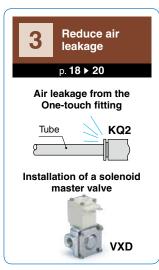

As part of our initiatives under the Environmental Management System (EMS) which adheres to ISO 14001, SMC defines "Environmental Objectives" to be achieved over a period of three years and "Environmental Targets" for each fiscal year, and manages and evaluates the progress.

In FY2018, out of the "Environmental Targets" described below, we achieved all except for "Saving of resources". "Saving of resources" was not accomplished due to the effect of increased waste from packaging material (wooden crates and wooden pallets) accompanying overseas manufactured products.

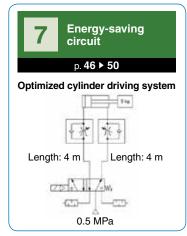

- SMC conducted product assessments to be utilized for the design and development of environmentally-friendly products.
- 2 As an initiative to prevent global warming, SMC achieved a 18.4% reduction of CO2 emissions per unit of production compared to the Sixth Term (FY2014-2016) average. As an initiative to save resources, SMC achieved a 1.8% reduction of waste discharged per unit of production compared to the Sixth Term (FY2014-2016) average.
- 3 All regional groups consisting of our major production facilities participated in climate change actions organized by local governments and industry groups and community beautification activities, as well as conducted awareness building programs for employees.

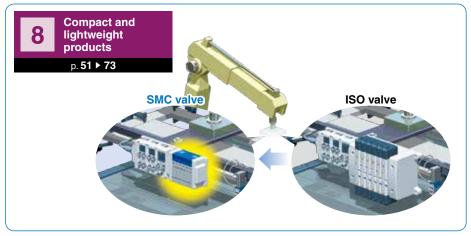
|                                                         | Environmental Objectives Goals to achieve in 3-year period of FY2017-2019                                                                                                                              | Environmental Targets for FY2018                                                                                                                                               | Results                                        | Evaluation   |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------|
| Product assessments<br>(Environmental<br>compatibility) | Design and development of environmentally-friendly products<br>Conducted assessments using score evaluation of<br>current status<br>Total of 75 models or more in three years: 900 points<br>or higher | Design and development of<br>environmentally-friendly products<br>Conducted assessments using score<br>evaluation of current status 25 models<br>or more: 300 points or higher | 37 models:<br>345 points                       | Achieved     |
|                                                         | Promote energy-saving, resource-saving and reduction of environmental burden through beneficial environmental activities in our business activities                                                    |                                                                                                                                                                                |                                                |              |
| Business activities<br>(Environmental<br>conservation)  | Prevention of global warming Reduction of CO <sub>2</sub> emission Sixth Term (FY2014-2016): Average of 10% or more reduction per unit of production                                                   | Reduction of CO <sub>2</sub> emission<br>Reduce 8% or more compared to the<br>Sixth Term (FY2014-2016) average per<br>unit of production                                       | 18.4%<br>reduction                             | Achieved     |
|                                                         | Saving of resources Reduction of waste discharge Sixth Term (FY2014-2016): Average of 10% or more reduction per unit of production                                                                     | Reduction of waste discharge<br>Reduce 8% or more compared to the<br>Sixth Term (FY2014-2016) average per<br>unit of production                                                | 1.8%<br>reduction                              | Not achieved |
|                                                         | Social contribution activities Community beautification activities                                                                                                                                     | Social contribution activities<br>Community beautification activities                                                                                                          | All regional groups conducted as planned       | Achieved     |
| Communication<br>(Coexistence with<br>society)          | Promotion of climate change actions                                                                                                                                                                    | Promotion of climate change actions Participation in initiatives organized by local governments and industry groups Conduction of education and awareness building programs    | All regional groups<br>conducted as<br>planned | Achieved     |

#### Framework of ISO 14001:2015




## Proposal for Energy-saving, Compact, and

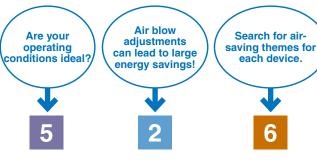


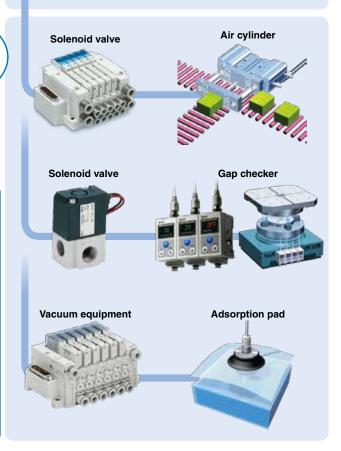


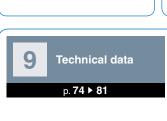


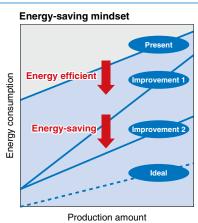


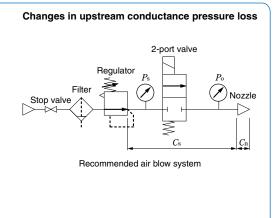







## **Lightweight Air Systems**














## We will help you save energy.

Successful cases of companies that implemented measures for energy saving

Company A performance

Electricity 3000 kWh → 1400 kWh

CO<sub>2</sub> 0.9 t reduction/year

Cost \$743,348 reduction/year

**Company B performance** 

Electricity 10000 kWh → 7000 kWh

CO<sub>2</sub> 1.7 t reduction/year

Cost \$1,403,168 reduction/year

- We will help you to improve and standardize your equipment and adopt new equipment.
- We also proactively promote activities through official organizations, such as holding seminars at the Energy Conservation Center.

For energy saving in pneumatic systems, implement a PDCA cycle such as the one below. When following a PDCA cycle, the measuring of the usage amount before and after implementation is very important.

Reduction goals

• Decide on a reduction goal.

Plan Air consumption calculation

- Measure the usage amount of the factory as a whole and of the equipment as a whole.
- Doing so will help you figure out the usage amount per application, per type of equipment, and per piece of equipment.

References for flow rate and pressure control

p. **74** 

Energy-saving theme selection

- In order to improve energy savings, select a theme according to the difficulty level and effectiveness of the measures, keeping horizontal development in mind.
- Look for past examples and examples from books for reference.

References for how to approach energy saving

p. **75** 

D<sub>Do</sub>

Implementation of energy-saving measures Implement the measures.

C Check Measuring the effectiveness of the measures

 Measure the usage amount after the measures have been implemented to measure their effectiveness.

References for flow rate and pressure control

p. **74** 

Action

Horizontal expansion/ Additional measures Monitoring of usage amounts

- Implement horizontal development measures.
- If reduction goals aren't met, additional measures or a plan adjustment may be considered.
- Monitor the usage amount, etc., to detect improvements obtained from the implemented measures.



## CONTENTS

| 1 Air consumption calculation p. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figuring out the cost of compressed air p. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Calculation of compressed air energy p. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pressure and flow rate control p. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 Air blow efficiency p. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Nozzles for Blowing <b>KN Series 1</b> p. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Nozzles for Blowing <b>KN</b> series 2 p. 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Blow Gun <b>VMG</b> Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Impact Blow Gun IBG Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Impact Blow Valve IBV10-X5 p. 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pulse Blowing Valve AXTS Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3 Reduce air leakage p. 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Air leakage p. 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reducing leakage and purge during non-operating hours ··· p. 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4 Reduce pressure loss p. 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Monitoring of air filter clogging p. 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| For reducing pressure loss in lines S Couplers <i>KK130 Series</i> ····· p. 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Main Line Filter <b>AFF</b> Seriesp. 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Modular Connection Type Micro Mist Separator AMD Series ···· p. 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Leveling of the line pressurep. 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Leveling of the line pressure p. 26  5 Air pressure source efficiency p. 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5 Air pressure source efficiency p. 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5 Air pressure source efficiency p. 27  Reducing the specific power of the compressor p. 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5 Air pressure source efficiency p. 27  Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Air pressure source efficiency p. 27  Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Air pressure source efficiency p. 27  Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Air pressure source efficiency p. 27  Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Air pressure source efficiency p. 27  Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB Series p. 33                                                                                                                                                                                                                                                                                                                                                                   |
| Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB series p. 33  Double Power Cylinder MGZ series p. 34                                                                                                                                                                                                                                                                                                                                                                 |
| Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB Series p. 33  Double Power Cylinder MGZ Series p. 34  Compact Cylinder with Solenoid Valve CVQ Series p. 35                                                                                                                                                                                                                                                                                                          |
| Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB series p. 33  Double Power Cylinder MGZ series p. 34  Compact Cylinder with Solenoid Valve CVQ series p. 35  Compact Cylinder/Air Saving Type CDQ2B-X3150 p. 36                                                                                                                                                                                                                                                      |
| Air pressure source efficiency p. 27  Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB series p. 33  Double Power Cylinder MGZ series p. 34  Compact Cylinder with Solenoid Valve CVQ series p. 35  Compact Cylinder/Air Saving Type CDQ2B-X3150 p. 36  Vacuum Ejector ZK2□A series p. 37                                                                                                                                                                             |
| Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 30  Booster circuit p. 30  Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB series p. 33  Double Power Cylinder MGZ series p. 34  Compact Cylinder with Solenoid Valve CVQ series p. 35  Compact Cylinder/Air Saving Type CDQ2B-X3150 p. 36  Vacuum Ejector ZK2 A series p. 37  Multistage Ejector ZL3 series p. 38                                                                                                                                                                                |
| Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB series p. 33  Double Power Cylinder MGZ series p. 34  Compact Cylinder with Solenoid Valve CVQ series p. 35  Compact Cylinder/Air Saving Type CDQ2B-X3150 p. 36  Vacuum Ejector ZK2 A series p. 37  Multistage Ejector ZL3 series p. 38  Booster Regulator VBA-X3145 p. 39                                                                                                                                           |
| Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB series p. 33  Double Power Cylinder MGZ series p. 34  Compact Cylinder with Solenoid Valve CVQ series p. 35  Compact Cylinder/Air Saving Type CDQ2B-X3150 p. 36  Vacuum Ejector ZK2 A series p. 37  Multistage Ejector ZL3 series p. 38  Booster Regulator VBA-X3145 p. 39  Air Consumption-reducing Precision Regulator p. 40                                                                                       |
| Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 30  Booster circuit p. 30  Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB series p. 33  Double Power Cylinder MGZ series p. 34  Compact Cylinder with Solenoid Valve CVQ series p. 35  Compact Cylinder/Air Saving Type CDQ2B-X3150 p. 36  Vacuum Ejector ZK2 A series p. 38  Booster Regulator VBA-X3145 p. 39  Air Consumption-reducing Precision Regulator p. 40  Air Saving Speed Controller AS-R series p. 34                                                                               |
| Reducing the specific power of the compressor p. 28  More efficient compressor operation p. 29  Booster circuit p. 30  6 Air/Power saving equipment p. 31  Low Wattage 3/4/5-Port Solenoid Valve p. 32  Air Cylinder (Intermediary Bore Size) JMB series p. 33  Double Power Cylinder MGZ series p. 34  Compact Cylinder with Solenoid Valve CVQ series p. 35  Compact Cylinder/Air Saving Type CDQ2B-X3150 p. 36  Vacuum Ejector ZK2 A series p. 37  Multistage Ejector ZL3 series p. 38  Booster Regulator VBA-X3145 p. 39  Air Consumption-reducing Precision Regulator p. 40  Air Saving Speed Controller AS-R series p. 42  Digital Gap Checker ISA3 series p. 42 |

| 7 Energy-saving circuit                                                            | р. 46       |
|------------------------------------------------------------------------------------|-------------|
| Two-pressure drive circuit                                                         | ····· p. 47 |
| Energy-saving lifter circuit                                                       | p. 48       |
| Optimized cylinder driving system                                                  | p. 49       |
| Optimized vacuum adsorption transfer system                                        | ····· p. 50 |
| 8 Compact and lightweight products                                                 | p. 51       |
| Plug-in Type Compact 5-Port Solenoid Valve JSY Serie                               |             |
| Non Plug-in Type Compact 5-Port Solenoid Valve <i>JSY</i> series                   |             |
| Air Cylinder <b>JCM</b> Series                                                     |             |
| Air Cylinder <b>JMB</b> Series                                                     |             |
| Air Cylinder <b>CS2</b> Series                                                     |             |
| Mini Free Mount Cylinder CUJ Series                                                | p. 57       |
| Compact Air Cylinder JCQ Series                                                    | p. 58       |
| Floating Joint JT Series                                                           | p. 59       |
| Compact Slide MXH Series                                                           | p. 60       |
| Air Slide Table MXQ Series                                                         | p. 61       |
| Air Slide Table MXJ Series                                                         | p. 62       |
| Compact Guide Cylinder JMGP Series                                                 | p. 63       |
| Micro Clamp Cylinder <i>CKZM16-X2800</i> (Base Type) - <i>X2900</i> (Tandem Type)  | ····· p. 64 |
| Rotary Actuator/Vane Type CRB Series                                               | p. 65       |
| Body Ported Type Vacuum Ejector ZH Series                                          | p. 66       |
| In-line Type Vacuum Ejector <b>ZU</b> A Series                                     | p. 67       |
| Vacuum Pad ZP3 Series                                                              | p. 68       |
| One-touch Fittings KQ2 Series                                                      | p. 69       |
| Speed Controller with One-touch Fitting (Push-lock Type) AS Series                 | ····· p. 70 |
| Speed Controller with One-touch Fitting (Push-lock/Compact Type) <i>JAS series</i> | ····· p. 71 |
| 3-Screen Display High-Precision Digital Pressure Switch                            |             |
| ZSE20(F)/ISE20 Series  Digital Flow Switch PFM□ Series                             |             |
|                                                                                    | ρ. 7 ο      |
| 9 Technical data                                                                   | р. 74       |
| Energy-saving mindset                                                              | ····· p. 75 |
| Changes in upstream conductance pressure loss                                      | p. 76       |
| Flow rate calculation                                                              | ····· p. 77 |
| Conductances combined                                                              | ····· p. 78 |
| Main piping pressure loss calculation                                              | ····· p. 79 |
| Amount of air consumed by the cylinder and tubing 1 $^{\cdots}$                    | ····· p. 80 |
| Amount of air consumed by the cylinder and tubing 2 ···                            | ····· p. 81 |



## 1 Air consumption calculation

| Figuring out the cost of compressed air | p. 8  |
|-----------------------------------------|-------|
| Calculation of compressed air energy    | p. 9  |
| Pressure and flow rate control          | p. 10 |

### UNIT CONVERSIONS

|             | unit            | conversion       | result          |
|-------------|-----------------|------------------|-----------------|
| length      | m               | x 3.28           | ft              |
|             | mm              | x 0.04           | in              |
| mass        | g               | x 0.04           | oz              |
| volume      | cm <sup>3</sup> | ÷ 16.387         | in <sup>3</sup> |
|             | L               | x 61.024         | in <sup>3</sup> |
| speed       | mm/s            | ÷ 25.4           | in/s            |
| pressure    | MPa             | x 145            | psi             |
|             | kPa             | ÷ 6.895          | psi             |
| temperature | °C              | x1.8 then add 32 | °F              |
| torque      | N·m             | x 0.738          | ft- <b>l</b> b  |
| force       | Ν               | ÷ 4.448          | lbf             |
| flow        | L/min           | ÷ 28.317         | cfm             |
|             | JPY             | x 0.0094         | dollar          |
|             |                 |                  |                 |



## Figuring out the cost of compressed air

As compressed air cannot be seen by the naked eye and can be released to the atmosphere without causing any harm, it's easy to remain unaware of how much it's costing. By figuring out the cost of compressed air (per unit), it is possible to calculate the annual cost of the compressed air being used in your pneumatic system. The following equation is the standard calculation method for finding the cost of compressed air.

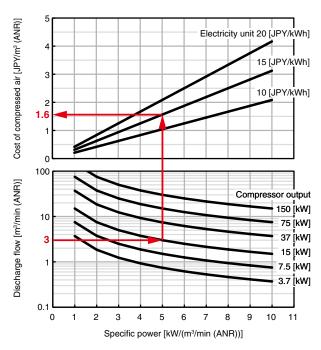
Cost of compressed air [JPY/m³ (ANR)]

Electric power consumption [JPY/year] + Operating costs [JPY/year] + Maintenance costs [JPY/year] + Cost of equipment [JPY/year]

Amount of air used for compressed air [m3 (ANR)]

The cost of compressed air can be calculated using the actual values of combined total costs and the amount of compressed air used.

### **Calculation method**

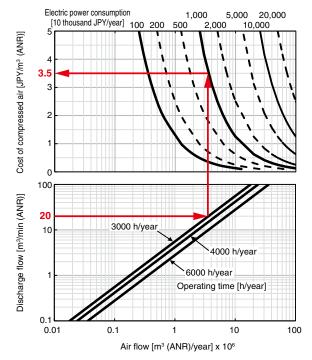

The following equation is a simple calculation method for figuring out the cost of compressed air.

Calculation method ① ··· Calculating from the specific power

- $\cdot$  The specific power can be found using the compressor rated output and discharge amount.
- · The combined total of operating costs, maintenance costs, and the cost of equipment can be estimated to make up 25% of the cost.

Calculation method ② ··· When the amount of air and costs other than the cost of electricity are unknown

- · The amount of air being used can be estimated as follows: operating hours x rated air discharge amount
- · The combined total of operating costs, maintenance costs, and the cost of equipment can be estimated to be 25% of the cost of electricity.




Graph 1 Calculation method 1



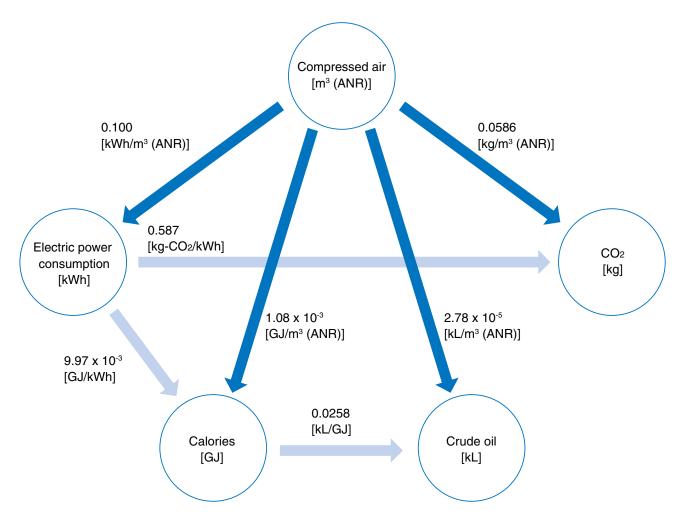
When the compressor has a 15 kW output, a 3 m³/min (ANR) discharge flow, and the cost of electricity is 15 JPY/kWh

- ① Go up in a vertical line from the point of intersection of 3 m³/min (ANR) discharge flow and 15 kW compressor output.
- ② If you look to the left of the point of intersection with 15 JPY/kWh as the cost of electricity, you'll see that the cost of compressed air is 1.6 JPY/m³ (ANR).



