Motorless Type

Electric Actuators

Your motor and driver can be used together! Manufacturers of compatible motors: 18 companies

Mitsubishi Electric Corporation	YASKAWA Electric Corporation
SANYO DENKI CO., LTD.	OMRON Corporation
Panasonic Corporation	FANUC CORPORATION
NIDEC SANKYO CORPORATION	KEYENCE CORPORATION
FUJI ELECTRIC CO., LTD.	MinebeaMitsumi Inc.
Shinano Kenshi Co., Ltd.	ORIENTAL MOTOR Co., Ltd.
FASTECH Co., Ltd.	Rockwell Automation, Inc. (Allen-Bradley)
Beckhoff Automation GmbH	Siemens AG
Delta Electronics, Inc.	ANCA Motion

High Rigidity and High Precision Slider Type LEKFS Series

New A max. stroke of up to 1200 mm is now supported (size 40). Intermediate strokes are now available in 50 mm increments.
Ball Screw Drive/LEKFS Series

Slider Type LEF Series
p. 37, 64

Ball Screw Drive/LEFS Series

Size	Stroke
$\mathbf{2 5}$	50 to 800
$\mathbf{3 2}$	50 to 1000
$\mathbf{4 0}$	150 to 1200

Belt Drive/LEFB Series

Size	Stroke
$\mathbf{2 5}$	300 to 2000
$\mathbf{3 2}$	300 to 2500
$\mathbf{4 0}$	300 to 3000

Guide LEYG	Type	p. 169
Size	Stroke	
25	30 to 300	
32		

$L E \square$ Series

Motorless Type

Compatible Motors by Manufacturer (100 W/200 W/400 W/750 W equivalent)

Manufacturer	Series*1	Battery-less absolute encoder	Pulse input	CC-Línk IE Field	CC-LínkIE TSN	SSCNETIIUH
Mitsubishi Electric Corporation	MELSERVO JN					
	MELSERVO J4					
	MELSERVO J5					
YASKAWA Electric Corporation	Σ-V					
	E-7					
	E-X					
SANYO DENKI CO., LTD.	SANMOTION R					
OMRON Corporation	OMNUC G5					
	OMNUC 1S					
Panasonic Corporation	MINAS A5/A6					
FANUC CORPORATION	$\beta \mathrm{is}(-\mathrm{B})$					
NIDEC SANKYO CORPORATION	S-FLAG					
KEYENCE CORPORATION	SV					
	SV2					
FUJI ELECTRIC CO., LTD.	ALPHA7					
MinebeaMitsumi Inc.	Hybrid stepping motors					
Shinano Kenshi Co., Ltd.	CSB-BZ					
ORIENTAL MOTOR Co., Ltd.	α STEP AR					
	α STEP AZ					
FASTECH Co., Ltd.	Ezi-SERVO					
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL					
Beckhoff Automation GmbH	AM 30/31/80/81					
Siemens AG	SIMOTICS S-1FK7					
Delta Electronics, Inc.	ASDA-A2					
ANCA Motion	AMD2000					

*1 Make sure that the mounting dimensions and motor specifications are appropriate. Select a motor after checking the specifications of each model. Additionally, when considering a motor other than one of those shown above, select a motor within the range of the specifications after checking the mounting dimensions.

Series Variations

Compatible interfaces*2

*2 For details on compatible interfaces, refer to each manufacturer's catalog.
Trademark
DeviceNet ${ }^{\circledR}$ is a registered trademark of ODVA, Inc.
EtherNet//P® is a registered trademark of ODVA, Inc.

Motorless Type Electric Actuators

High Rigidity and High Precision Slider Type Ball Screw Drive LEKFS Series
Model Selection p. 7
How to Order p. 16
Specifications p. 17
Dimensions p. 18
Motor Mounting p. 24
Motor Mounting Parts p. 26
Auto Switch Mounting p. 29
Specific Product Precautions p. 33

Slider Type Ball Screw Drive LEFS Series
Model Selection p. 37
How to Order p. 45
Specifications p. 46
Dimensions p. 47
Motor Mounting p. 59
Motor Mounting Parts p. 61
Slider Type Belt Drive LEFB Series
Model Selection p. 64
How to Order p. 69
Specifications p. 70
Dimensions p. 71
Motor Mounting p. 83
Motor Mounting Parts p. 84
Auto Switch Mounting p. 86
Specific Product Precautions p. 90
© High Rigidity Slider Type Ball Screw Drive LEJS Series

Model Selection p. 93
How to Order p. 105
Specifications p. 106
Dimensions p. 107
LEJS-M (Built-in Intermediate Supports Type)
Model Selection p. 93
How to Order p. 109
Specifications p. 109
Dimensions p. 110

© High Rigidity Slider Type Ball Screw Drive LEJS100-X400
How to Order p. 111
Specifications p. 111
Dimensions p. 112
Side Supports/Auto Switch Mounting p. 117
Motor Mounting p. 113
Motor Mounting Parts p. 114
Auto Switch Mounting p. 116
Specific Product Precautions p. 121

contexte

Motorless Type Electric Actuators

Large Slider Type Belt Drive LET-X11 Series

Model Selection .. p. 125
How to Order .. p. 133
Specifications .. p. 134
Dimensions... 135
Motor Mounting.. p. 136
Motor Mounting Parts .. p. 137
Side Supports .. p. 139
Auto Switch Mounting .. p. 140
Specific Product Precautions ... p. 144

Rod Type LEY Series size 25, 32, 63
Model Selection ... p. 147
How to Order .. p. 153
Specifications .. p. 154
Dimensions.. p. 156
Rod Type LEY Series size 100
Model Selection ... p. 147
How to Order .. p. 163
Specifications ... p. 164
Dimensions... p. 165
Options... p. 167
Specific Product Precautions .. p. 196

Guide Rod Type LEYG Series
Model Selection .. p. 169
How to Order ... p. 173
Specifications .. p. 174
Dimensions.. p. 175
Motor Mounting.. p. 177
Motor Mounting Parts ... p. 184
Auto Switch Mounting ... p. 188
Specific Product Precautions ... p. 193
Slide Table/High Precision Type LESYH Series

Model Selection ..p. p. 199
How to Order ... p. 205
Specifications .. p. 206
Dimensions.. p. 207
Motor Mounting.. p. 209
Motor Mounting Parts... p. 211
Auto Switch Mounting ... p. 214
Specific Product Precautions ... p. 218

High Rigidity and High Precision Slider Type

Motorless Type

Electric Actuator/High Rigidity and High Precision Slider Type
Ball Screw Drive/LEKFS Series
Model Selection

LEKFS Series>p. 16

Selection Procedure

Check the work
Step 2 Check the cycle time.
Step 3

Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating conditions

Step 1
Check the work load-speed. <Speed-Work Load Graph>
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 8.
Selection example) The LEKFS $\square \mathbf{4 0} \square$ B-200 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2

Check the cycle time.

Calculate the cycle time using the
following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the motor type and load. The value below is recommended

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

The cycle time can be found as follows

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.05 \\
& =0.82[\mathrm{~s}]
\end{aligned}
$$

T4 = 0.05 [s]

* The conditions for the settling time vary depending on the motor or driver to be used.

Check the allowable moment.
<Static allowable moment> (page 12) <Dynamic allowable moment> (page 13)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LEKFS $\square 40 \square$ B-200 should be selected.

<Speed-Work Load Graph>
(LEKFS40)

L : Stroke [mm] … (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration [mm/s²] ... (Operating condition) a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \ldots$ (Operating condition)

T1: Acceleration time [s] Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed

Model Selection LEKFS Series

Motorless Type

* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
Speed-Work Load Graph (Guide)
* The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed" below.

LEKFS $\square 25 /$ Ball Screw Drive

Horizontal

Vertical

LEKFS \square 32/Ball Screw Drive

Horizontal

Vertical

LEKFS $\square 40 /$ Ball Screw Drive

Horizontal

Vertical

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke [mm]											
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200
LEKFS25	100 W equivalen	H	20	1500				1200	900	700	550	-	-	-	-
		A	12	900				720	540	420	330	-	-	-	-
		B	6	450				360	270	210	160	-	-	-	-
		(Motor rotation speed)			(4500	rpm)		(3650 rpm)	(2700 rpm)	(2100 rpm)	(1650 rpm)	-	-	-	-
LEKFS32	$\begin{gathered} 200 \mathrm{~W} \\ \text { equivalent } \end{gathered}$	H	24	1500					1200	930	750	610	510	-	-
		A	16	1000					800	620	500	410	340	-	-
		B	8	500					400	310	250	200	170	-	-
		(Motor rotation speed)		(3750 rpm)					(3000 rpm)	(2325 rpm)	(1875 rpm)	(1537 rpm)	(1275 rpm)	-	-
LEKFS40	400 W equivalent	H	30	-	1500					1410	1140	930	780	500	
		A	20	-	1000					940	760	620	520	440	380
		B	10	-	500					470	380	310	260	220	190
		(Motor rotation speed)		-	(3000 rpm)					(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560 rpm)	(1320 rpm)	(1140 rpm)

LEKFS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEKFS $\square 25 \square$ H/Ball Screw Drive

Horizontal

LEKFS $\square 25 \square$ A/Ball Screw Drive
Horizontal

LEKFS $\square 25 \square$ B/Ball Screw Drive
Horizontal

LEKFS $\square 25 \square$ H/Ball Screw Drive

Vertical

LEKFS $\square 25 \square$ A/Ball Screw Drive

Vertical

LEKFS $\square 25 \square$ B/Ball Screw Drive

Vertical

Work Load－Acceleration／Deceleration Graph（Guide）

LEKFS $\square 32 \square$ A／Ball Screw Drive
Horizontal

LEKFS \square 32 \square B／Ball Screw Drive

Horizontal

LEKFS \square 32 \square H／Ball Screw Drive

Vertical

LEKFS $\square 32 \square$ A／Ball Screw Drive
Vertical

LEKFS $\square 32 \square$ B／Ball Screw Drive

Vertical

LEKFS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEKFS $\square 40 \square$ H/Ball Screw Drive

Horizontal

LEKFS $\square 40 \square$ A/Ball Screw Drive

Horizontal

LEKFS $\square 40 \square$ B/Ball Screw Drive

Horizontal

LEKFS $\square 40 \square$ H/Ball Screw Drive

Vertical

LEKFS $\square 40 \square$ A/Ball Screw Drive

Vertical

LEKFS $\square 40 \square$ B/Ball Screw Drive

Vertical

Static Allowable Moment＊${ }^{* 1}$

Model	LEKFS25	LEKFS32	LEKFS40
Pitching［N•m］	61	141	264
Yawing［N•m］	70	141	264
Rolling［N•m］	115	290	473

If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product．

LEKFS Series

Motorless Type

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation.

Dynamic Allowable Moment

These graphs show the amount of allowable overhang（guide unit）when the center of gravity of the workpiece overhangs in one direction．When selecting the overhang，refer to the＂Calculation of Guide Load Factor＂ or the Electric Actuator Model Selection Software for confirmation．

Calculation of Guide Load Factor

1．Decide operating conditions．
Model：LEKFS
Size：25／32／40
Mounting orientation：Horizontal／Bottom／Wall／Vertical Work load center position［mm］：Xc／Yc／Zc
2．Select the target graph while referencing the model，size，and mounting orientation．
3．Based on the acceleration and work load，find the overhang［mm］：Lx／Ly／Lz from the graph．
4．Calculate the load factor for each direction．

$$
\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5．Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ ，and $\alpha \mathbf{z}$ is 1 or less．
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded，consider a reduction of acceleration and work load，or a change of the work load center position and series．

Example

1．Operating conditions
Model：LEKFS40
Size： 40
Mounting orientation：Horizontal
Acceleration［mm／s²］： 3000
Work load［kg］： 20
Work load center position［mm］：Xc＝0，Yc＝50，Zc＝200
2．Select the graphs for horizontal of the LEKFS40 \square on page 13.

Mounting Orientation

3．$L x=\mathbf{2 5 0} \mathbf{~ m m}, L y=\mathbf{1 8 0} \mathbf{m m}, L z=1000 \mathrm{~mm}$
4．The load factor for each direction can be found as follows．

$$
\begin{gathered}
\alpha x=0 / 570=0 \\
\alpha y=50 / 410=0.12 \\
\alpha z=200 / 1000=0.2 \\
\text { 5. } \alpha x+\alpha y+\alpha z=0.32 \leq 1
\end{gathered}
$$

LEKFS Series

Motorless Type

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	(1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEKFS25	0.04	0.02
LEKFS32	0.04	0.02
LEKFS40	0.04	0.02

* Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

* This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.

How to Order

Compatible Motors and Mounting Types*5

Applicable motor model		Size/Mounting type														
Manufacturer	Series	25						32/40								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	上-V/7/X	- *4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bullet	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bigcirc	-	-	-	-	-		-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	* ${ }^{\text {+ }}$	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	* ${ }^{*}$	-	- *3	-	-	-	-	-	-	-	- *2	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	- *1	-	- *3	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	$\underset{(46 \text { only) }}{\boldsymbol{\bullet}}$	-	-	-	-	-	-	-	-	-	- *2
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	- *2	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL		-	-	-	-	-	-	-		-	-	-		-	-
Beckhoff Automation GmbH	AM 30/31/80/81	-	-	-	-	-	-	-	-		-	$\left\|\begin{array}{c} * \\ (30 \text { only }) \end{array}\right\|$	$(31 \text { only) }$	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	- *1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Only size 32 is available when the motor mounting position is right (or left) side parallel. *3 Motor mounting position: Right (or left) side parallel only
*4 For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor.
*5 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following "Dimensions" pages.

LEKFS Series

Motorless Type

Specifications

Model				LEKFS25			LEKFS32			LEKFS40		
	Stroke [mm]*1			50 to 800			50 to 1000			150 to 1200		
	Work load [kg]		Horizontal	10	20	20	30	40	45	30	50	60
			Vertical	4	8	15	5	10	20	7	15	30
	Speed [mm / s]	Stroke range	Up to 400	1500	900	450	1500	1000	500	1500	1000	500
			401 to 500	1200	720	360	1500	1000	500	1500	1000	500
			501 to 600	900	540	270	1200	800	400	1500	1000	500
			601 to 700	700	420	210	930	620	310	1410	940	470
			701 to 800	550	330	160	750	500	250	1140	760	380
			801 to 900	-	-	-	610	410	200	930	620	310
			901 to 1000	-	-	-	510	340	170	780	520	260
			1001 to 1100	-	-	-	-	-	-	500	440	220
			1101 to 1200	-	-	-	-	-	-	500	380	190
	Pushing return to origin speed [mm/s]			30 or less								
	Positioning repeatability [mm]			± 0.01								
	Lost motion*2 [mm]			0.05 or less								
	Ball screw specifications		Thread size [mm]	$\varnothing 10$			$\varnothing 12$			$\varnothing 15$		
			Lead [mm]	20	12	6	24	16	8	30	20	10
			Shaft length [mm]	Stroke + 150			Stroke + 185			Stroke + 235		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			20000*3								
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 4}$			50/20								
	Actuation type			Ball screw (LEKFS \square), Ball screw + Belt (LEKFS \square R/L)								
	Guide type			Linear guide								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40								
	Operating humidity range [\%RH]			90 or less (No condensation)								
	Actuation unit weight [kg]			0.2			0.3			0.55		
	Other inertia [kg.cm²]			0.02 (LEFS25) 0.02 (LEFS25R/L)			$\begin{gathered} 0.08 \text { (LEFS32) } \\ 0.06 \text { (LEFS32R/L) } \end{gathered}$			$\begin{gathered} 0.08 \text { (LEFS40) } \\ 0.17 \text { (LEFS40R/L) } \end{gathered}$		
	Friction coefficient			0.05								
	Mechanical efficiency			0.8								
	Motor shape			$\square 40$			$\square 60$					
	Motor type			AC servo motor (100 V/200 V)								
	Rated output capacity [W]			100			200			400		
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			0.32			0.64			1.3		

*1 Please contact SMC for non-standard strokes as they are produced as special orders.
*2 A reference value for correcting errors in reciprocal operation
*3 Maximum acceleration/deceleration changes according to the work load.
Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" for ball screw drive on pages 9 to 11.
*4 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

* Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed."

Additionally, when running the positioning operation, do not set within 2 mm of both ends.

* Each value is only to be used as a guide to select a motor of the appropriate capacity
* For other specifications, refer to the specifications of the motor that is to be installed.

Weight

Model	LEKFS25												
Stroke $[\mathrm{mm}]$	50	100	150	200	250	300	350	400	450	500	600	700	800
Product weight $[\mathrm{kg}]$	1.6	1.7	1.9	2.0	2.2	2.3	2.4	2.5	2.7	2.8	3.1	3.4	3.7

Model	LEKFS32														
Stroke $[\mathrm{mm}]$	50	100	150	200	250	300	350	400	450	500	600	700	800	900	1000
Product weight [kg]	2.5	2.7	2.9	3.1	3.35	3.6	3.8	4.0	4.2	4.4	4.8	5.2	5.6	6.0	6.4

Model	LEKFS40														
Stroke [mm]	150	200	250	300	350	400	450	500	600	700	800	900	1000	1100	1200
Product weight [kg]	4.7	5.0	5.3	5.6	5.9	6.2	6.5	6.8	7.4	8.0	8.6	9.2	9.8	10.4	11.0

Refer to the＂Motor Mounting＂on page 24 for details about motor mounting and included parts．

Mounting type：NZ／NY／NX
$4 \times$ FA thread
thread depth FB／

Mounting type：NM1／NM2

＊1 When mounting the actuator using the body mounting reference plane，set the height of the opposite surface or pin to be 3 mm or more．（Recommended height： 5 mm ）