Graph 2 Calculation method 2

#### Calculation example


When the compressor is operated for 3,000 hours/year, has a 20 m³/min (ANR) discharge flow, and electricity costs 10 million JPY/year to operate it

- ① Go up in a vertical line from the point of intersection of 20 m³/min (ANR) discharge flow and 3,000 hours of operation/year.
- ② If you look to the left of the point of intersection with 10 million JPY/year as the cost of electricity, you'll see that the cost of compressed air is 3.5 JPY/m³ (ANR).



## **Calculation of compressed air energy**

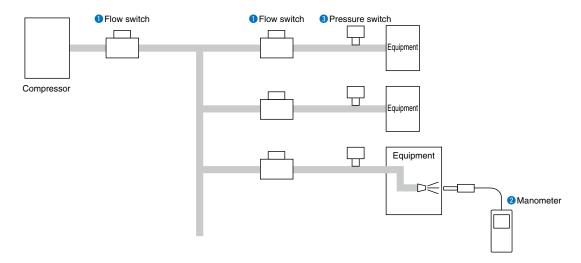
To calculate the amount of compressed air per unit, the amount of electricity consumption, CO<sub>2</sub>, calories, and crude oil are used.



### Conversion factor

- Calculated with the specific power = 6 [kW/(m³/min (ANR))]
- Amount of electricity consumption → CO₂ conversion factor
   Quote: The Ministry of the Environment's website
   Emission factors of electricity business operators (For the calculation of greenhouse gas emission amounts of specified businesses) 2015 fiscal year results Officially announced on December 27, 2016: (Substitute values)
- Amount of electricity consumption 

   Calorie conversion factor


   Quote: The Agency for Natural Resources and Energy's website

   Based on the annual reports of energy consumption in accordance with Article 15 and Article 19 (2) of the Act on
   Rationalizing Energy Use February 7, 2017 revision: Use of daytime power purchase
- Calories → Crude oil conversion factor Quote: Same as above



## **Pressure and flow rate control**

In order to figure out how much air is currently being used in your pneumatic system and to measure the effectiveness of the implemented measures, it is necessary to measure the flow rate and pressure. In addition, measuring the flow rate and pressure is also necessary in order to monitor the effectiveness and further improve upon the measures.



#### Measure the flow rate of the main line and of each device.

Measure the flow rate of each device and of the factory as a whole in order to figure out how much air is currently being used as well as to measure the effectiveness of the implemented measures.



### Measure the air blow impact pressure.

In order to improve air blow, measure the impact pressure.



#### Measure the pressure at each device.

Monitor pressure drops between the compressor and the devices.

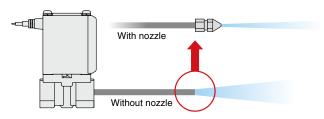




# 2 Air blow efficiency

| Nozzles for Blowing KN Series 1        | p. 12 |
|----------------------------------------|-------|
| Nozzles for Blowing <i>KN series 2</i> | p. 13 |
| Blow Gun <i>VMG</i> Series             | p. 14 |
| Impact Blow Gun <i>IBG series</i>      | p. 15 |
| Impact Blow Valve IBV10-X5             | p. 16 |
| Pulse Blowing Valve AXTS Series        | p. 17 |

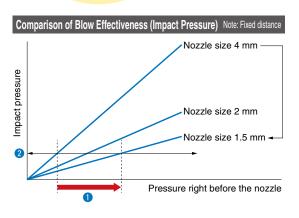
### UNIT CONVERSIONS

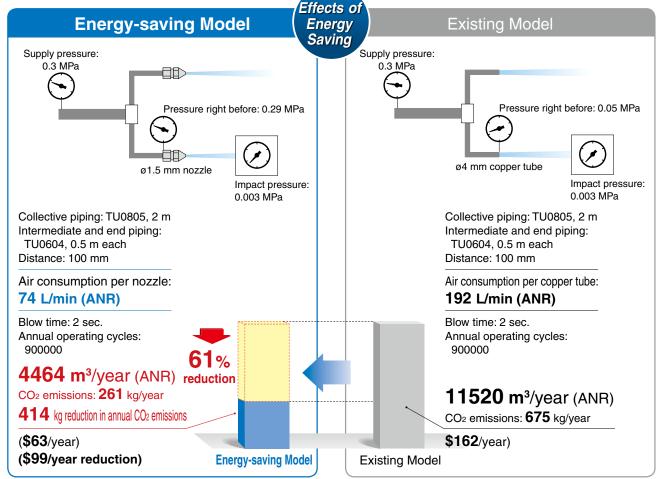

|             | unit            | conversion       | result          |
|-------------|-----------------|------------------|-----------------|
| length      | m               | x 3.28           | ft              |
|             | mm              | x 0.04           | in              |
| mass        | g               | x 0.04           | oz              |
| volume      | cm <sup>3</sup> | ÷ 16.387         | in <sup>3</sup> |
|             | L               | x 61.024         | in <sup>3</sup> |
| speed       | mm/s            | ÷ 25.4           | in/s            |
| pressure    | MPa             | x 145            | psi             |
|             | kPa             | ÷ 6.895          | psi             |
| temperature | °C              | x1.8 then add 32 | °F              |
| torque      | N·m             | x 0.738          | ft- <b>I</b> b  |
| force       | Ν               | ÷ 4.448          | lbf             |
| flow        | L/min           | ÷ 28.317         | cfm             |
|             | JPY             | x 0.0094         | dollar          |
|             |                 |                  |                 |



## Nozzles for Blowing KN Series 1




Install a suitable nozzle where soft copper piping, etc., is cut and used as is to conduct blow.




By installing a suitable nozzle, the pressure right before the nozzle will rise immediately (1), resulting in improved blow efficiency. When the same operation is performed (2), air consumption can be reduced.

Nozzle with self-align fitting/
KN

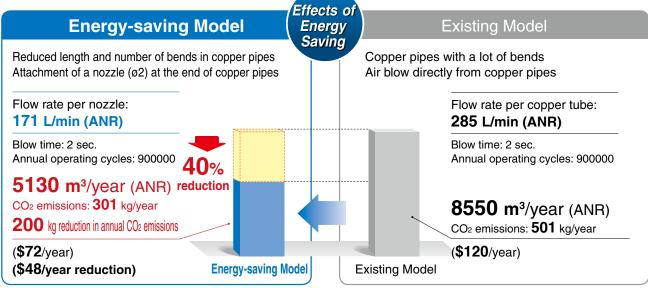
Nozzle with male thread/
KN



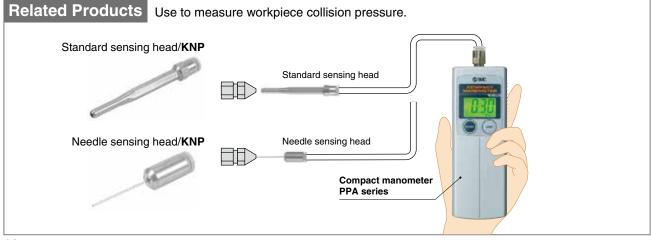




## Nozzles for Blowing KN Series 2


CO<sub>2</sub> emissions (Air consumption)

40% reduction


Overall improvements can be seen by installing nozzles and revising piping and blow positioning.

- Shorter copper pipes/Improved pipe branching
- Examination of blow position/Examination of number of blow operations
- Examination of hours of blow operation



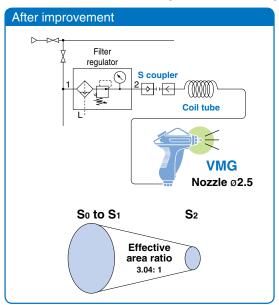


Corresponding value: Air unit  $0.014/m^3$  (ANR), Air  $-CO_2$  conversion factor 0.0586 kg/m³ (ANR) \* Refer to the "Energy Saving Program" on the SMC website for further details.

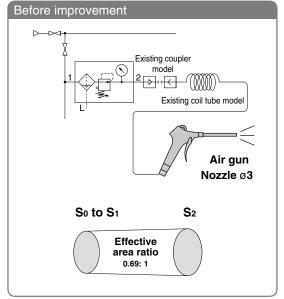


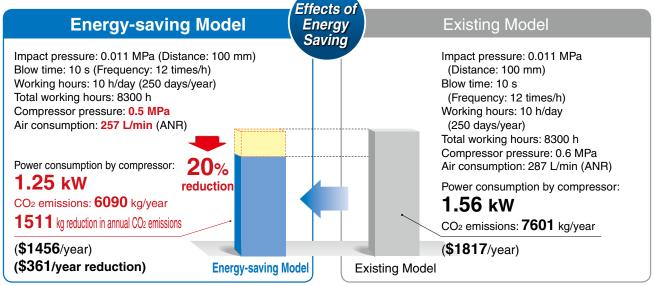
### Blow Gun VMG Series



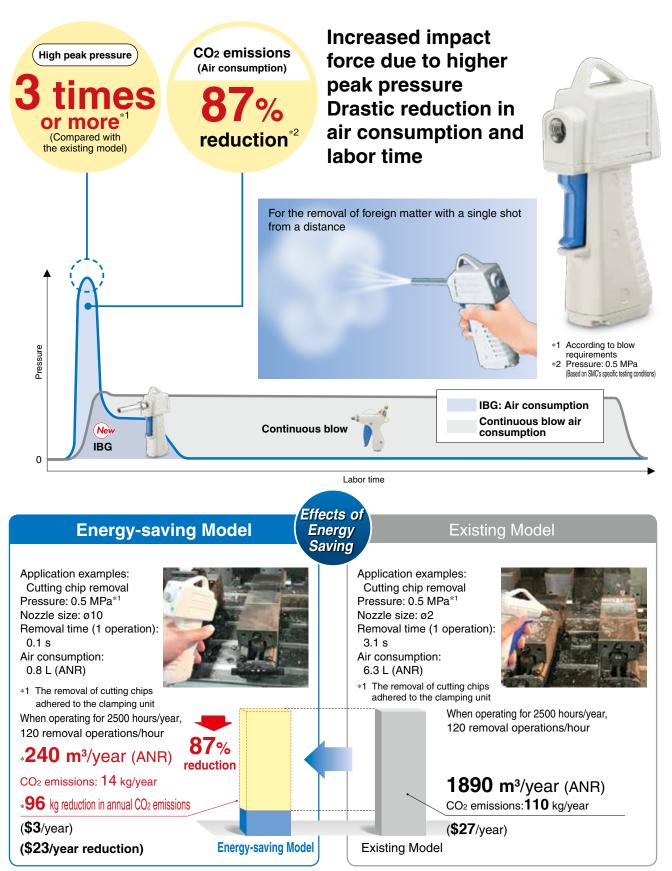

Power consumption can be reduced by 20% with the SMC blow gun + S coupler + coil tube combination.

\* 10% reduction with only the blow gun (VMG)


Pressure loss of 10% or less


### **Example of Improvement**

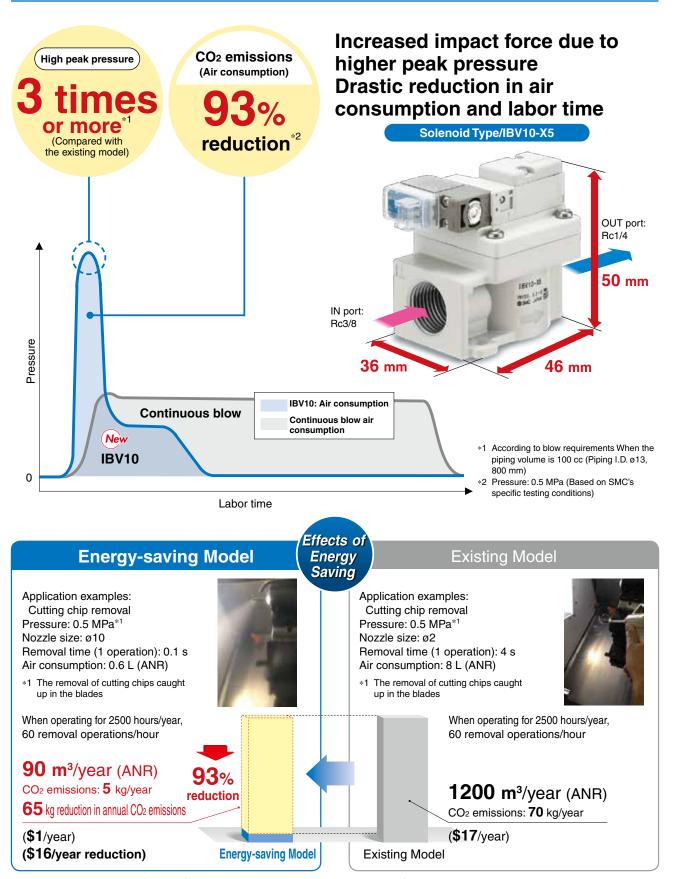
Review the blow work and change to the SMC blow gun, S coupler, and coil tube combination to create a larger effective area.











## Impact Blow Gun IBG Series



Corresponding value: Air unit \$0.014/m3 (ANR), Air - CO2 conversion factor 0.0586 kg/m3 (ANR)

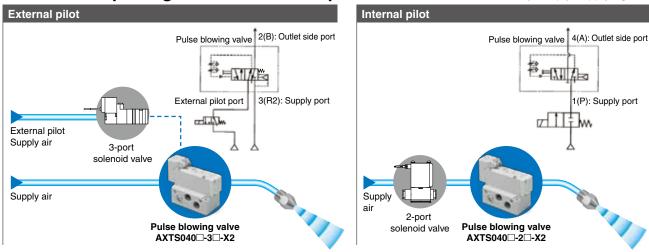


## Impact Blow Valve IBV10-X5



 $Corresponding\ value:\ Air\ unit\ \$0.014/m^3\ (ANR),\ Air\ -\ CO_2\ conversion\ factor\ 0.0586\ kg/m^3\ (ANR)$ 

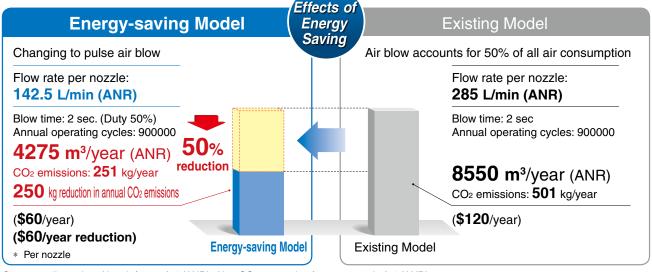



## Pulse Blowing Valve AXTS Series

CO<sub>2</sub> emissions (Air consumption)

50%
reduction

Proposal for air-saving air blow by changing from continuous blow to intermittent blow ON time adjustment needle OFF time adjustment needle Intermittent blow Reduced air Related product Please contact SMC for details. (Valve open) Continuous blow Port size: 1/2 Port size: 1/4 OFF AXTS040□-□□-X2 AXTS020-1P-X2 (Valve closed)


Control for pulse generation is not required. Pulse blow can be used by simply supplying air.



- Long service life (200 million cycles or more)
- Flow rate characteristics
- Type of actuation
   C [dm³/(s·bar)]
   b
   Cv

   External pilot
   14
   0.18
   3.4

   Internal pilot
   12
   0.14
   2.9
- ON/OFF time adjustable individually
- Operating pressure range: 0.2 to 1.0 MPa

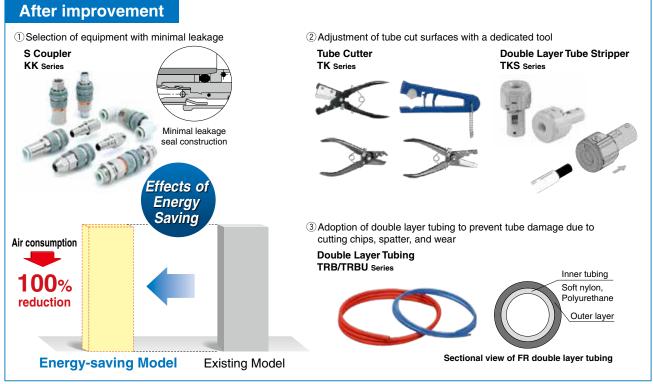




## 3 Reduce air leakage

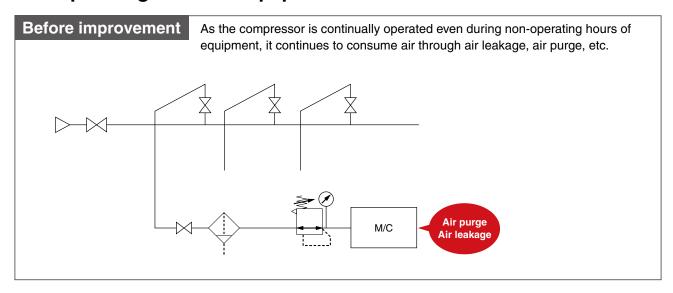
| Air leakage                                           | p. | 19 |
|-------------------------------------------------------|----|----|
| Reducing leakage and purge during non-operating hours | p. | 20 |