Applicable motor dimensions

Dimen	ons							［mm］	
Stroke	L	A	B	n	D	E	F	G	H
50	201.5	56	160				20		30
100	251.5	106	210	4	－	－		100	
150	301.5	156	260						
200	351.5	206	310	6	2				
250	401.5	256	360	6	2	240		220	
300	451.5	306	410						
350	501.5	356	460	8	3	360	35	340	45
400	551.5	406	510				35		45
450	601.5	456	560	10	4	480		460	
500	651.5	506	610	10	4	480		460	
600	751.5	606	710	12	5	600		580	
700	851.5	706	810	14	6	720		700	
800	951.5	806	910	16	7	840		820	

Mounting type	FA		FB	FC	FD	$\left\lvert\, \begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}\right.$	FF	FG	FH	FJ	FK
	Mounting type	$\begin{gathered} \text { Applicable } \\ \text { motor } \end{gathered}$									
NZ	M4 $\times 0.7$	$\varnothing 4.5$	8	$ø 46$	30	3.5	35.5	－	－	8	25 ± 1
NY	M3 $\times 0.5$	$ø 3.4$	8	ø45	30	3.5	35.5	－	－	8	25 ± 1
NX	M4 $\times 0.7$	ø4．5	8	$ø 46$	30	3.5	35.5	－	－	8	18 ± 1
NM1	ø3．4	M3	－	$\square 31$	$22^{* 1}$	2．5＊1	24	6.5	13.5	5＊2	18 to 25
NM2	$ø 3.4$	M3	－	$\square 31$	22＊1	$2.5 * 1$	33.1	6.5	22.6	6	20 ± 1

[^0]Motor Mounting，Applicable Motor Dimensions［mm］

LEKFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 24 for details about motor mounting and included parts.

LEKFS32

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimensions

Stroke	L	A	B	n	D	E	G
50	238	56	180	4	-	-	130
100	288	106	230				
150	338	156	280				
200	388	206	330	6	2	300	280
250	438	256	380				
300	488	306	430				
350	538	356	480	8	3	450	430
400	588	406	530				
450	638	456	580				
500	688	506	630	10	4	600	580
600	788	606	730				
700	888	706	830	12	5	750	730
800	988	806	930	14	6	900	880
900	1088	906	1030				
1000	1188	1006	1130	16	7	1050	1030

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ \text { (Max.) } \end{gathered}$	FF	FJ	FK
	Mounting type	Applicable motor							
NZ	M5 x 0.8	$\varnothing 5.8$	9	ø70	50	5	46	14	30 ± 1
NY	M 4×0.7	ø4.5	8	ø70	50	5	46	11	30 ± 1
NX	M 5×0.8	ø5.8	9	ø63	40*1	4.5*1	49.7	9	20 ± 1
NW	M 5×0.8	ø5.8	9	ø70	50	5	47.5	9	25 ± 1
NV	M 4×0.7	ø4.5	8	ø63	40*1	4.5*1	49.7	9	20 ± 1
NU	M 5×0.8	ø5.8	9	ø70	50	5	47.5	11	23 ± 1
NT	M 5×0.8	ø5.8	9	ø70	50	5	46	12	30 ± 1
NM1	M 4×0.7	ø4.5	8	$\square 47.14$	38.1*1	4.5*1	21	6.35*2	20 ± 1
NM2	$\mathrm{M} 4 \times 0.7$	ø4.5	8	$\square 50$	36*1	4.5*1	40.1	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 24.)
*2 Shaft type: D-cut shaft

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 24 for details about motor mounting and included parts.

LEKFS40

Applicable motor dimensions plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimensions

Stroke	L	A	B	n	D	E	G
150	389	156	328	4	-	150	130
200	439	206	378	6	2	300	280
250	489	256	428				
300	539	306	478				
350	589	356	528	8	3	450	430
400	639	406	578				
450	689	456	628				
500	739	506	678	10	4	600	580
600	839	606	778				
700	939	706	878	12	5	750	730
800	1039	806	978	14	6	900	880
900	1139	906	1078				
1000	1239	1006	1178	16	7	1050	1030
1100	1339	1106	1278	18	8	1200	1180
1200	1439	1206	1378				

Motor Mounting, Applicable Motor Dimensions [mm]

| Mounting
 type | Mounting
 type | | Applicable
 motor | FB | FC | FD | FE
 $($ Max. $)$ | FF | FJ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | FK

*1 Dimensions after mounting a ring spacer (Refer to page 24.)
*2 Shaft type: D-cut shaft

LEKFS Series

Motorless Type

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 25 for details about motor mounting and included parts.

LEKFS25(L/R)

Dimensions

Stroke	L	A	B	n	D	E	F	G	H
50	210.5	56	160				20		30
100	260.5	106	210	4	-	-		100	
150	310.5	156	260						
200	360.5	206	310						
250	410.5	256	360	6	2	240		220	
300	460.5	306	410						
350	510.5	356	460	8	3	360	35	340	45
400	560.5	406	510				35		45
450	610.5	456	560	10	4	480			
500	660.5	506	610	10	4	480		460	
600	760.5	606	710	12	5	600		580	
700	860.5	706	810	14	6	720		700	
800	960.5	806	910	16	7	840		820	

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Mounting type: NM1/NM2/NM3

Mounting type	FA		FB	FC	FD	$\left\|\begin{array}{c} \text { FE } \\ \text { (Max.) } \end{array}\right\|$	FF	FG	FH	FJ	FK	FL
	Mounting type	Appicable motor										
NZ	M4 x 0.7	ø4.5	7.5	$\varnothing 46$	30	3.7	11	-	-	8	25 ± 1	42
NY	M3 $\times 0.5$	ø3.4	5.5	ø45	30	5	11	-	-	8	25 ± 1	38
NX	M4 x 0.7	ø4.5	7	ø46	30	3.7	8	-	-	8	18 ± 1	42
NM1	ø3.4	M3	-	$\square 31$	28	-	8.5	7	3.5	5*1	24 ± 1	42
NM2	ø3.4	M3	-	$\square 31$	28	-	8.5	7	3.5	6	20 ± 1	42
NM3	ø3.4	M3	-	$\square 31$	28	-	5.5	7	3.5	5*1	20 ± 1	42

[^1] details about motor mounting and included parts.

LEKFS32(L/R)

Mounting type: NZ/NY/NW/NU/NT

Mounting type: NM1/NM2
$\begin{array}{ll}2 \times \text { FA } & 2 \times(\mathrm{M} 4 \times 0.7) \\ \text { thread depth FB } & \text { (thread depth FM }\end{array}$

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimens							[mm
Stroke	L	A	B	n	D	E	G
50	245	56	180				
100	295	106	230	4	-	-	130
150	345	156	280				
200	395	206	330				
250	445	256	380	6	2	300	280
300	495	306	430				
350	545	356	480				
400	595	406	530	8	3	450	430
450	645	456	580				
500	695	506	630	10	4	600	580
600	795	606	730	10	4	600	580
700	895	706	830	12	5	750	730
800	995	806	930	14	6		
900	1095	906	1030	14	6	900	880
1000	1195	1006	1130	16	7	1050	1030

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\binom{\mathbf{F E}}{(\text { Max. }}$	FF	FJ	FK	FL	FM
	Mounting type	$\begin{array}{\|c\|} \hline \text { Applicable } \\ \text { motor } \end{array}$									
NZ	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	14	30 ± 1	60	
NY	$\mathrm{M} 4 \times 0.7$	ø4.5	8	¢70	50	4.6	13	11	30 ± 1	60	
NW	M5 x 0.8	$\varnothing 5.8$	8.5	¢70	50	4.6	13	9	25 ± 1	60	
NU	M5 x 0.8	$\bullet 5.8$	8.5	¢70	50	4.6	10.6	11	23 ± 1	60	
NT	M5 $\times 0.8$	$\varnothing 5.8$	8.5	ø70	50	4.6	17	12	30 ± 1	60	-
NM1	$\mathrm{M} 4 \times 0.7$	ø4.5	5	$\square 47.14$	38.2	-	5	6.35*1	20 ± 1	56.4	5
NM2	$\mathrm{M} 4 \times 0.7$	ø4.5	8	$\square 50$	38.2	-	11.5	10	24 ± 1	60	7

LEKFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 25 for details about motor mounting and included parts.

LEKFS40(L/R)

Mounting type:
NZ/NT/NY/NW
$4 \times$ FA
thread depth FB

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA Mounting type		Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK
NZ	M5 $\times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	11	14	30 ± 1	60
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 70$	50	4.6	11	14	30 ± 1	60
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	11	9	25 ± 1	60
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	14.5	12	30 ± 1	60

Dimensions

Stroke	L	A	B	n	D	E	G
150	403.4	156	328	4	-	150	130
200	453.4	206	378	6	2	300	280
250	503.4	256	428				
300	553.4	306	478				
350	603.4	356	528	8	3	450	430
400	653.4	406	578				
450	703.4	456	628				
500	753.4	506	678	10	4	600	580
600	853.4	606	778				
700	953.4	706	878	12	5	750	730
800	1053.4	806	978	14	6	900	880
900	1153.4	906	1078				
1000	1253.4	1006	1178	16	7	1050	1030
1100	1353.4	1106	1278	18	8	1200	1180
1200	1453.4	1206	1378				

Mounting type：NZ，NY，NX，NW，NV，NU，NT，NM2

［Included parts］Hexagon

＊Note for mounting a motor to the NM2 mounting type
Motor mounting screws for the LEKFS25 are fixed starting from the motor flange side．（Opposite of the drawing）

Mounting type：NM1

［Included parts］Hexagon socket head set screw／MM （Tightening torque：TT［N•m］） Motor flange

＊Note for mounting a hub to the NM1 mounting type
When mounting the hub to the motor，make sure to position the set screw ver－ tical to the D－cut surface of the motor shaft．（Refer to the figure shown below．）
＊Motor mounting screws for the LEKFS25 are fixed starting from the motor flange side．（Opposite of the drawing）

Size： 25 Hub Mounting Dimensions［mm］

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NY	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NX	$\mathrm{M} 2.5 \times 10$	1.0	8	6.9
NM1	$\mathrm{M} 3 \times 4$	0.63	5	11.9
NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	10

Size： 32 Hub Mounting Dimensions［mm］

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 4 \times 12$	2.5	11	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.4
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size： 40 Hub Mounting Dimensions［mm］

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.1
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Included Parts List

Size： 25

Description	Quantity			
	Mounting type			
	NZ	NY	NX	NM1
NM2				

＊1 For screw sizes，refer to the hub mounting dimensions．

Motor Mounting Diagram
Mounting type：NZ，NY，NW，NU，NT

Mounting procedure

1）Secure the motor hub to the motor（provided by the customer）with the MM hexagon socket head cap screw．
2）Check the motor hub position，and then insert it．（Refer to the mounting diagram．）
3）Secure the motor to the motor flange with the motor mounting screws（provided by the customer）．

Mounting type：NX，NV，NM1，NM2

Mounting procedure

1）Secure the motor hub to the motor（provided by the customer）with the MM hexagon socket head cap screw（Mounting type：NX，NV， NM2）or MM hexagon socket head set screw（Mounting type：NM1）．
2）Check the motor hub position，and then insert it．（Refer to the mounting diagram．）
3）Mount the ring spacer to the motor．
4）Secure the motor to the motor flange with the motor mounting screws（provided by the customer）．
＊For the LEKFS25
4）Remove the motor flange，which has been temporarily mounted，from the housing B ，and secure the motor to the motor flange using the motor mounting screws（that are to be prepared by the customer）．
5）Tighten the motor flange to the housing B using motor flange mounting screws（included parts）．（Tightening torque： 1.5 ［ $\mathrm{N} \cdot \mathrm{m}$ ］）
＊1 For screw sizes，refer to the hub mounting dimensions．

Motor Mounting: Motor Parallel

Mounting type: NZ, NY, NX, NW, NU, NT, NM2

Size: 25 Pulley Mounting Dimensions

Mounting type	MM1	TT1	MM2	TT2	PD	FP	BT
NZ/NY	$\mathrm{M} 2.5 \times 10$	1.0	$\mathrm{M} 3 \times 8$	0.63	8	8	19.6
NX	$\mathrm{M} 2.5 \times 10$	1.0	$\mathrm{M} 3 \times 8$	0.63	8	5	19.6
NM1	$\mathrm{M} 3 \times 5$	0.63	$\mathrm{M} 3 \times 8$	0.63	5	12.5	19.6
NM2	$\mathrm{M} 2.5 \times 10$	1.0	$\mathrm{M} 3 \times 8$	0.63	6	5.5	19.6
NM3	$\mathrm{M} 3 \times 5$	0.63	$\mathrm{M} 3 \times 8$	0.63	5	9.5	19.6

Size: 32 Pulley Mounting Dimensions

Mounting type	MM1	TT1	MM2	TT2	PD	FP	BT
NZ	$\mathrm{M} 3 \times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	14	6.6	49
NY	$\mathrm{M} 3 \times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	11	6.6	49
NW	$\mathrm{M} 4 \times 12$	2.5	$\mathrm{M} 4 \times 12$	1.5	9	6.6	49
NU	$\mathrm{M} 3 \times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	11	4.2	49
NT	$\mathrm{M} 3 \times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	12	10.6	49
NM1	$\mathrm{M} 3 \times 4$	0.63	$\mathrm{M} 4 \times 12$	1.5	6.35	10.6	49
NM2	$\mathrm{M} 3 \times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	10	5.1	49

Size: 40 Pulley Mounting Dimensions

Mounting type	MM1	TT1	MM2	TT2	PD	FP	BT
NZ/NY	$\mathrm{M} 4 \times 12$	2.5	$\mathrm{M} 4 \times 12$	1.5	14	4.5	98.1
NW	$\mathrm{M} 4 \times 12$	2.5	$\mathrm{M} 4 \times 12$	1.5	9	4.5	98.1
NT	$\mathrm{M} 4 \times 12$	2.5	$\mathrm{M} 4 \times 12$	1.5	12	8	98.1

Included Parts List

Size: 25

Description	Quantity
Motor flange	1
Motor side pulley	1
Cover plate	1
Timing belt	1
Hexagon socket head cap screw/set screw	
(to secure the pulley)*1	

*1 For screw sizes, refer to the pulley mounting dimensions.

Size: 32, 40

Description	Quantity	
	$\mathbf{3 2}$	$\mathbf{4 0}$
Motor flange	1	1
Motor side pulley	1	1
Cover plate	1	1
Timing belt	1	1
Hexagon socket head cap screw/set screw (to secure the pulley)*1	1	1
Hexagon socket head cap screw*1 (to secure the motor flange)	2	4
Round head combination screw M3 $\times 6$	4	4

*1 For screw sizes, refer to the pulley mounting dimensions.

LEKFS Series

Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase．The applicable mounting types are shown below．（Except NM1 and NM3） Use the following part numbers to select a compatible motor flange option and place an order．
＊The motor flange option is the same as that of the LEFS series．

How to Order

1 Size
$\mathbf{2 5}$
$\mathbf{3 2}$
$\mathbf{4 0}$
$\mathbf{F o r}$ LEF■25

＊Select only NZ，NY，NX or NM2 for the LEFS－MF25．

Compatible Motors and Mounting Types＊5

Applicable motor model		Size／Mounting type														
Manufacturer	Series	25						32／40								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN／J4／J5	\bigcirc	－	－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7 / \mathrm{X}$	－＊4	－	－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
SANYO DENKI CO．，LTD．	SANMOTION R	\bigcirc	－	－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
OMRON Corporation	OMNUC G5／1S	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
Panasonic Corporation	MINAS A5／A6		\bigcirc	－	－	－	－	－	－	－	－	－	－	－	－	－
FANUC CORPORATION	β is（－B）	\bigcirc	－	－	－	－	－		－	－	\bigcirc	－	－	－	－	－
NIDEC SANKYO CORPORATION	S－FLAG	\bigcirc	－	－	－	－	－	－	－	－	－	－	－	－	－	－
KEYENCE CORPORATION	SV／SV2	＊${ }^{+4}$	－	－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
FUJI ELECTRIC CO．，LTD．	ALPHA7	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－
MinebeaMitsumi Inc．	Hybrid stepping motors	－	－	－	－＊1	－	＊＊3	－	－	－	－	－	－	－	－＊2	－
Shinano Kenshi Co．，Ltd．	CSB－BZ	－	－	－	－＊1	－	－＊3	－	－	－	－	－	－	－	－	－
ORIENTAL MOTOR Co．，Ltd．	α STEP AR／AZ	－	－	－	－		－	－	－	－	－	－	－	－	－	－＊2
FASTECH Co．，Ltd．	Ezi－SERVO	－	－	－	－	－	－	－	－	－	－	－	－	－	－＊2	－
Rockwell Automation， Inc．（Allen－Bradley）	Kinetix MP／VP／TL		－	－	－	－	－	－	－	$\begin{gathered} \bullet^{* *} \\ (\mathrm{MPNP} \\ \text { only) } \end{gathered}$	－	－	－		－	－
Beckhoff Automation GmbH	AM 30／31／80／81	－	－	－	－	－	－	－	－	$\begin{gathered} \boldsymbol{e}^{* 1} \\ (80 / 81 \\ \text { only } \end{gathered}$	－	$\binom{\bullet * 1}{(30 \text { only })}$	$\left(\begin{array}{c} \boldsymbol{*} * 2 \\ (31 \text { only }) \end{array}\right.$	－	－	－
Siemens AG	SIMOTICS S－1FK7	－	－	\bigcirc	－	－	－	－	－	－＊1	－	－	－	－	－	－
Delta Electronics，Inc．	ASDA－A2	\bigcirc	－	－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
ANCA Motion	AMD2000	\bigcirc	－	－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－

＊When the LEF $\square \square \square{ }_{\mathrm{NM} 3}^{\mathrm{NM1}} \square-\square$ is purchased，it is not possible to change to other
mounting types．
＊1 Motor mounting position：In－line only
＊2 Only size 32 is available when the motor mounting position is right（or left）side parallel．
＊3 Motor mounting position：Right（or left）side parallel only
＊ 4 For some motors，the connector may protrude from the motor body．Be sure to check for interference with the mounting surface before selecting a motor．
＊5 The compatible motors and mounting types are typical examples．Select the mounting type after referring to the ＂Motor Mounting，Applicable Motor Dimensions＂tables on the following actuator body＂Dimensions＂pages．

LEKFS Series

Dimensions: Motor Flange Option

Motor mounting position: In-line

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Hub (Motor side)	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2
$\mathbf{5}$	Ring spacer (Only for mounting types "NM2" in size 25 and "NX," "NV," and "NM2" in sizes 32 and 40)	1

Motor flange details

For NM2

$4 \times$ FA,
$\xrightarrow{\text { Counterbore diameter FG, depth FH }}$

* Spot facing is on the reverse side.