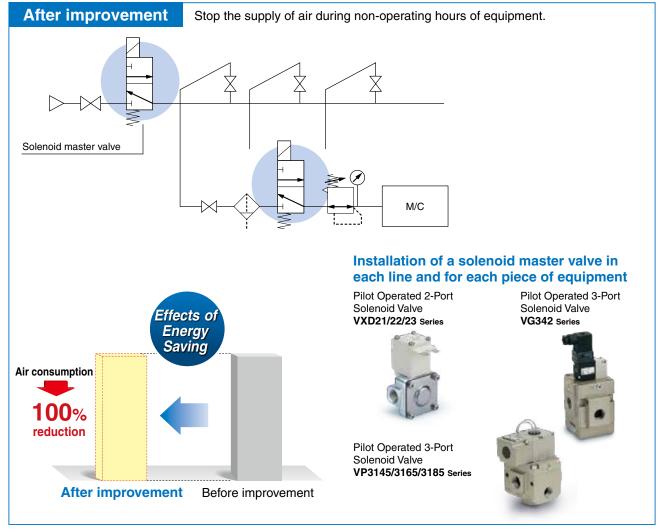
### UNIT CONVERSIONS


|             | unit            | conversion       | result          |
|-------------|-----------------|------------------|-----------------|
| length      | m               | x 3.28           | ft              |
|             | mm              | × 0.04           | in              |
| mass        | g               | × 0.04           | OZ              |
| volume      | cm <sup>3</sup> | ÷ 16.387         | in <sup>3</sup> |
|             | L               | x 61.024         | in <sup>3</sup> |
| speed       | mm/s            | ÷ 25.4           | in/s            |
| pressure    | MPa             | x 145            | psi             |
|             | kPa             | ÷ 6.895          | psi             |
| temperature | °C              | x1.8 then add 32 | °F              |
| torque      | N·m             | x 0.738          | ft- <b>I</b> b  |
| force       | Ν               | ÷ 4.448          | lbf             |
| flow        | L/min           | ÷ 28.317         | cfm             |
|             | JPY             | x 0.0094         | dollar          |
|             |                 |                  |                 |



### Air leakage


### Stops leakage from piping equipment


#### **Before improvement** Leaked air actually accounts for 20 to 50% of all consumed air. Regardless of whether equipment is being operated or not, as the compressor is continually operated, a certain amount of air is consumed and leaked from piping equipment. Compressor operating status Air usage Tubing, Fittings 20% Coupling fittings 25% Rubber hose 30% Others 25% rate Air leakage accounts for 20 to 50%. Air Air leakage, Purge leakage 19 23 21 Others Operating hours Time Non-operating hours Air leakage examples Air leakage from coupling fittings Air leakage from One-touch fittings Air leakage from tubes due to poorly cut tubes due to poor sealing due to cutting chips, wear, spatter, etc. Leakage Leakage Leakage



## Reducing leakage and purge during non-operating hours

## Reducing air leakage and amount of air used for air purge during non-operating hours of equipment



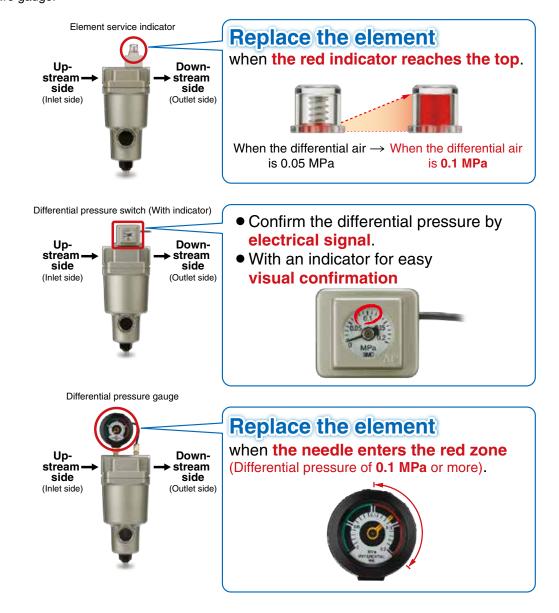


## 4 Reduce pressure loss

| Monitoring of air filter clogging                           | p. 22 |
|-------------------------------------------------------------|-------|
| For reducing pressure loss in lines S Couplers KK130 series | p. 23 |
| Main Line Filter <i>AFF series</i>                          | p. 24 |
| Modular Connection Type Micro Mist Separator AMD Series     | p. 25 |
| Leveling of the line pressure                               | p. 26 |

### UNIT CONVERSIONS

|             | unit            | conversion       | result          |
|-------------|-----------------|------------------|-----------------|
| length      | m               | x 3.28           | ft              |
|             | mm              | x 0.04           | in              |
| mass        | g               | x 0.04           | oz              |
| volume      | cm <sup>3</sup> | ÷ 16.387         | in <sup>3</sup> |
|             | L               | x 61.024         | in <sup>3</sup> |
| speed       | mm/s            | ÷ 25.4           | in/s            |
| pressure    | MPa             | x 145            | psi             |
|             | kPa             | ÷ 6.895          | psi             |
| temperature | °C              | x1.8 then add 32 | °F              |
| torque      | N·m             | x 0.738          | ft- <b>l</b> b  |
| force       | Ν               | ÷ 4.448          | lbf             |
| flow        | L/min           | ÷ 28.317         | cfm             |
|             | JPY             | x 0.0094         | dollar          |
|             |                 |                  |                 |



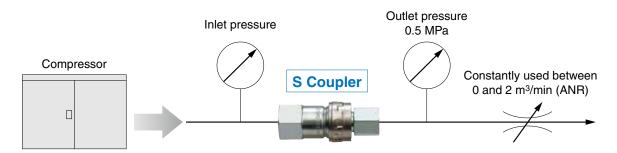

## Monitoring of air filter clogging

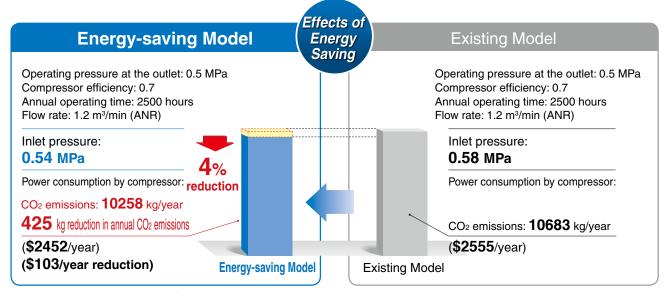
As the air filter processes the compressed air, the element will gradually become clogged, resulting in a pressure drop. Failure to rectify the situation will result in energy loss and reduced actuator output. Therefore, be sure to periodically replace the air filter element before it becomes clogged.

### **Clogging indicator**

The air filter element needs to be replaced every 2 years or before the pressure drop reaches 0.1 MPa. Confirm the pressure drop due to clogging with the element service indicator, a differential pressure switch, or a differential pressure gauge.




## For reducing pressure loss in lines S Couplers KK130 Series


CO<sub>2</sub> emissions (Pressure loss)

4% reduction

The built-in valve is of a special shape, resulting in reduced pressure loss.

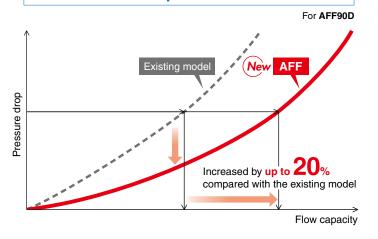




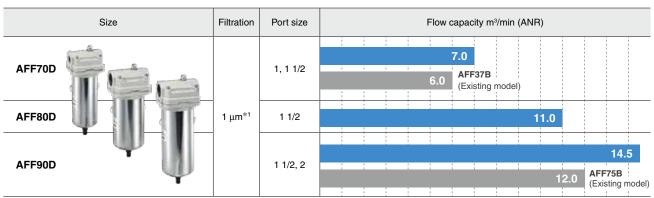


 $Corresponding\ value:\ Electricity\ unit\ \$0.014/kWh,\ Power\ consumption\ -\ CO_{2}\ conversion\ factor\ 0.587\ kg\ -\ CO_{2}/kWh$ 




### Main Line Filter AFF Series

Flow Capacity


20%
increase



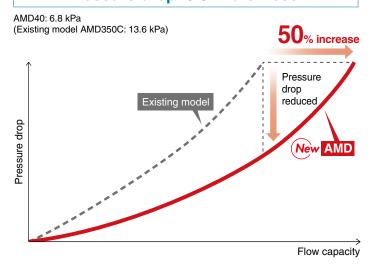
Flow capacity: 14.5 m<sup>3</sup>/min (ANR) Pressure drop: 5 kPa or less



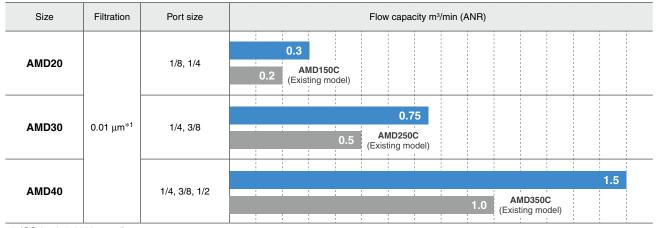
Reduction in pressure drops! Increased air flow capacity!



### Modular Connection Type


### Micro Mist Separator AMD Series

Flow Capacity

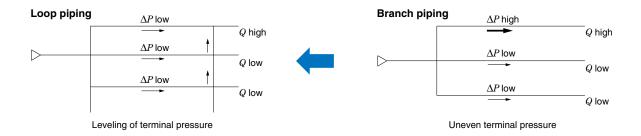

50%
increase



Flow capacity: 1.5 m<sup>3</sup>/min (ANR) Pressure drop: 6.8 kPa or less



Reduction in pressure drops! Increased air flow capacity!



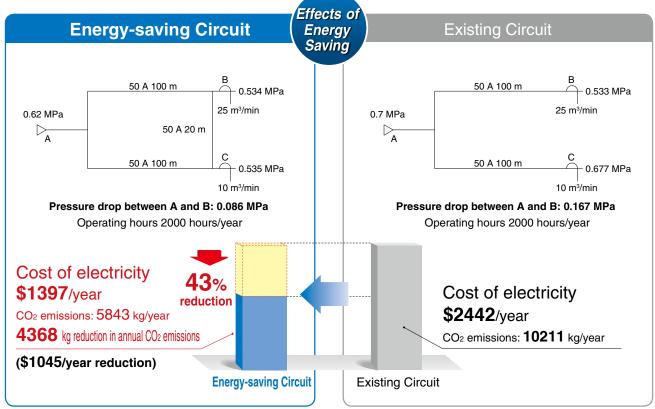

<sup>\*1</sup> ISO 8573-4: 2010 compliant



## Leveling of the line pressure

Uneven terminal pressure in branch piping can be leveled by adopting loop piping, resulting in a reduction in pressure drops.




Air can be supplied from both sides with loop piping.

Terminal pressure is leveled.

The discharge pressure setting can be lowered.

An unbalanced consumption flow rate can lead to a large pressure drop in the line on one side.

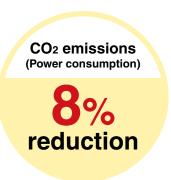
Set the discharge pressure high.



Corresponding value: Electricity unit \$0.014/kWh, Power consumption - CO2 conversion factor 0.587 kg - CO2/kWh



# Air pressure source efficiency


| Reducing the specific power of the compressor | p. 28 |
|-----------------------------------------------|-------|
| More efficient compressor operation           | p. 29 |
| Booster circuit                               | p. 30 |

### UNIT CONVERSIONS

|             | unit            | conversion       | result          |
|-------------|-----------------|------------------|-----------------|
| length      | m               | x 3.28           | ft              |
|             | mm              | x 0.04           | in              |
| mass        | g               | x 0.04           | oz              |
| volume      | cm <sup>3</sup> | ÷ 16.387         | in <sup>3</sup> |
|             | L               | x 61.024         | in <sup>3</sup> |
| speed       | mm/s            | ÷ 25.4           | in/s            |
| pressure    | MPa             | x 145            | psi             |
|             | kPa             | ÷ 6.895          | psi             |
| temperature | °C              | x1.8 then add 32 | °F              |
| torque      | N·m             | x 0.738          | ft- <b>I</b> b  |
| force       | Ν               | ÷ 4.448          | lbf             |
| flow        | L/min           | ÷ 28.317         | cfm             |
|             | JPY             | x 0.0094         | dollar          |
|             |                 |                  |                 |



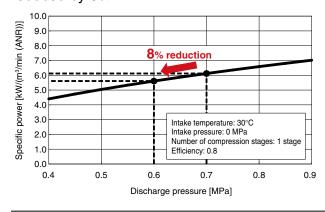
## Reducing the specific power of the compressor



### Power consumption can be reduced by reducing the discharge pressure, intake resistance, and intake temperature.

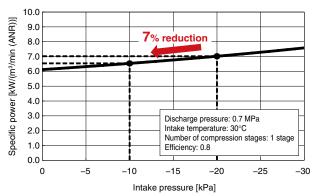
The discharge pressure, intake pressure, and intake temperature, as well as the number of compression stages, etc., all have an effect on the compressor's specific power. Therefore, in order to reduce the compressor's specific power, the discharge pressure, intake resistance, and intake temperature must all be reduced as well.

### Calculating the specific power of the compressor


The specific power can be calculated from the theoretical shaft power as shown in the equation on the right. For the specific power, the smaller the value, the greater the efficiency.

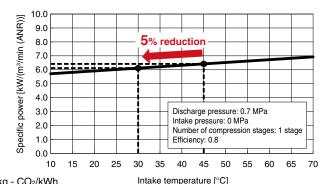
$$L = \frac{m\kappa}{\kappa - 1} \cdot \frac{0.1Q}{0.06\eta} \cdot \frac{273 + T}{293} \times \left\{ \left[ \frac{p_{d} + 0.1}{p_{s} + 0.1} \right]^{\frac{\kappa - 1}{m\kappa}} - 1 \right\}$$
$$r = \frac{L}{Q}$$

L: theoretical shaft power [kW], r: specific power [kW/(m³/min (ANR))], Q: discharge flow [m³/min (ANR)],  $p_s$ : intake pressure [MPa],  $p_s$ : intake temperature [°C], q: efficiency, m: number of compression stages, and  $\kappa$ : specific heat ratio (air = 1.4)


## Effects of the discharge pressure on the specific power

By reducing the discharge pressure from 0.7 MPa to 0.6 MPa, the specific power can be reduced by 8%.




## Effects of the intake pressure on the specific power

By increasing the intake pressure from -20 kPa to -10 kPa, the specific power can be reduced by 7%.



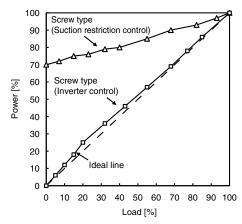
### Effects of the intake temperature on the specific power

By reducing the intake temperature from 45°C to 30°C, the specific power can be reduced by 5%.



### More efficient compressor operation

CO<sub>2</sub> emissions (Power consumption)


38%
reduction

# Power consumption can be reduced by selecting an optimal operation to deal with load fluctuations.

Increased energy efficiency can be realized when the operation selected to deal with and control compressor load (flow rate) fluctuations is optimal.

### Fluctuations in factory air consumption flow rates

The factory air consumption flow rate (= load) changes depending on the operating state of the equipment. By using inverter control or control for multiple compressors to deal with consumption flow rate fluctuations, compressor energy efficiency can be increased.

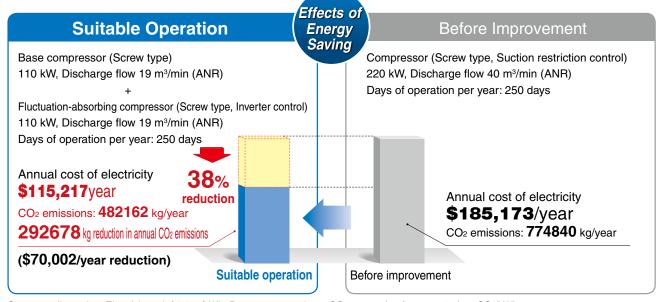


#### Suitable operation Consumption flow rate [m3/min (ANR)] 40 200 35 30 150 onsumption 100 15 10 50 2 6 8 10 12 14 16 18 20 22 0

Inverter control for the control of consumption flow rate fluctuations when multiple compressors are operated

#### 

**Before improvement** 


Open/close control for the control of consumption flow rate fluctuations when 1 compressor is operated

10

12

14 16 18

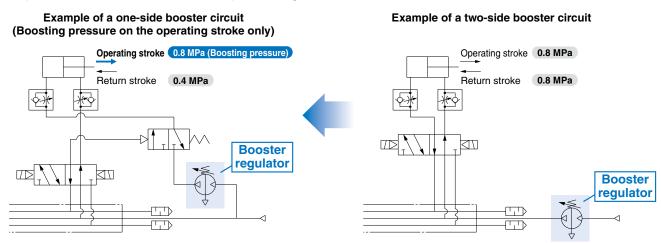
20

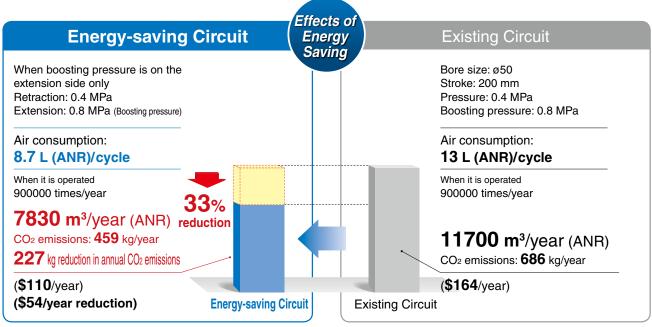


Consumption flow rate [m3/min (ANR)]

2 4 6

### **Booster circuit**





Air consumption can be reduced by 33% due to the optimization of the booster circuit.

Booster regulator VBA Series

### Boost an insufficiently powered portion with a booster regulator

Optimized booster circuit: Now with a space-saving booster circuit





Corresponding value: Air unit \$0.014/m³ (ANR), Air - CO2 conversion factor 0.0586 kg/m³ (ANR)

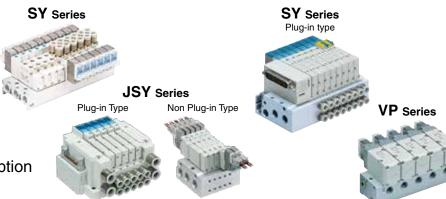


## 6 Air/Power saving equipment

| Low Wattage 3/4/5-Port Solenoid Valve                   | p. 32 |
|---------------------------------------------------------|-------|
| Air Cylinder (Intermediary Bore Size) <i>JMB series</i> | p. 33 |
| Double Power Cylinder <i>MGZ series</i>                 | p. 34 |
| Compact Cylinder with Solenoid Valve CVQ series         | p. 35 |
| Compact Cylinder/Air Saving Type CDQ2B-X3150            | p. 36 |
| Vacuum Ejector <b>ZK2</b> □ <b>A</b> <i>Series</i>      | p. 37 |
| Multistage Ejector <b>ZL3</b> Series                    | p. 38 |
| Booster Regulator VBA-X3145                             | p. 39 |
| Air Consumption-reducing Precision Regulator            | p. 40 |
| Air Saving Speed Controller AS-R Series                 | p. 41 |
| Digital Gap Checker ISA3 series                         | p. 42 |
| Intermittent Blow Circuit IZE110-X238                   | p. 43 |
| Pulse Valve for Dust Collector JSXFA Series             | p. 44 |
| Refrigerated Air Dryar IDF FS series                    | n 15  |

### UNIT CONVERSIONS

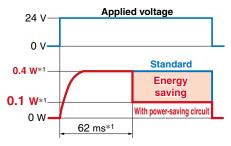
|             | unit            | conversion       | result          |
|-------------|-----------------|------------------|-----------------|
| length      | m               | x 3.28           | ft              |
|             | mm              | x 0.04           | in              |
| mass        | g               | x 0.04           | OZ              |
| volume      | cm <sup>3</sup> | ÷ 16.387         | in <sup>3</sup> |
|             | L               | x 61.024         | in <sup>3</sup> |
| speed       | mm/s            | ÷ 25.4           | in/s            |
| pressure    | MPa             | x 145            | psi             |
|             | kPa             | ÷ 6.895          | psi             |
| temperature | °C              | x1.8 then add 32 | °F              |
| torque      | N·m             | x 0.738          | ft-Ib           |
| force       | Ν               | ÷ 4.448          | lbf             |
| flow        | L/min           | ÷ 28.317         | cfm             |
|             | JPY             | × 0.0094         | dollar          |
|             |                 |                  |                 |




## Low Wattage 3/4/5-Port Solenoid Valve

CO<sub>2</sub> emissions (Power consumption)

75% reduction


The power-saving circuit can reduce the consumption of electric power when the device is energized.