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ/NX	M 4×0.7	8	46	30	3.5	35.5	-	-	57.8	46.5	M2.5 $\times 10$	M 4×35	8
	NY	M3 x 0.5	8	45	30	3.5	35.5	-	-	57.8	46.5	M 2.5×10	M 4×35	8
	NM2	$\varnothing 3.4$	-	31	22*1	$2.5 * 1$	33.1	6.5	22.6	57.8	46.5	M 2.5×10	M 4×18	6
32	NZ	M5 x 0.8	9	70	50	5	46	-	-	69.8	61.4	M3 x 12	M5 x 40	14
	NY	M 4×0.7	8	70	50	5	46	-	-	69.8	61.4	M 4×12	M5 x 40	11
	NX	M5 x 0.8	9	63	40*1	5	49.7	-	-	69.8	61.4	M 4×12	M5 x 40	9
	NW	M5 x 0.8	9	70	50	5	47.5	-	-	69.8	61.4	M 4×12	M5 x 40	9
	NV	M 4×0.7	8	63	40*1	5	49.7	-	-	69.8	61.4	M 4×12	M5 x 40	9
	NU	M5 $\times 0.8$	9	70	50	5	47.5	-	-	69.8	61.4	M 4×12	M5 x 40	11
	NT	M5 $\times 0.8$	9	70	50	5	46	-	-	69.8	61.4	M3 x 12	M5 x 40	12
	NM2	M 4×0.7	8	50	36*1	4.5*1	40.1	-	-	69.8	61.4	M 4 x 12	M5 $\times 25$	10
40	NZ	M5 $\times 0.8$	9	70	50	5	47.5	-	-	89.8	66.9	M3 x 12	M5 x 40	14
	NY	M4 $\times 0.7$	8	70	50	5	47.5	-	-	89.8	66.9	M3 x 12	M5 x 40	14
	NX	M5 $\times 0.8$	9	63	40*1	5	51	-	-	89.8	66.9	M 4 x 12	M5 $\times 40$	9
	NW	M5 x 0.8	9	70	50	5	48.8	-	-	89.8	66.9	$\mathrm{M} 4 \times 12$	M5 x 40	9
	NV	$\mathrm{M} 4 \times 0.7$	8	63	40*1	5	51	-	-	89.8	66.9	$\mathrm{M} 4 \times 12$	M5 x 40	9
	NU	M5 $\times 0.8$	9	70	50	5	48.8	-	-	89.8	66.9	M 4×12	M5 x 40	11
	NT	M5 $\times 0.8$	9	70	50	5	47.5	-	-	89.8	66.9	M3 x 12	M5 x 40	12
	NM2	$\mathrm{M} 4 \times 0.7$	8	50	36*1	4.5*1	41.4	-	-	89.8	66.9	M4 x 12	M5 x 25	10

[^2]
Motor Mounting Parts LEKFS Series

Dimensions：Motor Flange Option

Motor mounting position：Motor parallel

Component Parts

No．	Description		Quantity	
		Size		
		$\mathbf{2 5 , 3 2}$	$\mathbf{4 0}$	
$\mathbf{1}$	Motor flange	1	1	
$\mathbf{2}$	Motor pulley	1	1	
$\mathbf{3}$	Hexagon socket head cap screw（to secure the pulley）	1	1	
$\mathbf{4}$	Hexagon socket head cap screw（to mount the motor flange）	2	4	

Motor flange details

Size 25：NM2
$2 \times$ FA
Counterbore diameter $\mathbf{F G}$ depth FH

Size 32：NM2

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ	$2 \times \mathrm{M} 4 \times 0.7$	7.5	46	30	3.7	11	－	－	42	－	M 2.5×10	M3 x 8	8
	NY	$2 \times \mathrm{M} 3 \times 0.5$	5.5	45	30	5	11	－	－	38	－	M 2.5×10	M3 $\times 8$	8
	NX	$2 \times \mathrm{M} 4 \times 0.7$	7	46	30	3.7	8	－	－	42	－	M2．5 $\times 10$	M3 x 8	8
	NM2	ø3．4	－	31	28	－	8.5	7	3.5	42	－	M2．5 $\times 10$	M3 x 8	6
32	NZ	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	13	－	－	60	－	M3 $\times 12$	M 4×12	14
	NY	$2 \times \mathrm{M} 4 \times 0.7$	8	70	50	4.6	13	－	－	60	－	M3 x 12	$\mathrm{M} 4 \times 12$	11
	NW	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	13	－	－	60	－	M 4×12	$\mathrm{M} 4 \times 12$	9
	NU	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	10.6	－	－	60	－	M3 $\times 12$	M 4×12	11
	NT	$2 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	17	－	－	60	－	M3 $\times 12$	$\mathrm{M} 4 \times 12$	12
	NM2	M 4×0.7	8	50	38.2	－	11.5	－	－	60	7	M3 $\times 12$	$\mathrm{M} 4 \times 12$	10
40	NZ	$4 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	11	－	－	60	－	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	14
	NY	$4 \times \mathrm{M} 4 \times 0.7$	8	70	50	4.6	11	－	－	60	－	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	14
	NW	$4 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	11	－	－	60	－	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	9
	NT	$4 \times \mathrm{M} 5 \times 0.8$	8.5	70	50	4.6	14.5	－	－	60	－	M 4×12	$\mathrm{M} 4 \times 12$	12

LEKFS Series
 Auto Switch Mounting

Auto Switch Mounting Position

Table 1 Auto switch mounting dimensions [mm]

Model	Size	\mathbf{A}	\mathbf{B}	Operating range
LEKFS	25	17.5	23.5	3.0
	32	26.3	32.3	3.4
	40	32.2	38.2	3.6

* The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
* The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations depending on the ambient environment.
* Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting

* The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
* Tighten the auto switch mounting screws (provided together with the auto switch), using a precision screwdriver with a handle diameter of approximately 5 to 6 mm .
* Prepare an auto switch mounting bracket (BMY3-016) when mounting the auto switch on to the LEKFS32/40.

Solid State Auto Switch Direct Mounting Type D-M9N/D-M9P/D-M9B

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)			
Auto switch model	D-M9N	D-M9P	D-M9B
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Red LED illuminates when turned ON.		
Standards	CE/UKCA marking, RoHS		

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N	D-M9P	D-M9B	
Sheath	Outside diameter $[\mathrm{mm}]$	2.6			
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)		
	Outside diameter $[\mathrm{mm}]$		0.88		
Conductor	Effective area $[\mathrm{mm} 2]$	0.15			
	Strand diameter $[\mathrm{mm}]$	0.05			
Min. bending radius $[\mathrm{mm}]$ (Reference values)		17			

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight
[g]

Auto switch model		D-M9N	D-M9P	D-M9B
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

. Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 $\square E$, D-M9 $\square E V$ (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Min. bending radius $[\mathrm{mm}]$ (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

D-M9■EV

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW/D-M9PW/D-M9BW

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)			
Auto switch model	D-M9NW	D-M9PW	D-M9BW
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA)		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Operating range Red LED illuminates. Proper operating range \qquad Green LED illuminates.		
Standards	CE/UKCA marking, RoHS		

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW	D-M9PW	D-M9BW
Sheath	Outside diameter $[\mathrm{mm}]$	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	0.88		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	0.05		
Min. bending radius $[\mathrm{mm}]$ (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight
[g]

Auto switch model				D-M9NW
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW	D-M9BW
	$1 \mathrm{~m}(\mathbf{M})$	14	7	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

LEKFS Series

Specific Product Precautions 1

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If a load in excess of the specification limits is applied to the guide, adverse effects such as the generation of play in the guide, reduced accuracy, or reduced service life of the product may occur.
2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a malfunction.

Selection

© Warning

1. Do not increase the speed in excess of the specification limits.
Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, adverse effects such as the generation of noise, reduced accuracy, or reduced service life of the product may occur.
2. Do not use the product in applications where excessive external force or impact force is applied to it. This can cause a malfunction.
3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every few dozens of cycles.
Failure to do so may result in the product running out of lubrication.

Model	Partial stroke
LEKFS $\square \mathbf{2 5}$	65 mm or less
LEKFS $\square \mathbf{3 2}$	70 mm or less
LEKFS $\square \mathbf{4 0}$	105 mm or less

4. When external force is to be applied to the table, it is necessary to add the external force to the work load as the total carried load when selecting a size.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table will increase, which may lead to the malfunction of the product.
5. Depending on the shape of the motor to be mounted, some of the product's interior parts (hub, spider, etc.) may be visible from the motor mounting surface. If this is undesirable, please contact your nearest sales office for details on options such as covers.

Handling

\triangle Caution

1. Never allow the table to collide with the stroke end.

When the driver parameters, origin or programs are set incorrectly, the table may collide with the stroke end of the actuator during operation. Be sure to check these points before use. If the table collides with the stroke end of the actuator, the guide, ball screw, belt, or internal stopper may break. This can result in abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
2. The actual speed of this actuator is affected by the work load and stroke.

Check the model selection section of the catalog.
3. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch, or cause other damage to the body or table mounting surfaces.

Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.
5. Do not apply strong impact or an excessive moment while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of the mounting surface within 0.1 mm/500 mm.

If a workpiece or base does not sit evenly on the body of the product, play in the guide or an increase in the sliding resistance may occur.
7. Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range.
8. Grease is applied to the dust seal band for sliding. When wiping off the grease to remove foreign matter, etc., be sure to apply it again.
9. When bottom mounted, the dust seal band may become warped.

LEKFS Series

Specific Product Precautions 2

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Handling

\triangle Caution

10. When mounting the product, use screws of adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.
Body fixed

$\rightarrow-\varnothing$

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\varnothing \mathbf{A}$ $[\mathrm{mm}]$	\mathbf{L} $[\mathrm{mm}]$
LEKFS $\square \mathbf{2 5}$	M4	1.5	4.5	24
LEKFS $\square \mathbf{3 2}$	M5	3.0	5.5	30
LEKFS $\square \mathbf{4 0}$	M6	5.2	6.6	31

The traveling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathrm{L}($ Max. screw-in depth) $[\mathrm{mm}]$
LEKFS $\square 25$	M5 $\times 0.8$	3.0	8
LEKFS $\square 32$	$\mathrm{M} 6 \times 1$	5.2	9
LEKFS $\square \mathbf{4 0}$	$\mathrm{M} 8 \times 1.25$	12.5	13

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.
12. Check the specifications for the minimum speed of each actuator.
Failure to do so may result in unexpected malfunctions such as knocking.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check		
Inspection before daily operation	\bigcirc	-		
Inspection every 6 months $/ 1000 \mathrm{~km} /$	\bigcirc	\bigcirc		
5 million cycles*1			\quad	
:---				

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts
2. Loose or mechanical play in fixed parts or fixing screws

- Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt Belt corner has become rounded and frayed threads stick out
c. Belt is partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible

\qquad
11. Do not operate by fixing the table and moving the actuator body.

Motorless Type Electric Actuators

Slider Type

Ball Screw Drive LEFS Series

p. 37

Motorless Type

Electric Actuator/Slider Type

Ball Screw Drive/LEFS Series
Model Selection

LEFS Series $>$ p. 45

Selection Procedure

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.
Operating
conditions

Step 1
Check the work load-speed. <Speed-Work Load Graph>
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 38.
Selection example) The LEFS $\square 40 \square$ B-200 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2

Check the cycle time.

Calculate the cycle time using the
following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the motor type and load. The value below is recommended.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

The cycle time can be found as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.05 \\
& =0.82[\mathbf{s}]
\end{aligned}
$$

T4 = 0.05 [s]

* The conditions for the settling time vary depending on the motor or driver to be used.

Check the allowable moment.
<Static allowable moment> (page 38) <Dynamic allowable moment> (page 42)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LEFS $\square 40 \square B-200$ should be selected.

<Speed-Work Load Graph>
(LEFS40)

L : Stroke [mm] … (Operating condition)
V : Speed $[\mathrm{mm} / \mathrm{s}]$... (Operating condition)
a1: Acceleration [mm s^{2}] ... (Operating condition) a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$... (Operating condition)

T1: Acceleration time [s] Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed

Model Selection LEFS Series

Motorless Type

Speed－Work Load Graph（Guide）
＊The values shown below are allowable values of the actuator body．Do not use the actuator so that it exceeds these specification ranges．
（peed－Work Load Graph（Guide）
＊The allowable speed is restricted depending on the stroke．Select it by referring to the＂Allowable Stroke Speed＂below．

LEFS \square 25／Ball Screw Drive

Horizontal

Vertical

LEFS $\square 32 /$ Ball Screw Drive

Horizontal

Vertical

LEFS $\square 40 /$ Ball Screw Drive

Horizontal

Vertical

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke［mm］										
		Symbol	［mm］	Up to	Up to 200 Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200
LEFS25	100 W equivalent	H	20		1500		1200	900	700	550	－	－	－	－
		A	12		900		720	540	420	330	－	－	－	－
		B	6		450		360	270	210	160	－	－	－	－
		（Motor rotation speed）			（4500 rpm）		（3650 rpm）	（2700 rpm）	（2100 rpm）	（1650 rpm）	－	－	－	－
LEFS32	200 W equivalent	H	24	1500				1200	930	750	610	510	－	－
		A	16	1000				800	620	500	410	340	－	－
		B	8	500				400	310	250	200	170	－	－
		（Motor rotation speed）		（3750 rpm）				（3000 rpm）	（2325 rpm）	（1875 rpm）	（1537 rpm）	（1275 rpm）	－	－
LEFS40	400 W equivalent	H	30	－	1500				1410	1140	930	780	500	500
		A	20	－	1000				940	760	620	520	440	380
		B	10	－	500				470	380	310	260	220	190
		（Motor rotation speed）		－	（3000 rpm）				（2820 rpm）	（2280 rpm）	（1860 rpm）	（1560 rpm）	（1320 rpm）	（1140 rpm）

Static Allowable Moment＊1

［N•m］					
Model	Size	Pitching	Yawing	Rolling	
LEF \square	$\mathbf{1 6}$	10	10	20	
	$\mathbf{2 5}$	27	27	52	
	$\mathbf{3 2}$	46	46	101	
	$\mathbf{4 0}$	110	110	207	

＊1 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped．
If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product．

LEFS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS $\square 25 \square$ A/Ball Screw Drive
Horizontal

LEFS $\square 25 \square$ B/Ball Screw Drive

Horizontal

LEFS $\square 25 \square$ H/Ball Screw Drive
Vertical

LEFS $\square 25 \square$ A/Ball Screw Drive
Vertical

LEFS $\square 25 \square$ B/Ball Screw Drive

Vertical

Model Selection LEFS Series

Motorless Type

Work Load－Acceleration／Deceleration Graph（Guide）

LEFS $\square 32 \square$ A／Ball Screw Drive
Horizontal

LEFS $\square 32 \square$ B／Ball Screw Drive

Horizontal

LEFS \square 32 \square H／Ball Screw Drive
Vertical

$\underline{\text { LEFS } \square 32 \square \text { A／Ball Screw Drive }}$
Vertical

LEFS $\square 32 \square$ B／Ball Screw Drive

Vertical

LEFS Series

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS $\square 40 \square$ A/Ball Screw Drive

Horizontal

LEFS $\square 40 \square$ B/Ball Screw Drive

Horizontal

LEFS $\square 40 \square$ H/Ball Screw Drive

Vertical

LEFS $\square 40 \square$ A/Ball Screw Drive

Vertical

LEFS $\square 40 \square$ B/Ball Screw Drive

Vertical

 overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation.

Dynamic Allowable Moment

Model

LEFS Series

Motorless Type

These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFS
Size: 25/32/40
Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha \mathbf{x}=\mathbf{X c} / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEFS40
Size: 40
Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 20
Work load center position [mm]: Xc=0,Yc=50,Zc=200
2. Select the graphs for horizontal of the LEFS40 \square on page 42.

Mounting Orientation

3. $L x=\mathbf{2 5 0} \mathbf{~ m m}, L y=180 \mathrm{~mm}, L z=1000 \mathrm{~mm}$
4. The load factor for each direction can be found as follows.

$$
\alpha x=0 / 250=0
$$

$$
\alpha y=50 / 180=0.27
$$

$$
\alpha z=200 / 1000=0.2
$$

5. $\alpha x+\alpha y+\alpha z=0.47 \leq 1$

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	1 C side traveling parallelism to A side	(2) D side traveling parallelism to B side
	0.05	0.03
LEFS32	0.05	0.03
LEFS40	0.05	0.03

* Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

* This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
* Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance (Initial Reference Value)

Basic Type

High-Precision Type

Electric Actuator/Slider Type Ball Screw Drive LEFS Series

RoHS

How to Order

(1) Accuracy		(2) Size
Nil	Basic type	25
H	High-precision type	32
		40
6 Stroke [mm]		
50	50	
to	to	
1200	1200	
* Refer to the applicable stroke table.		
8 Grease application (Seal band part)		
Nil	With	
N	Without (Roller spec	ification)

3 Motor mounting position	
Nil	In-line
R	Right side parall
L	Left side parallel
(7) Auto switch compatibility	
Nil	None
C	With (Includes 1 mounting bracket)
* If 2 or more are required, please order them separately. (Part no.: LEF-D-2-1 For details, refer to page 86.) Order auto switches separately. (For details, refer to pages 87 to 89 .) * When "Niri' i selected, the product will not come with a built-in magnet for an auto switch, and so a mounting bracket cannot be secured. Be sure to select an appropriate model intially as the product cannot be changed to have autio switch compatibility ater purchase.	