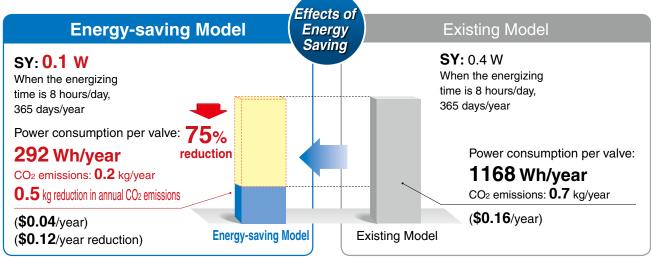


### Reduces power consumption when energized

Power consumption can be reduced by approx. 1/4 by reducing the wattage required to hold the valve in an energized state. (Effective energizing time is over 62 ms\*1 at 24 VDC.) Refer to the electrical power waveform as shown below.

#### Electrical power waveform with power-saving circuit




\*1 SY/SYJ series

### Low Wattage Valve

**Energy-saving Product** 

|          |                      |          | Power consumption W*2         |  |  |  |
|----------|----------------------|----------|-------------------------------|--|--|--|
| Туре     | Model                | Standard | With power-<br>saving circuit |  |  |  |
|          | SJ1000/2000          | 0.55     | 0.23                          |  |  |  |
|          | SJ3000               | 0.4      | 0.15                          |  |  |  |
| 4/5-port | New SY3000/5000/7000 | 0.4      | 0.1                           |  |  |  |
|          | SY3000/5000/7000     | 0.4      | 0.1                           |  |  |  |
|          | JSY1000              | _        | 0.2                           |  |  |  |
|          | JSY3000/5000         | 0.4      | 0.1                           |  |  |  |
|          | SYJ3000/5000/7000    | 0.4      | 0.1                           |  |  |  |
| 3-port   | V100                 | 0.4      | 0.1                           |  |  |  |
|          | SYJ300/500/700       | 0.4      | 0.1                           |  |  |  |
|          | VP300/500            | 0.4      | _                             |  |  |  |
|          | VP700                | 0.55     | 0.55                          |  |  |  |

\*2 With DC light



Corresponding value: Electricity unit \$0.014/kWh, Power consumption - CO2 conversion factor 0.587 kg - CO2/kWh



## Air Cylinder (Intermediary Bore Size) JMB Series



Air consumption can be reduced by selecting an optimal size air cylinder.

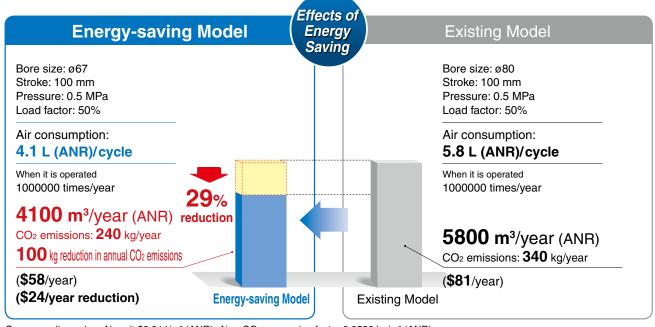
Intermediary Bore Sizes

### Air consumption can be reduced by up to 29%

| Bore size (mm)                                                     | ø <b>40</b> | ø <b>45</b> | ø <b>50</b> | ø <b>56</b> | ø <b>63</b> | ø <b>67</b> | ø <b>80</b> | ø <b>85</b> | ø <b>100</b> |
|--------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|
| Air consumption L/min (ANR)                                        | 1.4         | 1.8         | 2.2         | 2.8         | 3.6         | 4.1         | 5.8         | 6.6         | 9.1          |
| Conditions/Supply pressure: 0.5<br>Load factor: 50%, At 100 mm str |             | 18% re      | eduction    | 22% re      | eduction    | 29% re      | eduction    | 27% r       | eduction     |

### Example Bore size for 85 kg workpieces

Conditions/Supply pressure: 0.5 MPa, Load factor: 50%


| Bore size (mm) | Theoretical output (N) | Output for load factor of 50% (kg) | Judgment                      |
|----------------|------------------------|------------------------------------|-------------------------------|
| ø63            | 1559                   | 79.5                               | Not acceptable (Insufficient) |
| ø80            | 2513                   | 128.2                              | Acceptable (Excessive)        |

When intermediary bore size Ø67 is used

Ø67 1763 89.9 OK

Existing size: ø80

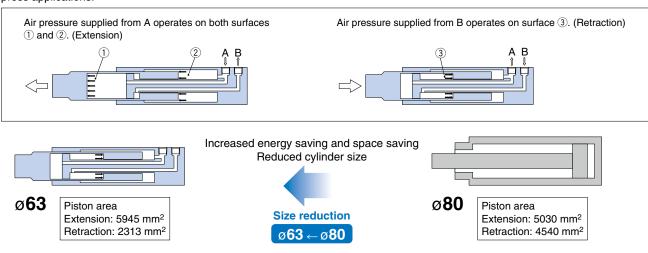
Could be switched to intermediary bore size Ø67

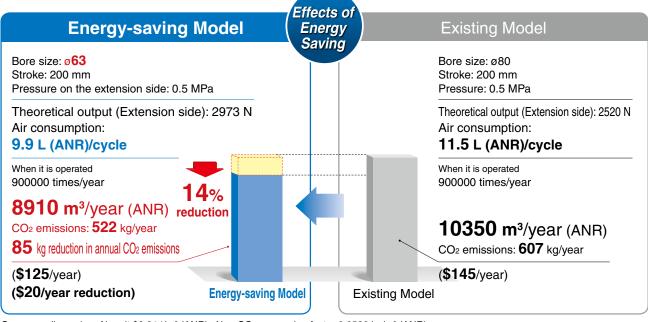




### Double Power Cylinder MGZ Series

CO<sub>2</sub> emissions (Air consumption)


14%
reduction


## Air consumption can be reduced by 14% due to the reduced cylinder size.

It is possible to reduce air consumption in the retracting direction, compared with a standard cylinder with equivalent output in the extending direction, due to the doubled piston area in the extending direction.

### Double extension output power!

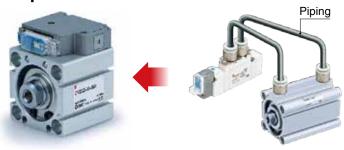
SMC's unique cylinder construction doubles the piston area in the extending direction. This is an ideal air cylinder for lifting and press applications.



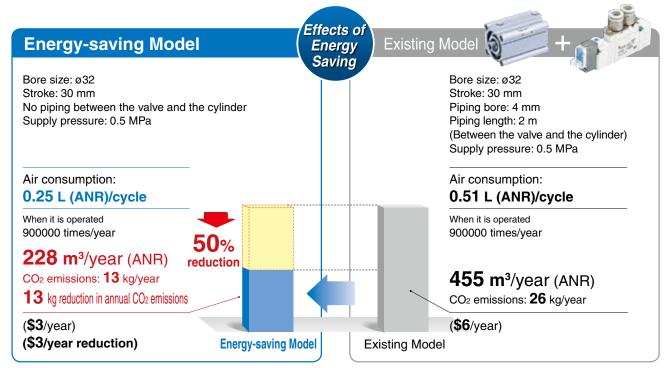







CO<sub>2</sub> emissions (Air consumption)

50% reduction


### **Energy Saving**

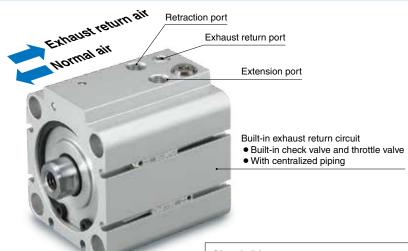
Air consumption between the valve and cylinder can be reduced by approximately **50%**.

## Valve and compact cylinder integrated for compactness



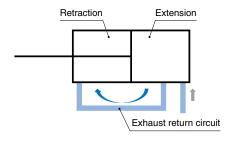


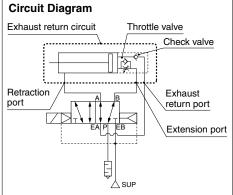


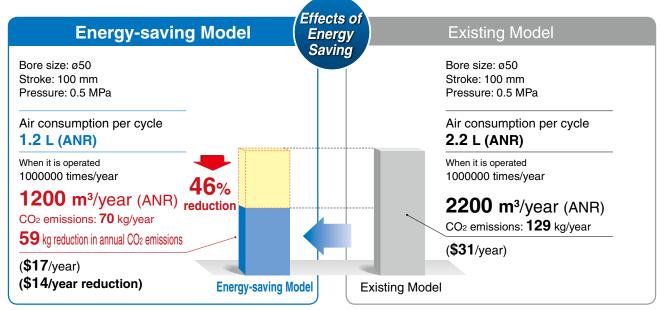

Corresponding value: Air unit  $0.014/m^3$  (ANR), Air  $-CO_2$  conversion factor 0.0586 kg/m³ (ANR)



### Compact Cylinder/Air Saving Type CDQ2B-X3150


# CO<sub>2</sub> emissions (Air consumption) Max. 46% reduction


### Reduced air consumption due to the built-in exhaust return circuit




Uses the air exhausted from the working side to supply the non-working side, thus reusing the air

### Reduce air consumption just by piping to the product







Corresponding value: Air unit \$0.014/m³ (ANR), Air - CO2 conversion factor 0.0586 kg/m³ (ANR)



#### Vacuum Ejector ZK2□A Series

A digital pressure switch for vacuum with an energysaving function and a more efficient ejector

CO<sub>2</sub> emissions (Air consumption)

93% reduction\*

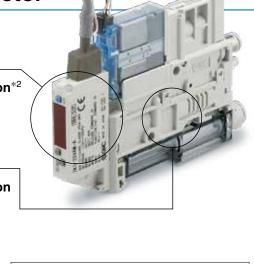
\*1 Based on SMC's measuring conditions

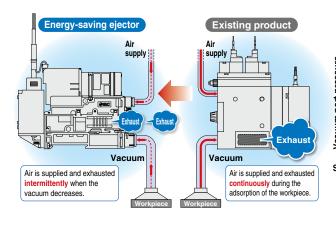
Cuts off supply air when the pressure reaches the desired vacuum

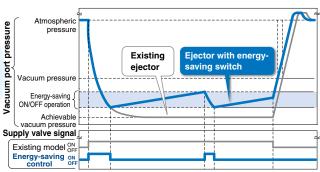
**Energy saving ejector** 

The digital pressure switch with energy-saving function can reduce

#### Air consumption 90% reduction\*2


\*2 Based on SMC's measuring conditions


While the suction signal is ON, the ON/OFF operation of the supply valve is also performed automatically within the set value.

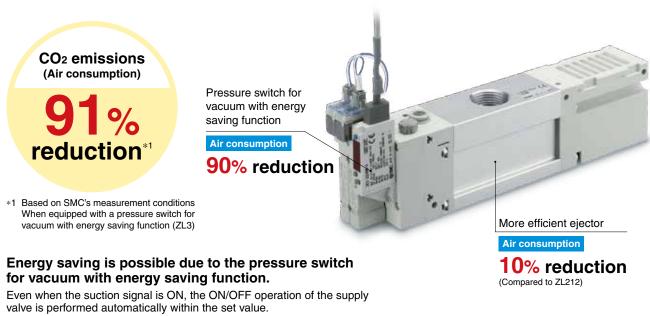

#### More efficient ejector

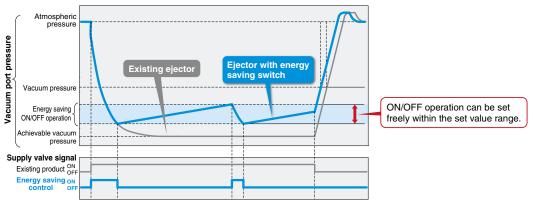
Air consumption 30% reduction

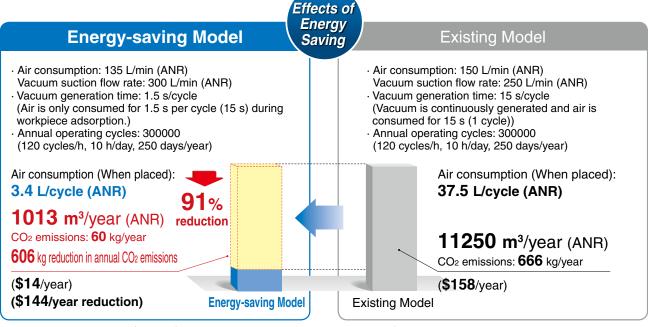
(Compared to other SMC single stage ejectors)









#### Effects of **Energy-saving Model Existing Model** Energy Saving ·Air consumption: 58 L/min (ANR) ·Air consumption: 85 L/min (ANR) Vacuum suction flow rate: 61 L/min (ANR) Vacuum suction flow rate: 44 L/min (ANR) ·Vacuum generation time: 0.6 s/cycle ·Vacuum generation time: 6 s/cycle (Vacuum is continuously generated and air is consumed for 6 s (1 cycle)) (Vacuum is continuously generated and air is consumed for 6 s (1 cycle)) ·Annual operating cycles: 1100000 ·Annual operating cycles: 1100000 (450 cycles/h, 10 h/day, 250 days/year) (450 cycles/h, 10 h/day, 250 days/year) Air consumption (When placed): Air consumption (When placed): 58 L/min (ANR) 85 L/min (ANR) **638 m³/year (ANR)** reduction CO<sub>2</sub> emissions: 37 kg/year **9350** m³/year (ANR) **511** kg reduction in annual CO<sub>2</sub> emissions CO<sub>2</sub> emissions: 548 kg/year (**\$9**/year) **\$131**/year) (\$122/year reduction) **Energy-saving Model Existing Model**


Corresponding value: Air unit \$0.014/m3 (ANR), Air - CO2 conversion factor 0.0586 kg/m3 (ANR)



#### Multistage Ejector ZL3 Series







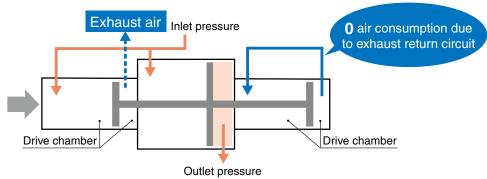
Corresponding value: Air unit  $0.014/m^3$  (ANR), Air  $-CO_2$  conversion factor 0.0586 kg/m $^3$  (ANR)

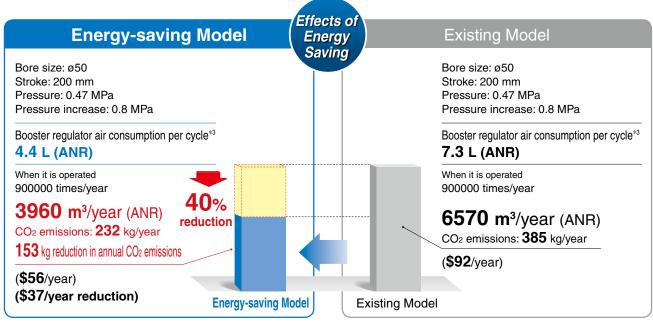


### Booster Regulator *VBA-X3145*



- 3 piston construction
- The drive chamber on one side can be operated by the exhaust return circuit.


\*1 Based on SMC's measuring conditions

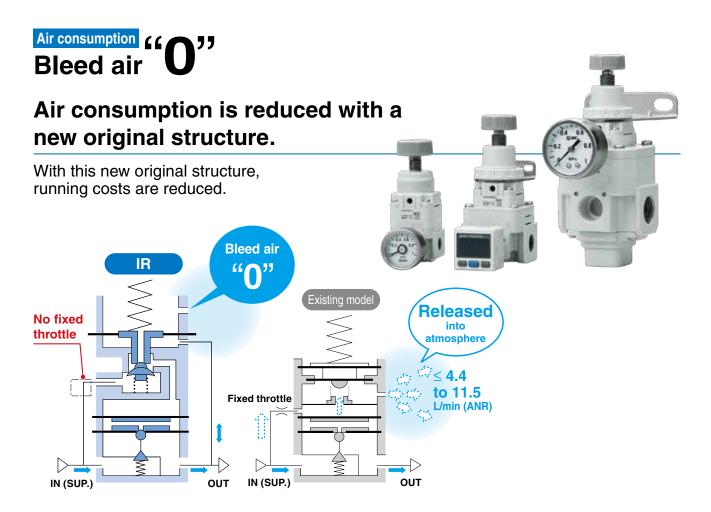

#### Operation noise: 65 dB(A)

\*2 Based on SMC's measuring conditions

#### 15 dB (A) reduction compared with the existing model (VBA series)

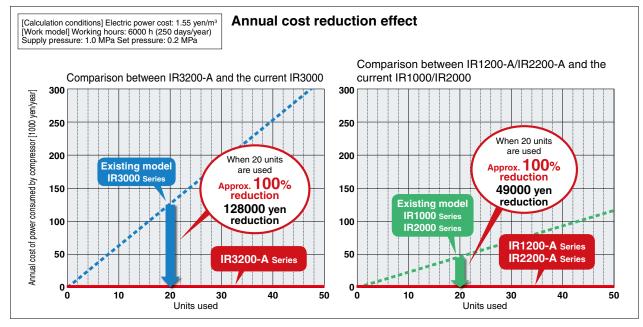
- Exhaust noise: Reduced noise due to exhaust of reused low-pressure air
- Metal noise: Reduced noise due to the adoption of a construction in which the internal switching part doesn't come into contact with any metal parts






Corresponding value: Air unit  $0.014/m^3$  (ANR), Air –  $CO_2$  conversion factor 0.0586 kg/m $^3$  (ANR)

\*3 Air consumption = Inlet flow rate - Outlet flow rate




### **Air Consumption-reducing Precision Regulator**



#### No fixed throttle in the new design.

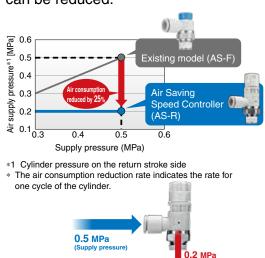
\* Poor quality of air may cause operation failure. Select a model that is suitable for the desired air cleanliness by referring to "Air Preparation Equipment Model Selection Guide" for air quality.



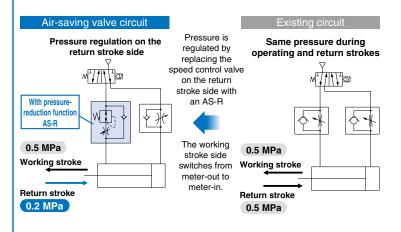
### Air Saving Speed Controller AS-R Series

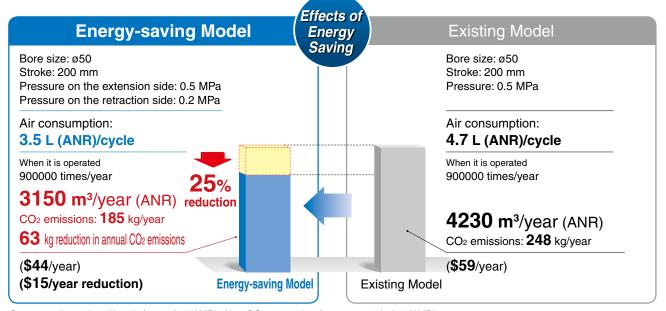
CO<sub>2</sub> emissions (Air consumption)

25% reduction


### Reduce air consumption just by mounting to your current air cylinder!

Mounting and operation are the same as a regular speed controller.

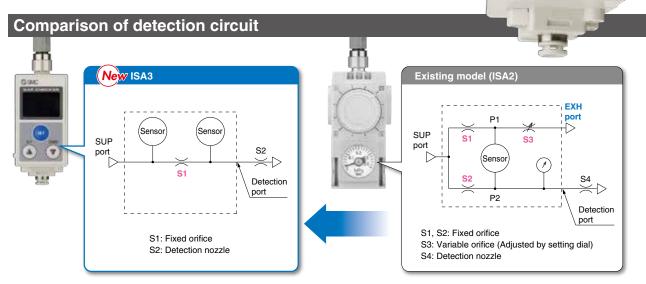




With pressurereduction function **AS-R** Series

By reducing the pressure on the return stroke to 0.2 MPa, air consumption can be reduced.



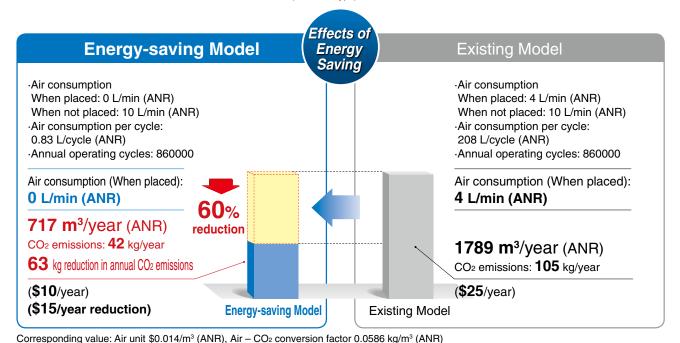
When it is not necessary to apply force at the end of the working stroke, by using a lifter, pusher, etc.






#### Digital Gap Checker ISA3 Series

00000


CO<sub>2</sub> emissions (Air consumption) reduction Air consumption when a workpiece is seated is now 0 L/min due to the new detection principle.



Due to the new detection principle, the need for air to be exhausted from the product has been eliminated. This makes the flow consumption 0 L/min when a workpiece is seated.

The result is a great reduction in air consumption compared with the existing model.

\* Conditions: Unseated for 5 seconds and seated for 20 seconds (For the G type)

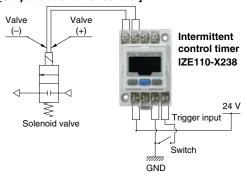




### Intermittent Blow Circuit IZE110-X238

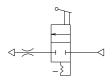
CO<sub>2</sub> emissions (Air consumption)

50% reduction


By using intermittent blow based on an intermittent control timer, air consumption can be reduced by 50%.



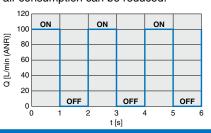
#### **Energy-saving Circuit**


#### **Intermittent Blow Circuit**

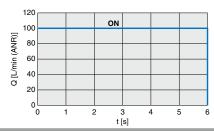
#### [Output under timer control]



**Existing Circuit** 


#### **Continuous Blow Circuit**




The duty ratio can be freely adjusted.

By setting the duty ratio to one that has the same blow effectiveness, air consumption can be reduced.

Example:



The duty ratio is equivalent to 100%.



#### **Energy-saving Circuit**

Blow time: 10 s (Frequency: 12 times/h) One blow operation: ON for 1 s, OFF for 1 s; Repeated a total of 5 times Working hours: 10 h/day

Pressure right before: 0.2 MPa

(250 days/year) Nozzle diameter: 1 mm

**318.2** m³/year (ANR) CO<sub>2</sub> emissions: **19** kg/year

19 kg reduction in annual CO<sub>2</sub> emissions

(**\$5**/year)

(\$5/year reduction)

Effects of Energy Saving

#### **Existing Circuit**

Pressure right before: 0.2 MPa

Blow time: 10 s

(Frequency: 12 times/h)

Working hours:

10 h/day (250 days/year) Nozzle diameter: 1 mm

636.3 m³/year (ANR)

CO<sub>2</sub> emissions: **38** kg/year

(**\$9**/year)

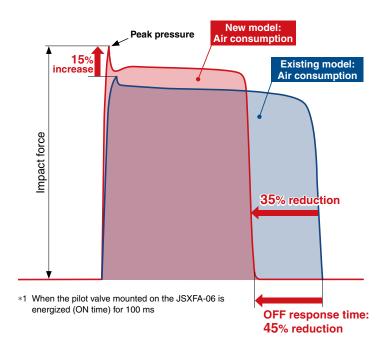
**Existing Circuit** 

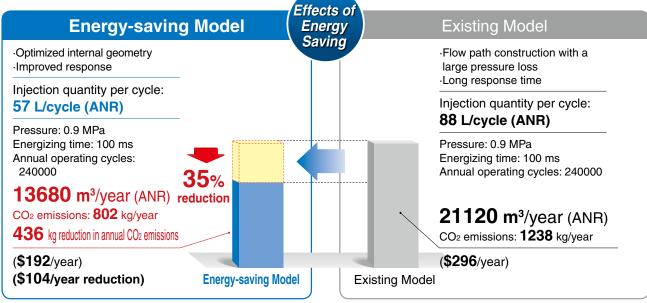
Corresponding value: Air unit  $0.014/m^3$  (ANR), Air –  $CO_2$  conversion factor 0.0586 kg/m $^3$  (ANR)

reduction

**Energy-saving Circuit** 

Peak pressure


15%<sup>\*</sup> increase


CO<sub>2</sub> emissions (Air consumption)

35%<sup>\*1</sup> reduction

High peak pressure and

low air consumption





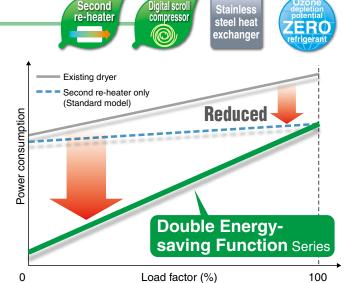
Corresponding value: Air unit \$0.014/m³ (ANR), Air − CO₂ conversion factor 0.0586 kg/m³ (ANR)



### Refrigerated Air Dryer IDF Series

### Double Energy-saving Function Series

CO<sub>2</sub> emissions (Power consumption)


76% reduction

The addition of a second reheater + digital scroll results in high energy savings.


#### **Energy-saving design**

76 (1 kW)\*1 % reduction

- \*1 Operating conditions: The IDF125FS in energy-saving operation mode
- ■Ambient temperature 32°C ■Inlet air temperature 40°C
- •Inlet air pressure 0.7 MPa •Air flow rate = Rated flow x 0.4
- Power supply frequency 60 Hz Power supply voltage 200 V Set dew point = 30°C







Corresponding value: Power consumption - CO2 conversion factor 0.587 kg - CO2/kWh



### 7 Energy-saving circuit

| Two-pressure drive circuit                  | p. 47 |
|---------------------------------------------|-------|
| Energy-saving lifter circuit                | p. 48 |
| Optimized cylinder driving system           | p. 49 |
| Optimized vacuum adsorption transfer system | p. 50 |

#### UNIT CONVERSIONS

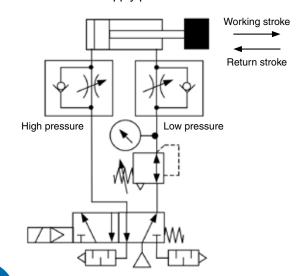
|             | unit            | conversion       | result          |
|-------------|-----------------|------------------|-----------------|
|             | unit            | conversion       | result          |
| length      | m               | x 3.28           | ft              |
|             | mm              | x 0.04           | in              |
| mass        | g               | x 0.04           | OZ              |
| volume      | cm <sup>3</sup> | ÷ 16.387         | in <sup>3</sup> |
|             | L               | x 61.024         | in <sup>3</sup> |
| speed       | mm/s            | ÷ 25.4           | in/s            |
| pressure    | MPa             | x 145            | psi             |
|             | kPa             | ÷ 6.895          | psi             |
| temperature | °C              | x1.8 then add 32 | °F              |
| torque      | N·m             | x 0.738          | ft- <b>I</b> b  |
| force       | Ν               | ÷ 4.448          | lbf             |
| flow        | L/min           | ÷ 28.317         | cfm             |
|             | JPY             | x 0.0094         | dollar          |
|             |                 |                  |                 |

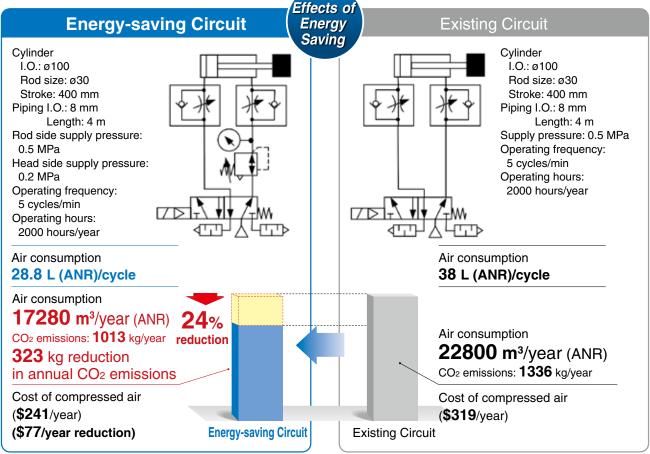


#### Two-pressure drive circuit

CO<sub>2</sub> emissions (Air consumption)

24%


reduction


#### Low pressure is supplied during the nonworking return stroke.

In general usage, a cylinder is used to clamp, press fit, or transfer workpieces during the working stroke, with no work taking place during the return stroke. Therefore, it is sufficient to only supply low pressure during the return stroke. In this way, by using a two-pressure drive circuit as the driving circuit, it is possible to reduce the amount of compressed air used to supply pressure on the return side.

#### Two-pressure Drive Circuit

By installing a regulator with backflow function in the piping between the rod side cylinder port and the solenoid valve port, it is possible to set the set pressure to low pressure, resulting in a reduction in the amount of compressed air consumed on the return stroke. For the two-pressure drive circuit, sudden extension may occur at the beginning of the working stroke, which may result in a delayed start of the return stroke. In order to resolve this phenomenon, we recommend incorporating an SMC air-saving speed controller.





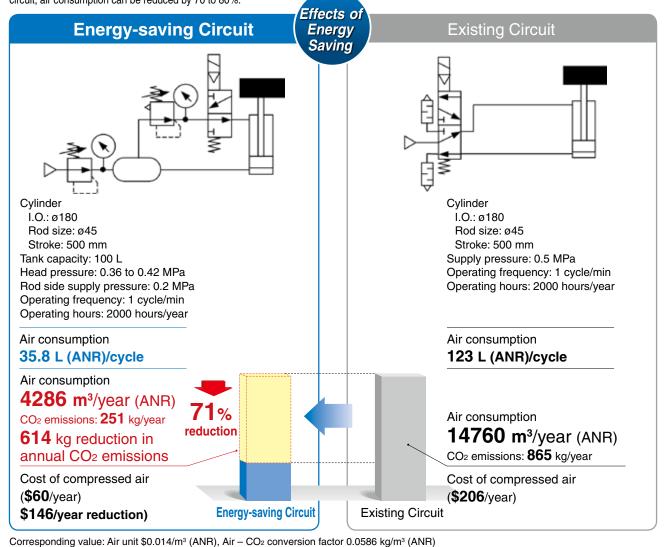
47

#### **Energy-saving lifter circuit**

CO<sub>2</sub> emissions (Air consumption)

71%
reduction

### By using an air tank, a substantial reduction in air consumption is possible.


An air tank can be used to substantially reduce the amount of air consumed by the lifter circuit, which is used to raise and lower loads.

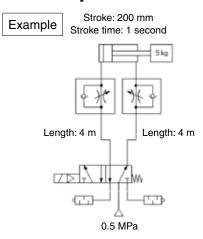
# Regulator for low-pressure setting Regulator for supply (No relief) Air Tank

Solenoid valve for

#### **Energy-saving Lifter Circuit**

When the cylinder rises, the compressed air in the upper cylinder chamber is exhausted, and the compressed air accumulated in the air tank is supplied to the lower cylinder chamber. Then, when the cylinder lowers, low-pressure compressed air is supplied to the upper cylinder chamber, and the compressed air from the lower cylinder chamber is accumulated in the air tank. The only compressed air consumed during a cycle operation is the low-pressure compressed air supplied to the upper cylinder chamber. Compared with a regular circuit, air consumption can be reduced by 70 to 80%.

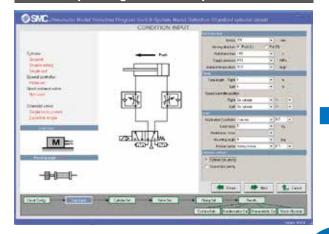



48

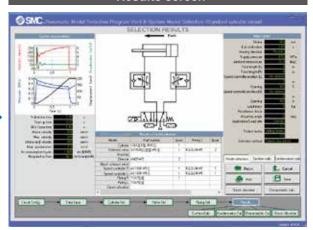
#### **Optimized cylinder driving system**

CO<sub>2</sub> emissions (Air consumption)

**42**% reduction


Our model selection software can be used to find the smallest possible model which meets your requirements, helping you reduce your air consumption.




Selection of the optimal size via the selection software

- 1 Input operating conditions.
- 2 Conduct a simulation.
- 3 The optimal size model will be displayed.

#### Operating condition input screen



#### Results screen



#### **Energy-saving Circuit**

Bore size: ø32 CQ2□32-200 Piping I.O.: ø4 T0425

Air consumption

1.005 1. (4115)/

**1.885** L (ANR)/cycle

When it is operated 900000 times/year  $1696.5 \text{ m}^3/\text{year}$  (ANR)

CO2 emissions: 100 kg/year

73 kg reduction

in annual CO2 emissions

(**\$24**/year)

(\$18/year reduction)

#### Effects of Energy Saving

#### **Existing Circuit**

Bore size: ø40 CQ2□40-200 Piping I.O.: ø6 T0604

Air consumption

3.277 L (ANR)/cycle

When it is operated 900000 times/year

**2,949** m³/year (ANR)

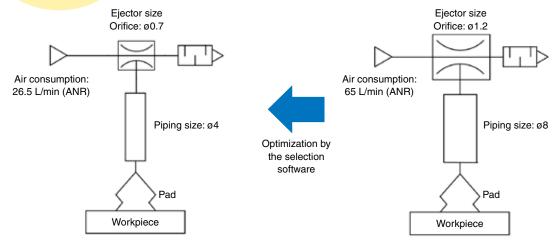
CO<sub>2</sub> emissions: 173 kg/year

(**\$41**/year)

Existing Circuit

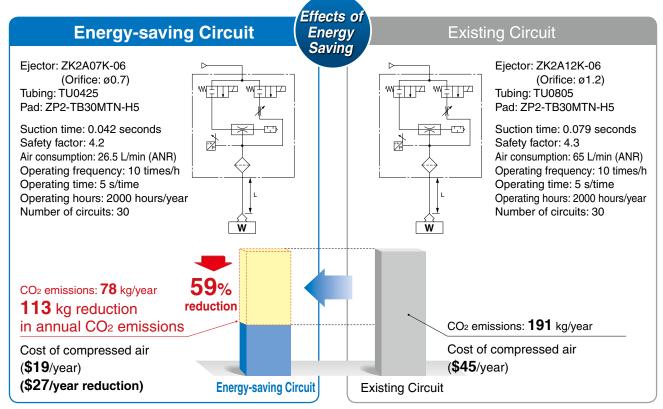
Corresponding value: Air unit \$0.014/m³ (ANR), Air - CO<sub>2</sub> conversion factor 0.0586 kg/m³ (ANR)

**Energy-saving Circuit** 


**42**%

reduction

### Optimized vacuum adsorption transfer system




By using our model selection software to find an optimal size model which meets your requirements, you can reduce your air consumption.



By selecting optimal size piping, a smaller ejector can also be used, resulting in reduced air consumption.

The larger the piping is, the larger the ejector must be, and the greater the amount of air that is consumed.