(4) Mounting type			(5) Lead [mm]			
NZ	NV	NM2	Symbol	LEFS25	LEFS32	LEFS40
NY	NU	NM3	H	20	24	30
NX	NT		A	12	16	20
NW	NM1		B	6	8	10

(9) Positioning pin hole

Nil	Housing B bottom* ${ }^{*}$	
K	Body bottom 2 locations	

*1 Refer to the body mounting example on page 91 for the mounting method.

Applicable Stroke Table

: Standard

Model Stroke $[\mathrm{mm}]$	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
LEFS25	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	-
LEFS32	\bigcirc	-	-																			
LEFS40	-	-	\bigcirc	-	\bigcirc																	

* Please contact SMC for non-standard strokes as they are produced as special orders.

Compatible Motors and Mounting Types*5

Applicable motor model		Size/Mounting type														
Man	Series	25						32/40								
Manufa		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	£-V/7/X	- *	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	-	-	-	-	-	-	$\underset{(\beta 1 \text { only })}{\bullet}$	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	* *	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	**	-	* 3	-	-	-	-	-	-	-	*2	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	**1	-	- *3	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-		-	-	-	-	-	-	-	-	-	- *2
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	*2	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL		-	-	-	-	-	-	-	$\begin{gathered} \mathbf{O}^{* 1} \\ \text { (MP/VP } \\ \text { only) } \end{gathered}$	-	-	-	$(\mathrm{TL} \text { only) }$	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	-	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \boldsymbol{o}^{* 1} \\ (80 / 81 \\ \text { only) } \\ \hline \end{array}$	-	$\left\|\begin{array}{c} * 1 \\ (30 \text { only }) \end{array}\right\|$	$\left\|\begin{array}{c} \boldsymbol{*} * 2 \\ (31 \text { only }) \end{array}\right\|$	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	-	-	-	-	-	-	- *1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Only size 32 is available when the motor mounting position is right (or left) side parallel. *3 Motor mounting position: Right (or left) side parallel only *4 For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor. *5 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following "Dimensions" pages.

Specifications ${ }^{* 2} \quad \bullet$ Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.

Model				LEFS25			LEFS32			LEFS40		
suoneou!	Stroke [mm]* ${ }^{* 1}$			50 to 800			50 to 1000			150 to 1200		
	Work load [kg]		Horizontal	10	20	20	30	40	45	30	50	60
			Vertical	4	8	15	5	10	20	7	15	30
	Speed [mm/s]	Stroke range	Up to 400	1500	900	450	1500	1000	500	1500	1000	500
			401 to 500	1200	720	360	1500	1000	500	1500	1000	500
			501 to 600	900	540	270	1200	800	400	1500	1000	500
			601 to 700	700	420	210	930	620	310	1410	940	470
			701 to 800	550	330	160	750	500	250	1140	760	380
			801 to 900	-	-	-	610	410	200	930	620	310
			901 to 1000	-	-	-	510	340	170	780	520	260
			1001 to 1100	-	-	-	-	-	-	500	440	220
			1101 to 1200	-	-	-	-	-	-	500	380	190
	Pushing return to origin speed [mm/s]			30 or less								
	Positioning repeatability [mm]		Basic type	± 0.02								
			High-precision type	± 0.01								
	Lost motion*3 [mm]		Basic type	0.1 or less								
			High-precision type	0.05 or less								
	Ball screw specifications		Thread size [mm]	$\varnothing 10$			$\varnothing 12$			$\varnothing 15$		
			Lead [mm]	20	12	6	24	16	8	30	20	10
			Shaft length [mm]	Stroke + 150			Stroke + 185			Stroke + 235		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			20000*4								
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{*}{ }^{\text {a }}$			50/20								
	Actuation type			Ball screw (LEFSD), Ball screw + Belt (LEFS \square_{L}^{R})								
	Guide type			Linear guide								
	Static allowable moment*7 [$\mathrm{N} \cdot \mathrm{m}$]		Mep (Pitching)	27			46			110		
			Mey (Yawing)		27		46			110		
			Mer (Rolling)		52			101			207	
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40								
	Operating humidity range [\%RH]			90 or less (No condensation)								
	Actuation unit weight [kg]			0.2			0.3			0.55		
	Other inertia [$\mathrm{kg} \cdot \mathrm{cm}^{2}$]			0.02 (LEFS25) 0.02 (LEFS25 ${ }^{\text {R }}$)			0.08 (LEFS32) 0.06 (LEFS32 ${ }^{\text {R }}$)			$\begin{aligned} & \hline 0.08 \text { (LEFS40) } \\ & 0.17 \text { (LEFS40R) } \end{aligned}$		
	Friction coefficient			0.05								
	Mechanical efficiency			0.8								
	Motor type			AC servo motor ($100 \mathrm{~V} / 200 \mathrm{~V}$)								
	Rated output capacity [W]			100			200			400		
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			0.32			0.64			1.3		

*1 Please contact SMC for non-standard strokes as they are produced as special orders.
*2 Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed."
Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*3 A reference value for correcting errors in reciprocal operation
*4 Maximum acceleration/deceleration changes according to the work load.
Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" for ball screw drive on pages 39 to 41.
*5 Each value is only to be used as a guide to select a motor of the appropriate capacity.
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.
If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.
*8 For other specifications, refer to the specifications of the motor that is to be installed.

Weight

Model	LEFS25																			
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800				
Product weight [kg]	1.50	1.70	1.80	2.00	2.10	2.25	2.40	2.55	2.70	2.80	2.90	3.10	3.35	3.50	3.65	3.80				
Model	LEFS32																			
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Product weight [kg]	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80	5.00	5.20	5.40	5.60	5.80	6.00	6.20
Model	LEFS40																			
Stroke [mm]	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
Product weight [kg]	4.60	4.80	5.20	5.35	5.70	5.95	6.30	6.50	6.80	6.95	7.40	7.60	8.00	8.15	8.50	8.75	9.10	9.30	9.76	10.32

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 59 for details about motor mounting and included parts.

LEFS25

Mounting type: NZ, NY, NX

Mounting type: NM1, NM2

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimensions							
Stroke	L	A	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}	\mathbf{F}
$\mathbf{5 0}$	201.5	56	160	4	-	-	20
$\mathbf{1 0 0}$	251.5	106	210	4	-	-	35
$\mathbf{1 5 0}$	301.5	156	260	4	-	-	35
$\mathbf{2 0 0}$	351.5	206	310	6	2	240	35
$\mathbf{2 5 0}$	401.5	256	360	6	2	240	35
$\mathbf{3 0 0}$	451.5	306	410	8	3	360	35
$\mathbf{3 5 0}$	501.5	356	460	8	3	360	35
$\mathbf{4 0 0}$	551.5	406	510	8	3	360	35
$\mathbf{4 5 0}$	601.5	456	560	10	4	480	35
$\mathbf{5 0 0}$	651.5	506	610	10	4	480	35
$\mathbf{5 5 0}$	701.5	556	660	12	5	600	35
$\mathbf{6 0 0}$	751.5	606	710	12	5	600	35
$\mathbf{6 5 0}$	801.5	656	760	12	5	600	35
$\mathbf{7 0 0}$	851.5	706	810	14	6	720	35
$\mathbf{7 5 0}$	901.5	756	860	14	6	720	35
$\mathbf{8 0 0}$	951.5	806	910	16	7	840	35

*1 Dimensions after mounting a ring spacer (Refer to page 59.)
*2 Shaft type: D-cut shaft

LEFS25

Positioning pin hole*1 (Option): Body bottom

* For strokes of 99 mm or less, only 2 auto switch mounting brackets can be installed on the motor side.

Dimensions		$[\mathrm{mm}]$
Stroke	\mathbf{G}	\mathbf{H}
$\mathbf{5 0}$	100	30
$\mathbf{1 0 0}$	100	45
$\mathbf{1 5 0}$	100	45
$\mathbf{2 0 0}$	220	45
$\mathbf{2 5 0}$	220	45
$\mathbf{3 0 0}$	340	45
$\mathbf{3 5 0}$	340	45
$\mathbf{4 0 0}$	340	45
$\mathbf{4 5 0}$	460	45
$\mathbf{5 0 0}$	460	45
$\mathbf{5 5 0}$	580	45
$\mathbf{6 0 0}$	580	45
$\mathbf{6 5 0}$	580	45
$\mathbf{7 0 0}$	700	45
$\mathbf{7 5 0}$	700	45
$\mathbf{8 0 0}$	820	45

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 59 for details about motor mounting and included parts.