Corresponding value: Air unit \$0.014/m³ (ANR), Air - CO2 conversion factor 0.0586 kg/m³ (ANR)

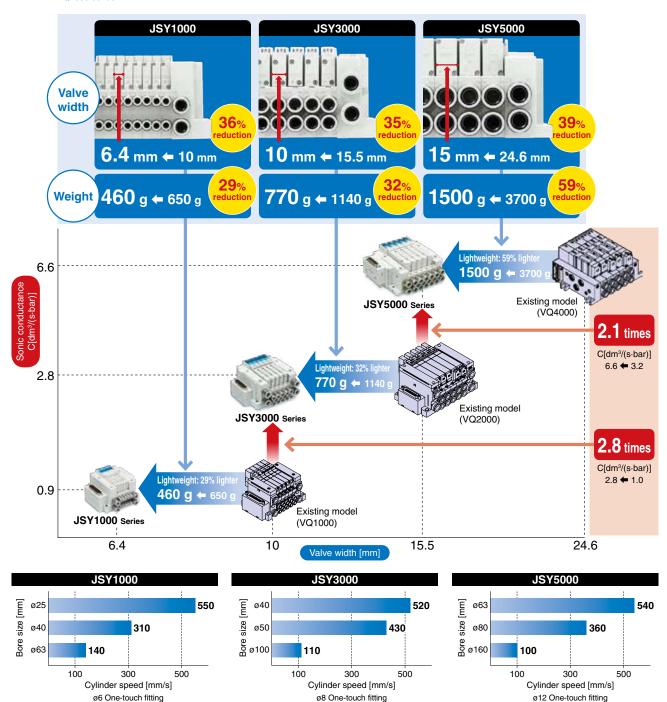


### Compact and lightweight products

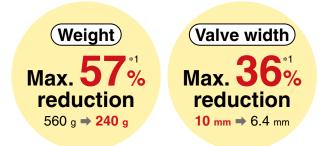
| Plug-in Type Compact 5-Port Solenoid Valve JSY Series                         | p. 52 |
|-------------------------------------------------------------------------------|-------|
| Non Plug-in Type Compact 5-Port Solenoid Valve JSY series                     | p. 53 |
| Air Cylinder <i>JCM series</i>                                                | p. 54 |
| Air Cylinder <i>JMB series</i>                                                | p. 55 |
| Air Cylinder <i>CS2 series</i>                                                | p. 56 |
| Mini Free Mount Cylinder <i>CUJ series</i>                                    | p. 57 |
| Compact Air Cylinder <i>JCQ series</i>                                        | p. 58 |
| Floating Joint <i>JT series</i>                                               | p. 59 |
| Compact Slide <i>MXH series</i>                                               | p. 60 |
| Air Slide Table <i>MXQ series</i>                                             | p. 61 |
| Air Slide Table <i>MXJ series</i>                                             | p. 62 |
| Compact Guide Cylinder <i>JMGP series</i>                                     | p. 63 |
| Micro Clamp Cylinder <i>CKZM16-X2800</i> (Base Type)-X2900 (Tandem Type)      | p. 64 |
| Rotary Actuator/Vane Type <i>CRB series</i>                                   | p. 65 |
| Body Ported Type Vacuum Ejector <b>ZH series</b>                              | p. 66 |
| In-line Type Vacuum Ejector <i>ZU</i> □ <i>A series</i>                       | p. 67 |
| Vacuum Pad <b>ZP3 s</b> eries                                                 | p. 68 |
| One-touch Fittings <i>KQ2 series</i>                                          | p. 69 |
| Speed Controller with One-touch Fitting (Push-lock Type) AS series            | p. 70 |
| Speed Controller with One-touch Fitting (Push-lock/Compact Type) JAS Series   | p. 71 |
| 3-Screen Display High-Precision Digital Pressure Switch ZSE20(F)/ISE20 Series | p. 72 |
| Digital Flow Switch <i>PFM</i> Series                                         | p. 73 |



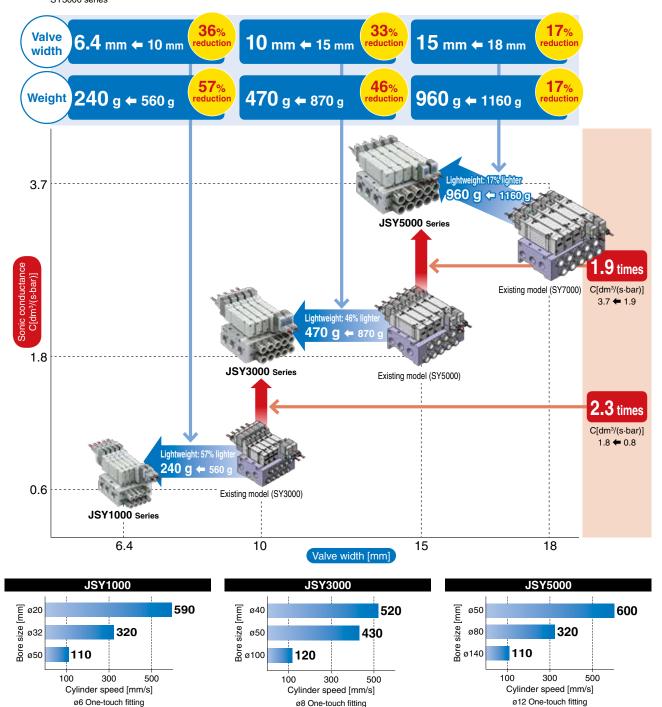
### Plug-in Type Compact 5-Port Solenoid Valve *JSY Series*


Weight

Max. 59%
reduction
3700 g → 1500 g


Valve width

Max. 39%
reduction
24.6 mm → 15 mm


\*1 Compared with the existing VQ4000 series



### Non Plug-in Type Compact 5-Port Solenoid Valve *JSY* Series



\*1 Compared with the existing SY3000 series



### Air Cylinder *JCM* Series Ø20, Ø25, Ø32, Ø40



Overall length

Approx. 1/3\*1

154 mm > 57 mm

\*1 Compared with the existing CM2B series, ø40, 50 mm stroke

#### Overall length shortened

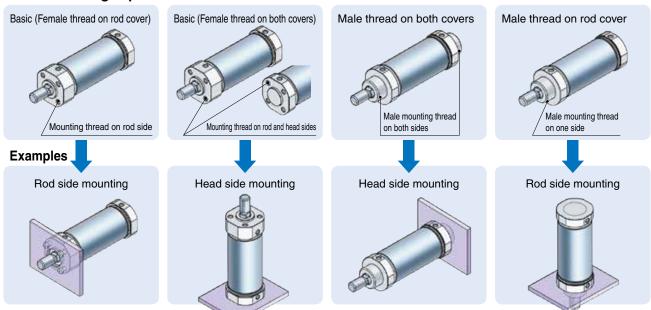


Existing model Ø40 (CM2 series)

#### **■**Shortened height

New mounting band for auto switch

#### **Mounting height**


Approx. 8 mm shorter

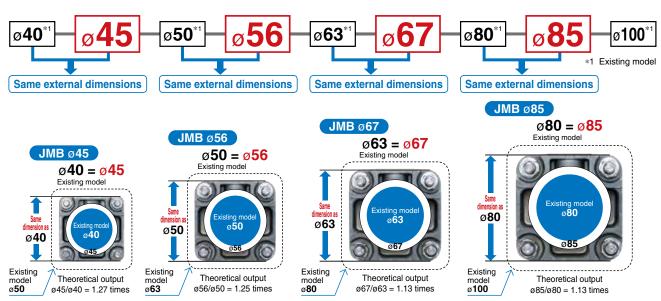




#### ■ Various cover types available

#### Direct mounting is possible.






\*1 Compared with the existing MB series,  $\emptyset 50$ , 100 mm stroke

#### Overall length shortened



#### **■ Intermediary bore sizes ○Air saving ○Space saving**



### Air Cylinder *CS2* Series Ø125, Ø140, Ø160



Compared with a ø140, 100 mm stroke CS1 (steel tube) series model

More lightweight due to the aluminum covers on both ends



### Weight reduced by a change in the cover material \* Compared at a 100 mm stroke

|   | compared at a recommend |                                |                             |                    |  |
|---|-------------------------|--------------------------------|-----------------------------|--------------------|--|
|   | Bore size<br>[mm]       | CS2<br>(Aluminum tube)<br>[kg] | CS1<br>(Steel tube)<br>[kg] | Reduction rate [%] |  |
|   | 125                     | 7.0                            | 17.9                        | 61                 |  |
| Ī | 140                     | 8.2                            | 21.4                        | 62                 |  |
| Ī | 160                     | 11.3                           | 28.8                        | 61                 |  |

#### Mini Free Mount Cylinder CUJ Series Ø4, Ø6, Ø8, Ø10, Ø12, Ø16, Ø20

#### Miniature body

Overall length)

reduction

29.5 mm **⇒ 23.5 mm** 

**Volume** 

reduction

382 cm³ **⇒ 211 cm³** 

[mm]

\*1 Compared with the CQS series cylinders, ø20

**Dimensions (With Magnet)** 

| Bore size | A(a)   | B(b)     | C(c)       |
|-----------|--------|----------|------------|
| 12        | 17(25) | 26.5(25) | 19.5(22)   |
| 16        | 21(29) | 29.5(29) | 21(22)     |
| 20        | 25(36) | 36(36)   | 23.5(29.5) |

(): Dimensions of the CQS series cylinders

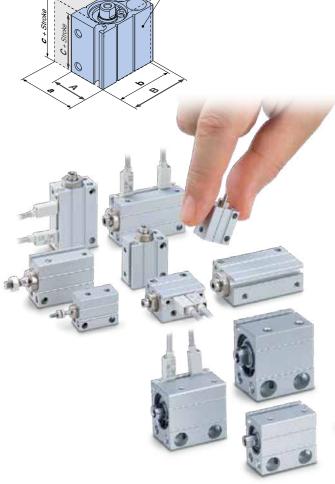
cqs

Overall length

reduction

36 mm **→ 13 mm** 

**(Volume)** 


reduction

129 cm³ **→ 38.6 cm³** 

\*2 Compared with the CU series cylinders, ø10

| Dimensions (Without Magnet) [mm |                     |          |          |  |  |
|---------------------------------|---------------------|----------|----------|--|--|
| Bore size                       | Bore size A(a) B(b) |          |          |  |  |
| 4                               | 10()                | 15(—)    | 13(—)    |  |  |
| 6                               | 13(13)              | 19(22)   | 13(33)   |  |  |
| 8                               | 13(—)               | 21(—)    | 13(—)    |  |  |
| 10                              | 13.5(15)            | 22(24)   | 13(36)   |  |  |
| 12                              | 17(—)               | 26.5(—)  | 15.5(—)  |  |  |
| 16                              | 21(20)              | 29.5(32) | 16.5(30) |  |  |
| 20                              | 25(26)              | 36(40)   | 19.5(36) |  |  |

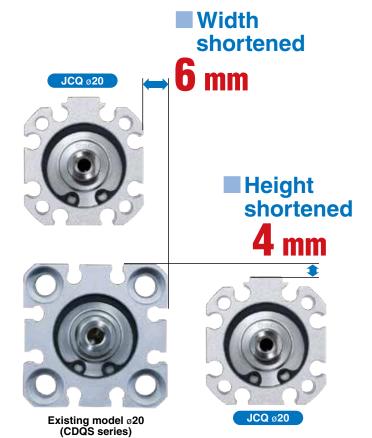
(): Dimensions of the CU series cylinders



**CUJ** 






Volume
Max. 37%
reduction
76 cm³ → 48 cm³

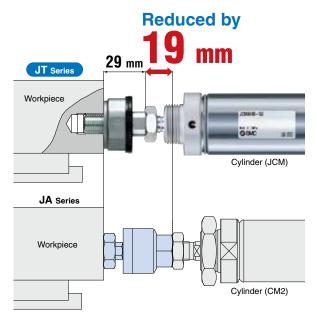
\*1 Compared with the existing CDQS series,  $\emptyset 25$ , 10 mm stroke

#### Overall length shortened



Existing model ø20 (CDQS series)






### Floating Joint *JT* Series 20, 32, 40



Compared with the existing JA20

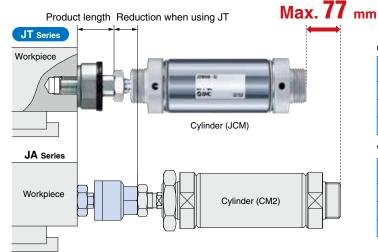




#### **Weight Comparison**

| Model | JA Series | JT Series | Reduction rate |
|-------|-----------|-----------|----------------|
| JT20  | 50 g 🕳    | → 22 g    | 56%            |
| JT32  | 70 g 🗕    | → 38 g    | 46%            |
| JT40  | 160 g 🕳   | → 98 g    | 39%            |

#### **Overall Length Comparison**


| Model | Connection thread | Shortened dimensions |
|-------|-------------------|----------------------|
| JT20  | M8 x 1.25         | 12.3 mm              |
| JT32  | M10 x 1.25        | 13.0 mm              |
| JT40  | M14 x 1.5         | 19 mm                |

Overall length
27.2 mm
33.0 mm
43.0 mm



### ■ More compact and lightweight combination are available by using the JT series with a JCM series cylinder.

Reduction of length when using JT and JCM



#### **Overall Length Comparison**

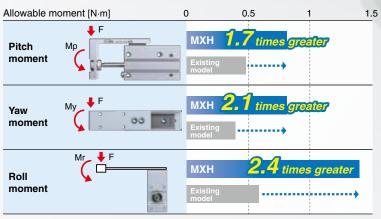
| Model | JA + CM2 Series | JT + JCM Series | Reduction rate |
|-------|-----------------|-----------------|----------------|
| JT20  | 139.5 mm        | → 90.2 mm       | 35%            |
| JT32  | 149.0 mm        | → 96.0 mm       | 36%            |
| JT40  | 189.0 mm        | → 112.0 mm      | 41%            |

#### Weight Comparison

| Model | JA + CM2 Series | JT + JCM Series | Reduction rate |
|-------|-----------------|-----------------|----------------|
| JT20  | 190 g 🛑         | → 102 g         | 46%            |
| JT32  | 350 g 🕳         | → 188 g         | 46%            |
| JT40  | 720 g 🕳         | <b>→</b> 378 g  | 48%            |



### Compact Slide *MXH* Series Ø6, Ø10, Ø16, Ø20




(Existing MXH series, ø20-10 mm stroke)

Allowable moment
Improved
by up to
240%

### With new high rigidity linear guide

### Allowable moment improvement illustrated below\*



\*1 Allowable moment caused by static load (The above graph is a comparison between the new MXH and the existing MXH6.)











### **Air Slide Table** *MXQ Series* Ø6, Ø8, Ø12, Ø16, Ø20, Ø25

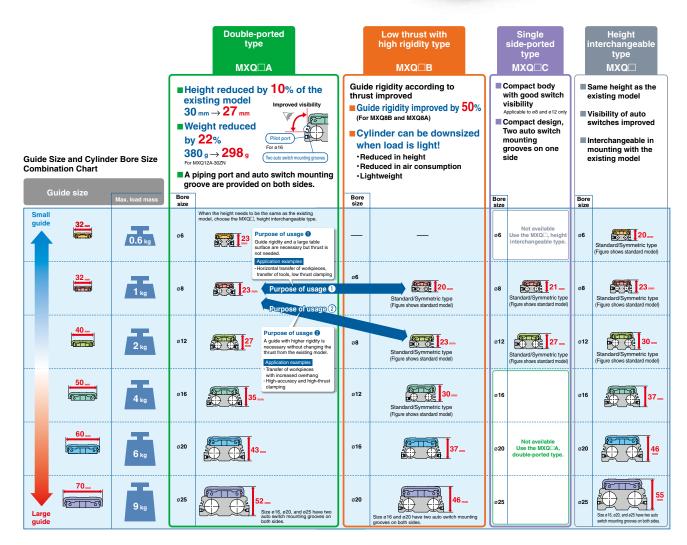
#### Reduced in height and weight with thinner table

Height

Max. 10<sup>\*1</sup>

reduction

30 mm → 27 mm


Weight

Max. 22%
reduction
380 g → 298 g

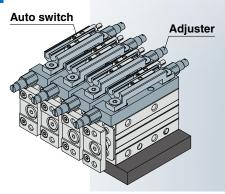
Max. 64\*1
increase

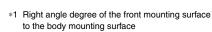
\*1 Compared between the double-ported type and the existing MXQ12-30





### **Compact**


Height: 10 mm/Width: 20 mm/Length: 43 mm (MXJ4) Traveling parallelism: 0.005 mm Front mounting accuracy\*1: 0.01 mm/Top mounting accuracy\*2: 0.03 mm


Integrated front mounting part and table result in a highly accurate and linear top and front mounting surface. rigid top and front mounting surface.

ø12, ø16

Auto switch and adjuster can be mounted on the same side.

**Short pitch mounting** is possible.





<sup>\*2</sup> Parallelism of the top mounting surface to the body mounting surface



Weight (Weight)

reduction
0.32 kg → 0.1 kg

Overall length

Max. 31% reduction

100 mm **→ 69.5 mm** 

Height

33<sup>\*2</sup> reduction

48 mm → 32 mm

\*1 Compared with the existing MGP-Z series, Ø16, 10 mm stroke \*2 Compared with the existing MGP-Z series, Ø32, 25 mm stroke

#### Overall length shortened

## 25 mm stroke 30.5 mm





Existing model ø32

#### Height shortened

6 mm





Existing model Ø32

Suitable for pushing, lifting, or clamping in a transport line







### Reduction of design labor by unitization

Arm assembly Mounting assembly added to clamp cylinder





#### Overall length

Max. 44% reduction

100 mm **⇒ 55.6 mm** 

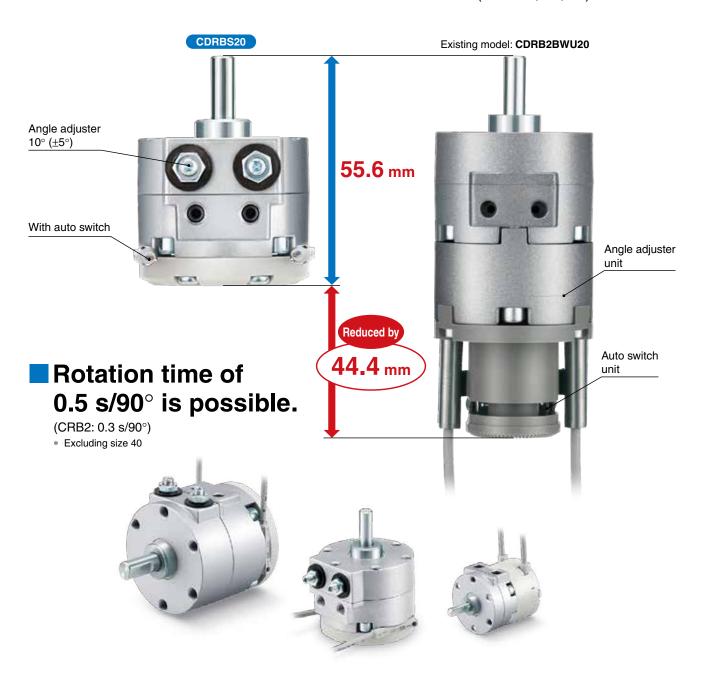
\*1 Compared with the existing CDRB2□WU, Size 20

#### (Weight)

Max. 48% reduction

222 g **⇒ 115** g

\*2 Compared with the existing CDRB2□WU, Size 20, Rotating angle 90°


### Features a compact body with a built-in

angle adjuster unit

and

auto switch unit

(Size: 20, 30, 40)



**SMC** 



### **Body Ported Type Vacuum Ejector ZH** Series

#### **■** Compact and lightweight 51.8 mm 📠 Overall length Max. reduction 58.5 mm **⇒ 51.8 mm** ZH05D -06-06-06 ZH05D A-06-06-06 Compared with the previous ZH05D□ ZH20D A-10-12-12N Port height reduction 35.5 26.4 mm 35.5 mm **⇒ 26.4 mm** Previous model ZH20D -12-16-16 9.1 mm Compared with the previous ZH20D $\square$



Previous model ZH20D $\square$ -12-16-16 ZH20D $\square$ A-10-12-12N ZH20D $\square$ A-10-12-12N ZH20D $\square$ A-10-12-12N

Compared with the previous ZH20D□

# Direct mounting Standard bracket mounting L-bracket mounting DIN rail mounting

#### **Variations**

| Mardal  | Nozzle nominal | Ultimate vacuum pressure*1 [kPa] |        | Max. suction flow rate [L/min (ANR)] |        | Air consumption |
|---------|----------------|----------------------------------|--------|--------------------------------------|--------|-----------------|
| Model   | size [mm]      | Type S                           | Type L | Type S                               | Type L | [L/min (ANR)]   |
| ZH05D□A | 0.5            |                                  |        | 6                                    | 13     | 13              |
| ZH07D□A | 0.7            |                                  | -48    | 12                                   | 28     | 27              |
| ZH10D□A | 1.0            |                                  | -40    | 26                                   | 52     | 52              |
| ZH13D□A | 1.3            | -90                              |        | 40                                   | 78     | 84              |
| ZH15D□A | 1.5            |                                  |        | 58                                   | 78     | 113             |
| ZH18D□A | 1.8            |                                  | -66    | 76                                   | 128    | 162             |
| ZH20D□A | 2.0            |                                  |        | 90                                   | 155    | 196             |

\*1 Supply pressure: 0.45 MPa



#### In-line Type Vacuum Ejector ZU□A Series

#### ■ Compact and lightweight

O.D. 010.4\*1mm

Previous model: ø12.8 mm (Weight)

**3.9** g

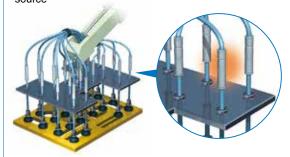
Previous model: 6.5 g

Overall length

**52**\*mm

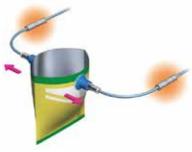
Previous model: 59 mm











#### **Application Examples**

For preventing pad adsorption failures from the vacuum source



Numerous pads can be used to adsorb workpieces with holes.

For improving responsiveness by installing on flexible parts



Can be used to open and close plastic bags

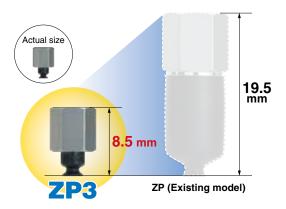


on the end of a Z-axis air cylinder

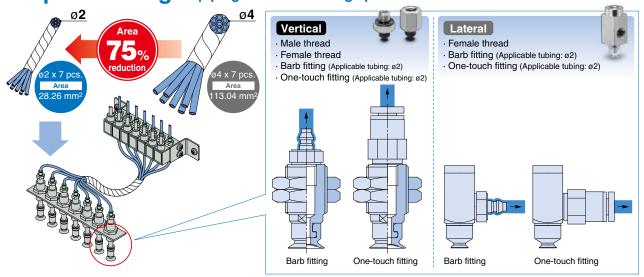
#### **Variations**

| Model | Model  | Nozzle size    | Standard supply | Ultimate vacuum pressure [kPa] |        | Max. suction flow rate [L/min (ANR)] |               | Air consumption | Port size                      |
|-------|--------|----------------|-----------------|--------------------------------|--------|--------------------------------------|---------------|-----------------|--------------------------------|
|       | [mm]   | pressure [MPa] | Type S          | Type L                         | Type S | Type L                               | [L/min (ANR)] | Port Size       |                                |
|       | ZU03SA | 0.3            | 0.35            | -85                            | _      | 1.8                                  | _             | 3.7             | ø4 One-touch fitting<br>ø5/32" |
|       | ZU04SA | 0.4            |                 | -87                            |        | 3.2                                  |               | 7.4             |                                |
|       | ZU05□A | 0.5            | 0.45            | -90                            | -48    | 7                                    | 13            | 14              | ø6 One-touch fitting           |
|       | ZU07□A | 0.7            |                 |                                |        | 11                                   | 16            | 28              | Rc1/8                          |

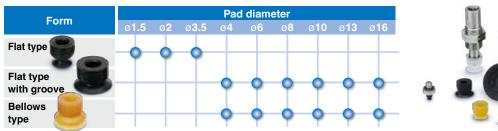



#### Overall length shortened




\*1 For the flat type (Pad diameter: ø2)








#### ■ Space saving Ø2 piping reduces working space!



#### Variations





#### One-touch Fittings KQ2 Series

Weight

Max. 57%

reduction

12 g → 5.2 g

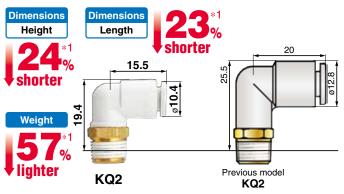
Height

Max. 24<sup>\*1</sup>

reduction

25.5 mm → 19.4 mm

Length

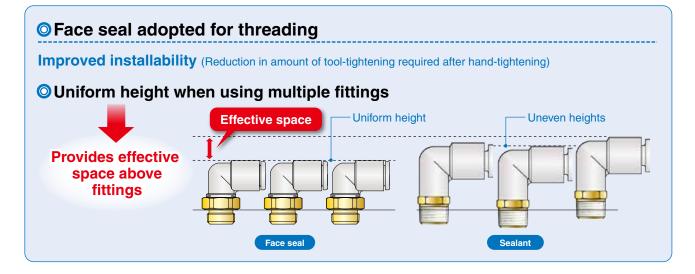

Max. 23<sup>\*1</sup>

reduction

20 mm → 15.5 mm

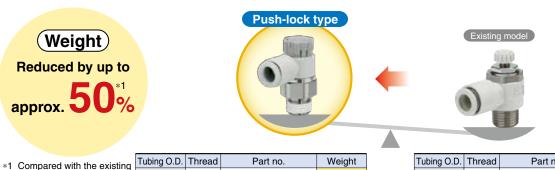
\*1 Compared with the previous KQ2 series model: Male elbow, applicable tubing O.D. ø6, connection thread R1/8

#### ■ Compact and lightweight




\*1 Compared with the previous KQ2 series model: Male elbow, applicable tubing O.D. ø6, connection thread R1/8

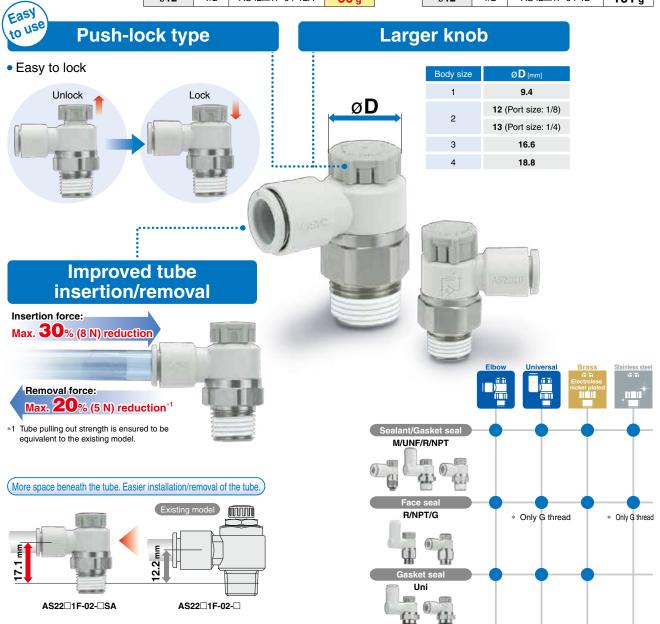
### Improved tube insertion/removal




\*1 Tube removal strength is ensured to be equivalent to previous model.



#### **Speed Controller with One-touch Fitting** (Push-lock Type) AS Series


#### Reduced labor time and weight!



\*1 Compared with the existing AS22□1F, ø12

| Tubing O.D. | Thread | Part no.       | Weight      |
|-------------|--------|----------------|-------------|
| ø <b>6</b>  | 1/4    | AS22□1F-02-06A | <b>18</b> g |
| ø <b>12</b> | 1/2    | AS42□1F-04-12A | <b>56</b> g |

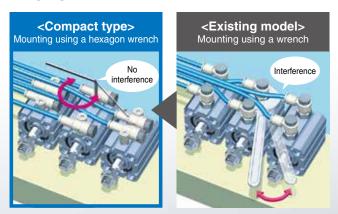
| Tubing O.D. | Thread | Part no.      | Weight       |
|-------------|--------|---------------|--------------|
| ø <b>6</b>  | 1/4    | AS22□1F-02-06 | <b>32</b> g  |
| ø <b>12</b> | 1/2    | AS42□1F-04-12 | <b>101</b> g |





### Speed Controller with One-touch Fitting (Push-lock/Compact Type) JAS Series



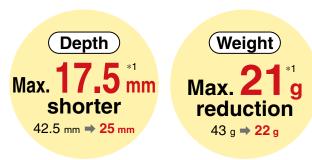

\*1 Compared with the existing AS12□1F, M5



### Possible to adjust flow rate even in a narrow space

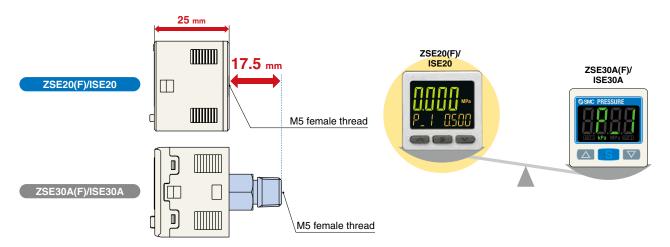


### Easily mounted using a hexagon wrench







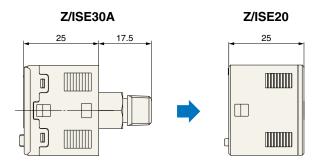




## Now more compact and lightweight due to the M5 pressure port being located on the inside of the product





\*1 When an M5 female thread is used.




Piping: M5 female thread type

|             | Z/ISE20 | Z/ISE30A | Reduction rate |
|-------------|---------|----------|----------------|
| Weight (g)  | 22      | 43       | 49%            |
| Depth (mm)  | 25      | 42.5     | 41%            |
| Height (mm) | 30      | 30       | _              |
| Width (mm)  | 30      | 30       | _              |

Piping: R1/8 type

|             | Z/ISE20 | Z/ISE30A | Reduction rate |
|-------------|---------|----------|----------------|
| Weight (g)  | 32      | 43       | 26%            |
| Depth (mm)  | 40.2    | 42.5     | 5%             |
| Height (mm) | 30      | 30       | _              |
| Width (mm)  | 30      | 30       | _              |





## Digital Flow Switch *PFM*□ *Series*

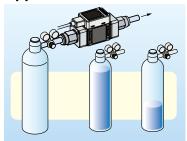


Weight

Max. 86%
reduction
1100 g → 155 g

\*1 Compared with the existing PF2A series, 200 L type

\*2 Compared with the existing PF2A series, 2000 L type

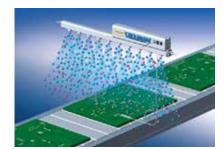

#### **Compared with the Existing PF2A**

|        |                                                         | PFMC                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |
|--------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|        | 200 L type                                              | 500 L type                                       | 2000 L type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000 L type                                                                  |
| Series | OF HEREN                                                |                                                  | The state of the s | E-1750                                                                       |
| Weight | <b>76%</b> reduction 290 g → <b>70</b> g                | 66% reduction<br>290 g → 100 g                   | 86% reduction*1 1100 g → 155 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>78%</b> reduction 1100 g <b>⇒ 240 g</b>                                   |
|        | <b>81%</b> reduction 287.9 cm³ <b>⇒ 55.4 cm³</b>        | <b>67%</b> reduction 287.9 cm³ <b>→ 94.9 cm³</b> | <b>80%</b> reduction<br>809.6 cm³ <b>→ 159.7 cm</b> ³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>74%</b> reduction 809.6 cm³ → <b>208.2 cm</b> ³                           |
| Volume | PFMB 29 10 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 27.8                                             | PFMB  92  PF2A  series  50.7  Garage and 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PFMC7202 25,90 PF2A 66.1 GO TO TO THE PER PER PER PER PER PER PER PER PER PE |

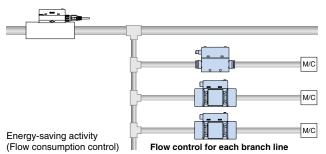
\*1 Compared with the rated flow rate of 3000 L

#### **Applications**

73




Accumulated indication shows the operating flow rate or residual amount (of N2, etc.) in a gas cylinder.




Flow control of the air for spray painting

\* The product is not designed to be explosion proof.



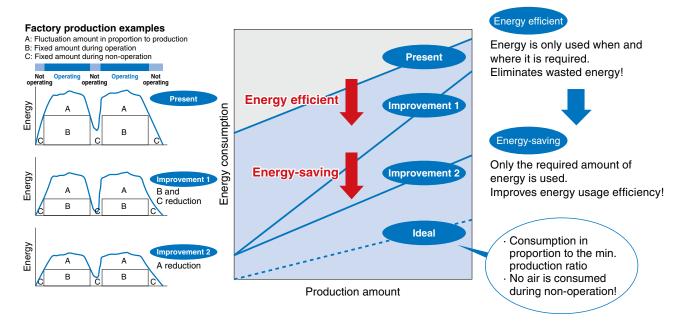
Control of purge air flow of ionizer



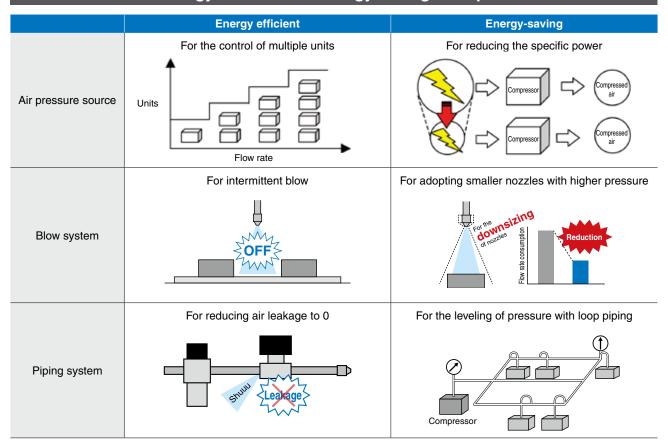
## 9 Technical data

| Energy-saving mindset                               | p. 75 |
|-----------------------------------------------------|-------|
| Changes in upstream conductance pressure loss       | p. 76 |
| Flow rate calculation                               | p. 77 |
| Conductances combined                               | p. 78 |
| Main piping pressure loss calculation               | p. 79 |
| Amount of air consumed by the cylinder and tubing 1 | p. 80 |
| Amount of air consumed by the cylinder and tubing 2 | n 81  |

#### UNIT CONVERSIONS

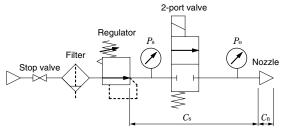

|             | unit            | conversion       | result          |
|-------------|-----------------|------------------|-----------------|
| length      | m               | x 3.28           | ft              |
|             | mm              | x 0.04           | in              |
| mass        | g               | x 0.04           | oz              |
| volume      | cm <sup>3</sup> | ÷ 16.387         | in <sup>3</sup> |
|             | L               | x 61.024         | in <sup>3</sup> |
| speed       | mm/s            | ÷ 25.4           | in/s            |
| pressure    | MPa             | x 145            | psi             |
|             | kPa             | ÷ 6.895          | psi             |
| temperature | °C              | x1.8 then add 32 | °F              |
| torque      | N·m             | x 0.738          | ft- <b>l</b> b  |
| force       | Ν               | ÷ 4.448          | lbf             |
| flow        | L/min           | ÷ 28.317         | cfm             |
|             | JPY             | × 0.0094         | dollar          |
|             |                 |                  |                 |




## **Energy-saving mindset**

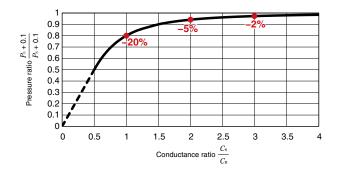
Energy-saving measures can be divided into two main categories. They are either energy efficient or energy saving.

Easy-to-implement, effective measures with a priority on energy efficiency can help you take your energy savings to the next level!




#### **Energy-efficient and energy-saving examples**

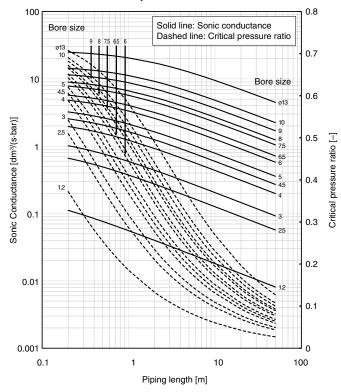



# Changes in upstream conductance pressure loss

Since the amount of pressure loss changes depending on the blow nozzle conductance ratio and the upstream (piping, valves, etc.) conductance ratio, the pressure right before the nozzle will also change.



 $\left. \begin{array}{l} P_{\rm s} : {\rm Supply \; pressure} \\ P_{\rm o} : {\rm Pressure \; right \; before \; the \; nozzle} \end{array} \right\} \; {\rm Pressure \; ratio} \; \frac{P_{\rm o} + 0.1}{P_{\rm s} + 0.1} \\ C_{\rm s} : {\rm Upstream \; conductance} \\ C_{\rm n} : {\rm Nozzle \; conductance} \end{array} \right\} \; {\rm Conductance \; ratio} \; \frac{C_{\rm s}}{C_{\rm n}} \label{eq:proposed}$ 


Recommended air blow system



| Conductance ratio | Pressure drop [%] |  |  |  |
|-------------------|-------------------|--|--|--|
| 1                 | 20                |  |  |  |
| 2                 | 5                 |  |  |  |
| 3                 | 2                 |  |  |  |
| -                 |                   |  |  |  |

When selecting the size of upstream piping, we recommend staying within 2 to 3 of the conductance ratio.

#### Tube conductance example



#### Nozzle conductance example

| Nozzle size<br>[mm] | Cn   | Nozzle size<br>[mm] | Cn   |
|---------------------|------|---------------------|------|
| 1                   | 0.14 | 3                   | 1.27 |
| 1.5                 | 0.32 | 3.5                 | 1.73 |
| 2                   | 0.57 | 4                   | 2.26 |
| 2.5                 | 0.88 | 6                   | 5.09 |
|                     |      | 8                   | 9.05 |

#### Valve conductance example

| Body                      | Port size | Orifice diameter mmø | Model  | Flow rate characteristics |      |
|---------------------------|-----------|----------------------|--------|---------------------------|------|
| material                  | FUIT SIZE |                      | Model  | С                         | b    |
| Al                        | 1/4 (8A)  |                      | VXD230 | 8.5                       | 0.35 |
|                           | 3/8 (10A) | 10                   |        | 9.2                       |      |
|                           | 1/2 (15A) |                      |        | 9.2                       |      |
|                           | ø10       |                      |        | 5.6                       | 0.33 |
|                           | ø3/8"     |                      |        | 4.8                       | 0.33 |
|                           | ø12       |                      |        | 7.2                       | 0.33 |
| Stainless<br>steel<br>C37 | 3/8 (10A) | 15                   | VXD240 | 18.0                      | 0.35 |
|                           | 1/2 (15A) | 15                   |        | 20.0                      |      |
|                           | 3/4 (20A) | 20                   | VXD250 | 38.0                      | 0.30 |



### Flow rate calculation

By using the flow rate calculation graph, it is possible to easily calculate the flow rate of a nozzle, tube, or valve.

#### Formula for flow rate

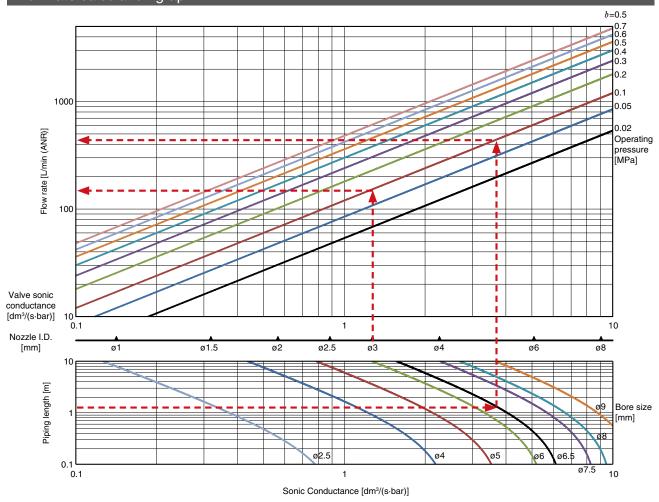
#### **Choked flow**

$$Q = 600 \times C (P_1 + 0.1) \sqrt{\frac{293}{273 + T}}$$

Subsonic flow

**Subsonic flow** 
$$Q = 600 \times C (P_1 + 0.1) \sqrt{1 - \left[ \frac{P_2 + 0.1}{P_1 + 0.1} - b \right]^2 \sqrt{\frac{293}{273 + T}}}$$
 When the critical pressure ratio is 0.5

Q: Air flow rate [L/min (ANR)] C: Sonic conductance [L/(s·bar)]


b: Critical pressure ratio [-]

*P*<sub>1</sub>: Upstream pressure [MPa]

P<sub>2</sub>: Downstream pressure [MPa]

T: Temperature [ $^{\circ}$ C]

#### Flow rate calculation graph



#### Calculation example

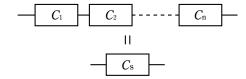
#### For nozzles

- ① Go up in a vertical line from the nozzle I.D.
- 2 From the point of intersection with the operating pressure (diagonal line), go horizontally to the left to find the flow rate.

#### For tubes

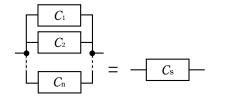
- 1) Find the point of intersection of the tube I.D. (diagonal line) and the piping length, and go up in a vertical line.
- 2) From the point of intersection with the operating pressure (diagonal line), go horizontally to the left to find the flow rate.




## **Conductances combined**

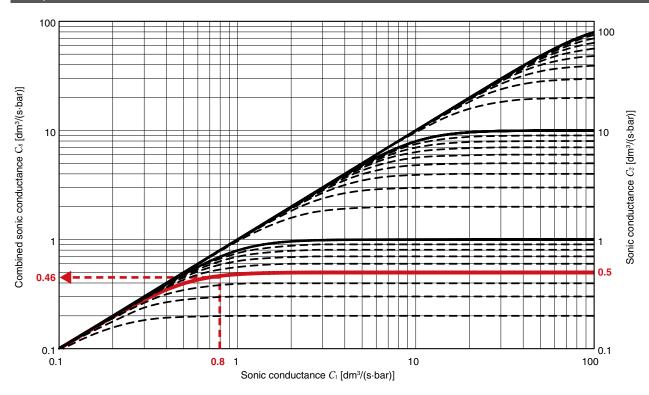
Calculation method for combining the conductance of each device and finding the equivalent conductance of each device in order to figure out the flow capacity of a pneumatic system

#### Formula for finding the combined total


#### Connected in series

$$C_{\rm S} = \frac{1}{\sqrt[3]{\frac{1}{C_1^3} + \frac{1}{C_2^3} + \dots + \frac{1}{C_n^3}}}$$




#### Connected in parallel

$$C_{\rm S} = C_1 + C_1 + ... + C_{\rm n}$$



There is also a formula for finding the critical pressure ratio (b), but it's easier to just use the smallest device possible.

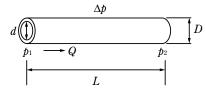
#### Graph for when connected in series



Ex.) When connecting a device (sonic conductance:  $C_1 = 0.8$ ) to another device (sonic conductance:  $C_2 = 0.5$ ), 0.46 is required.

### Main piping pressure loss calculation

#### Pressure loss formula

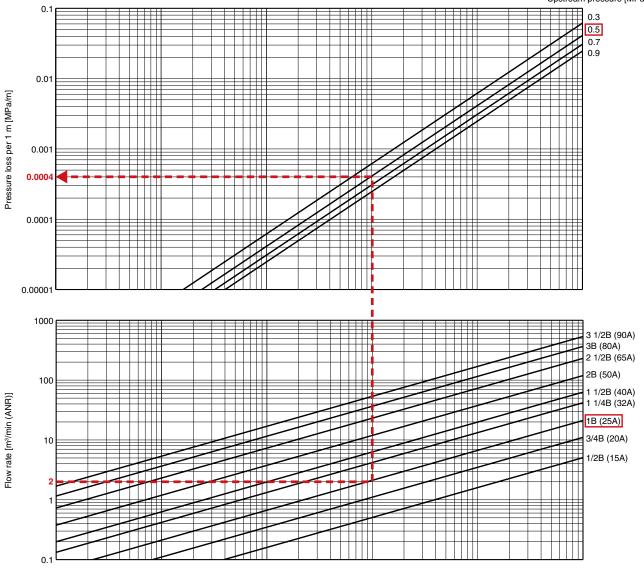

Pressure loss  $\Delta p$ 

$$\Delta p = \frac{2.466 \times 10^3 L}{d^{5.31} (p_1 + 0.1)} Q^2$$

 $\Delta p$ : Pressure loss [MPa] (=  $p_1 - p_2$ )

Q: Standard volume flow [m<sup>3</sup>/min (ANR)]

p<sub>1</sub>: Upstream pressure [MPa] (= Gauge pressure)



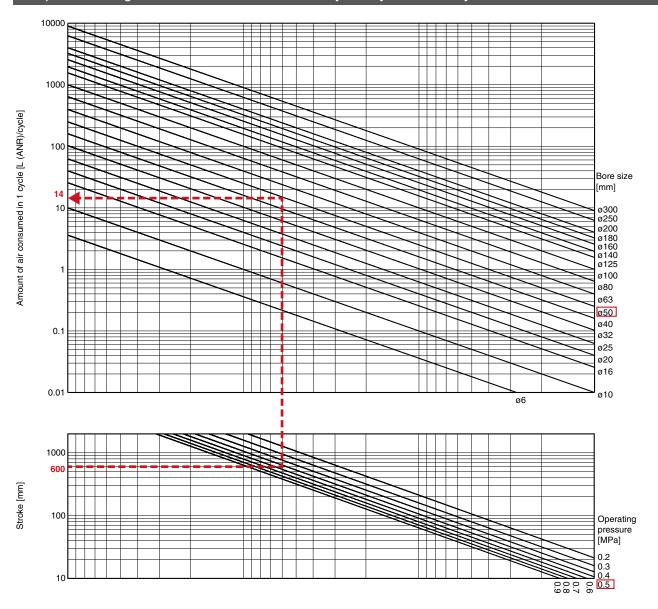

d: Pipe bore [mm]

L: Piping length [m]

#### Pressure loss calculation graph

Upstream pressure [MPa]




#### Calculation example

For 1B (25A), L = 10 m,  $p_1 = 0.5$  MPa, and Q = 2 m<sup>3</sup>/min (ANR), the pressure loss per 1 m can be found to be 0.0004 [MPa/m] and, therefore, for 10 m, it is  $\Delta p = 0.0004 \text{ x } 10 = 0.004 \text{ [MPa]}$ .

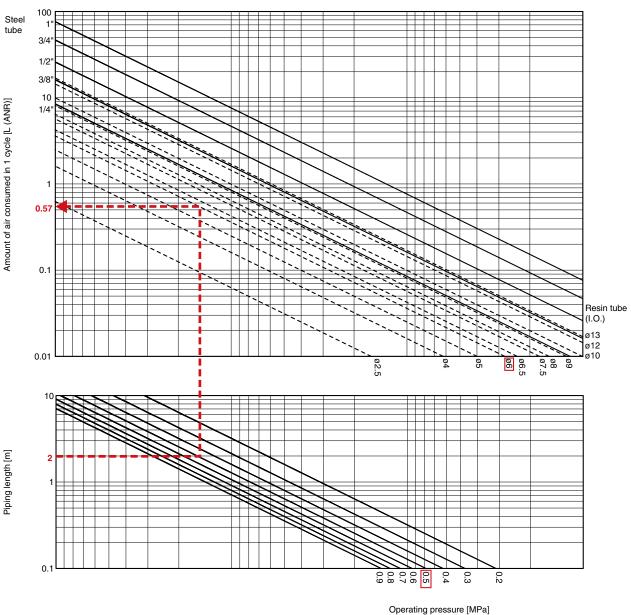
# Amount of air consumed by the cylinder and tubing 1

By using the graph, it is possible to easily calculate the amount of air consumed by a cylinder and the tubing in 1 cylinder cycle.

#### Graph for finding the amount of air consumed by the cylinder in 1 cycle



#### How to find the amount of air consumed by the cylinder


How much air is consumed in 1 cycle when 10 cylinders (Bore size: 50 mm, Stroke: 600 mm) are operated at a pressure of 0.5 MPa?

- ① Find the point of intersection of the operating pressure (diagonal line) and the stroke length, and go up in a vertical line.
- ② From the point of intersection with the tube I.D. (diagonal line), go horizontally to the left to find the amount of air required for 1 cylinder cycle.
- ③ Furthermore, by multiplying this number by 10, the amount of air required for 1 cycle of 10 cylinders can be found.



### Amount of air consumed by the cylinder and tubing 2

#### Graph for finding the amount of air consumed by the tubing in 1 cylinder cycle



#### How to find the amount of air consumed by the tubing

How much air is consumed in 1 cycle of a cylinder operating at a pressure of 0.5 MPa when 2 tubes (I.D.: 6 mm, Piping length: 2 m) are used?

- ① Find the point of intersection of the operating pressure (diagonal line) and the piping length, and go up in a vertical line.
- ② From the point of intersection with the tube I.D. (diagonal line), go horizontally to the left to find the amount of air consumed by the tubing in 1 cylinder cycle.

#### How to find the total amount of air consumed

The amount air consumed by the cylinder and tubing can be found using the formula below.

Total air consumption = (the amount of air consumed by the cylinder in 1 cycle + the amount of air consumed by the piping in 1 cylinder cycle) x the number of operations





### Global Manufacturing, Distribution and Service Network

#### **Worldwide Subsidiaries**

#### **EUROPE**

**AUSTRIA** 

SMC Pneumatik GmbH (Austria)

**BELGIUM** 

SMC Pneumatics N.V./S.A.

**BULGARIA** 

SMC Industrial Automation Bulgaria EOOD

**CROATIA** 

SMC Industrijska Automatika d.o.o.

CZECH REPUBLIC

SMC Industrial Automation CZ s.r.o.

DENMARK

SMC Pneumatik A/S

**ESTONIA** 

SMC Pneumatics Estonia

**FINLAND** 

SMC Pneumatics Finland OY

**FRANCE** 

SMC Pneumatique S.A.

**GERMANY** 

SMC Pneumatik GmbH

GREECE SMC Hellas EPE

HUNGARY

SMC Hungary Ipari Automatizálási Kft.

**IRELAND** 

SMC Pneumatics (Ireland) Ltd.

**ITALY** 

SMC Italia S.p.A.

**KAZAKHSTAN** 

LLP "SMC Kazakhstan"

SMC Pneumatics Latvia SIA

**LITHUANIA** 

**UAB "SMC Pneumatics"** 

**NETHERLANDS** 

SMC Pneumatics B.V.

**NORWAY** 

SMC Pneumatics Norway AS

**POLAND** 

SMC Industrial Automation Polska Sp. z o.o.

**ROMANIA** 

SMC Romania S.r.I.

RUSSIA

SMC Pneumatik LLC.

SLOVAKIA

SMC Priemyselná Automatizácia, Spol s.r.o.

**SLOVENIA** 

SMC Industrijska Avtomatika d.o.o.

SPAIN / PORTUGAL

SMC España, S.A.

**SWEDEN** 

SMC Pneumatics Sweden AB

**SWITZERLAND** 

SMC Pneumatik AG

**TURKEY** 

SMC Pnömatik Sanayi Ticaret ve Servis A.Ş.

SMC Pneumatics (U.K.) Ltd.

ASIA / OCEANIA

AUSTRALIA

SMC Pneumatics (Australia) Pty. Ltd.

SMC (China) Co., Ltd.

SMC Pneumatics (Guangzhou) Ltd.

HONG KONG

SMC Pneumatics (Hong kong) Ltd.

INDIA

SMC Pneumatics (India) Pvt. Ltd. INDONESIA

PT. SMC Pneumatics Indonesia

**JAPAN** 

SMC Corporation

MALAYSIA

SMC Pneumatics (S.E.A.) Sdn. Bhd.

**NEW ZEALAND** 

SMC Pneumatics (N.Z.) Ltd.

**PHILIPPINES** 

Shoketsu SMC Corporation

SINGAPORE

SMC Pneumatics (S.E.A.) Pte. Ltd.

**SOUTH KOREA** 

SMC Pneumatics Korea Co., Ltd.

TAIWAN

SMC Pneumatics (Taiwan) Co., Ltd.

**THAILAND** 

SMC (Thailand) Ltd.

**UNITED ARAB EMIRATES** SMC Pneumatics Middle East FZE

SMC Pneumatics (VN) Co., Ltd

**AFRICA** 

SOUTH AFRICA

SMC Pneumatics (South Africa) Pty Ltd

NORTH, CENTRAL & **SOUTH AMERICA** 

**ARGENTINA** 

SMC Argentina S.A.

**BOLIVIA** 

SMC Pneumatics Bolivia S.R.L.

**BRAZIL** 

SMC Pneumáticos do Brasil Ltda. **CANADA** 

SMC Pneumatics (Canada) Ltd.

CHILE SMC Pneumatics (Chile) S.A.

COLOMBIA

SMC Colombia Sucursal de SMC Chile, S.A.

**MEXICO** SMC Corporation (Mexico) S.A. de C.V.

SMC Corporation Peru S.A.C.

USA

SMC Corporation of America

**VENEZUELA** 

SMC Neumatica Venezuela S.A

#### U.S. & Canadian Sales Offices

#### WEST

**Austin** 

**Dallas** El Paso

Los Angeles **Phoenix** 

**Portland** San Jose

CENTRAL Chicago

Cincinnati Cleveland

Detroit **Des Moines** 

**Grand Rapids** Indianapolis

**Kansas City** Milwaukee

Minneapolis

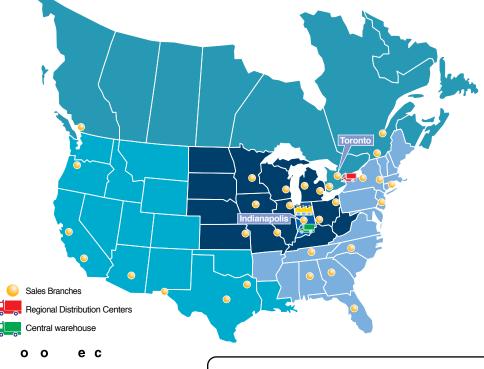
St. Louis

**Albany Atlanta** 

Birmingham **Boston** Charlotte

Knoxville **Nashville** 

**New Jersey** Rochester


**Tampa** CANADA

Vancouver **Toronto** Windsor

Montreal **Quebec City** 

0

CO