LEFS32

Applicable motor dimensions
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimensions						[mm]
Stroke	L	A	B	n	D	E
50	238	56	180	4	-	-
100	288	106	230	4	-	-
150	338	156	280	4	-	-
200	388	206	330	6	2	300
250	438	256	380	6	2	300
300	488	306	430	6	2	300
350	538	356	480	8	3	450
400	588	406	530	8	3	450
450	638	456	580	8	3	450
500	688	506	630	10	4	600
550	738	556	680	10	4	600
600	788	606	730	10	4	600
650	838	656	780	12	5	750
700	888	706	830	12	5	750
750	938	756	880	12	5	750
800	988	806	930	14	6	900
850	1038	856	980	14	6	900
900	1088	906	1030	14	6	900
950	1138	956	1080	16	7	1050
1000	1188	1006	1130	16	7	1050

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FJ	FK
	Mounting type	$\begin{gathered} \text { Applicadle } \\ \text { modor } \end{gathered}$							
NZ	M5 x 0.8	$\varnothing 5.8$	9	$\varnothing 70$	50	5	46	14	30 ± 1
NY	M 4×0.7	ø4.5	8	ø70	50	5	46	11	30 ± 1
NX	M 5×0.8	$\varnothing 5.8$	9	ø63	40*1	4.5*1	49.7	9	20 ± 1
NW	M 5×0.8	ø5.8	9	ø70	50	5	47.5	9	25 ± 1
NV	M 4×0.7	ø4.5	8	ø63	40*1	4.5*1	49.7	9	20 ± 1
NU	M 5×0.8	$\varnothing 5.8$	9	ø70	50	5	47.5	11	23 ± 1
NT	M5 x 0.8	ø5.8	9	ø70	50	5	46	12	30 ± 1
NM1	M 4×0.7	๑4.5	8	$\square 47.14$	38.1*1	4.5*1	21	6.35*2	20 ± 1
NM2	M 4×0.7	ø4.5	8	$\square 50$	36*1	4.5*1	40.1	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 59.)
*2 Shaft type: D-cut shaft

Electric Actuator/Slider Type
 Ball Screw Drive

LEFS32

Positioning pin hole*1 (Option): Body bottom

With auto switch (Option)

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

* For strokes of 99 mm or less, only 2 auto switch mounting brackets can be installed on the motor side.

Dimensions	
Stroke	G
$\mathbf{5 0}$	130
$\mathbf{1 0 0}$	130
$\mathbf{1 5 0}$	130
200	280
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580
$\mathbf{5 5 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{6 5 0}$	730
$\mathbf{7 0 0}$	730
$\mathbf{7 5 0}$	730
$\mathbf{8 0 0}$	880
$\mathbf{8 5 0}$	880
$\mathbf{9 0 0}$	880
$\mathbf{9 5 0}$	1030
$\mathbf{1 0 0 0}$	1030

LEFS Series

Refer to the "Motor Mounting" on page 59 for details about motor mounting and included parts.

LEFS40

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	E
$\mathbf{1 5 0}$	389	156	328	4	-	150
$\mathbf{2 0 0}$	439	206	378	6	2	300
$\mathbf{2 5 0}$	489	256	428	6	2	300
$\mathbf{3 0 0}$	539	306	478	6	2	300
$\mathbf{3 5 0}$	589	356	528	8	3	450
$\mathbf{4 0 0}$	639	406	578	8	3	450
$\mathbf{4 5 0}$	689	456	628	8	3	450
$\mathbf{5 0 0}$	739	506	678	10	4	600
$\mathbf{5 5 0}$	789	556	728	10	4	600
$\mathbf{6 0 0}$	839	606	778	10	4	600
$\mathbf{6 5 0}$	889	656	828	12	5	750
$\mathbf{7 0 0}$	939	706	878	12	5	750
$\mathbf{7 5 0}$	989	756	928	12	5	750
$\mathbf{8 0 0}$	1039	806	978	14	6	900
$\mathbf{8 5 0}$	1089	856	1028	14	6	900
$\mathbf{9 0 0}$	1139	906	1078	14	6	900
$\mathbf{9 5 0}$	1189	956	1128	16	7	1050
$\mathbf{1 0 0 0}$	1239	1006	1178	16	7	1050
$\mathbf{1 1 0 0}$	1339	1106	1278	18	8	1200
$\mathbf{1 2 0 0}$	1439	1206	1378	18	8	1200

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FJ	FK
	Mounting type	Appicable motor							
NZ	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	14	30 ± 1
NY	M4 x 0.7	ø4.5	8	ø70	50	5	47.5	14	30 ± 1
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	51	9	20 ± 1
NW	M5 x 0.8	ø5.8	9	ø70	50	5	48.8	9	25 ± 1
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5*1	51	9	20 ± 1
NU	M5 x 0.8	ø5.8	9	ø70	50	5	48.8	11	23 ± 1
NT	M5 $\times 0.8$	ø5.8	9	ø70	50	5	47.5	12	30 ± 1
NM1	M4 x 0.7	ø4.5	8	$\square 47.14$	38.1*1	4.5*1	22	6.35*2	20 ± 1
NM2	M4 x 0.7	$\varnothing 4.5$	8	$\square 50$	36*1	4.5*1	41.4	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 59.)
*2 Shaft type: D-cut shaft

Electric Actuator/Slider Type
 Ball Screw Drive

LEFS40

Positioning pin hole*1 (Option): Body bottom

With auto switch (Option)

| Dimensions | |
| :---: | :---: | [mm]

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 60 for details about motor mounting and included parts.

LEFS25R

Mounting type: NM1, NM2, NM3

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimensions							
Stroke	L	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}	\mathbf{G}
$\mathbf{5 0}$	210.5	56	160	4	-	-	20
$\mathbf{1 0 0}$	260.5	106	210	4	-	-	35
$\mathbf{1 5 0}$	310.5	156	260	4	-	-	35
$\mathbf{2 0 0}$	360.5	206	310	6	2	240	35
$\mathbf{2 5 0}$	410.5	256	360	6	2	240	35
$\mathbf{3 0 0}$	460.5	306	410	8	3	360	35
$\mathbf{3 5 0}$	510.5	356	460	8	3	360	35
$\mathbf{4 0 0}$	560.5	406	510	8	3	360	35
$\mathbf{4 5 0}$	610.5	456	560	10	4	480	35
$\mathbf{5 0 0}$	660.5	506	610	10	4	480	35
$\mathbf{5 5 0}$	710.5	556	660	12	5	600	35
$\mathbf{6 0 0}$	760.5	606	710	12	5	600	35
$\mathbf{6 5 0}$	810.5	656	760	12	5	600	35
$\mathbf{7 0 0}$	860.5	706	810	14	6	720	35
$\mathbf{7 5 0}$	910.5	756	860	14	6	720	35
$\mathbf{8 0 0}$	960.5	806	910	16	7	840	35

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\left\|\begin{array}{c} \text { FE } \\ \text { (Max.) } \end{array}\right\|$	FF	FG	FH	FJ	FK	FL
	Mounting type	Applicale motor										
NZ	M 4×0.7	ø4.5	7.5	$\varnothing 46$	30	3.7	11	-	-	8	25 ± 1	42
NY	M3 x 0.5	ø3.4	5.5	$\varnothing 45$	30	5	11	-	-	8	25 ± 1	38
NX	M4 x 0.7	ø4.5	7	ø46	30	3.7	8	-	-	8	18 ± 1	42
NM1	ø3.4	M3	-	$\square 31$	28	-	8.5	7	3.5	5*1	24 ± 1	42
NM2	ø3.4	M3	-	$\square 31$	28	-	8.5	7	3.5	6	20 ± 1	42
NM3	ø3.4	M3	-	$\square 31$	28	-	5.5	7	3.5	5*1	20 ± 1	42

*1 Shaft type: D-cut shaft

Electric Actuator/Slider Type
 Ball Screw Drive LEFS Series
 Motorless Type

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 60 for details about motor mounting and included parts.

LEFS25R

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

LEFS25L

(4.5)

mm]

Dimensions		
Stroke	\mathbf{G}	\mathbf{H}
$\mathbf{5 0}$	100	30
$\mathbf{1 0 0}$	100	45
$\mathbf{1 5 0}$	100	45
$\mathbf{2 0 0}$	220	45
$\mathbf{2 5 0}$	220	45
$\mathbf{3 0 0}$	340	45
$\mathbf{3 5 0}$	340	45
$\mathbf{4 0 0}$	340	45
$\mathbf{4 5 0}$	460	45
$\mathbf{5 0 0}$	460	45
$\mathbf{5 5 0}$	580	45
$\mathbf{6 0 0}$	580	45
$\mathbf{6 5 0}$	580	45
$\mathbf{7 0 0}$	$\mathbf{7 0 0}$	45
$\mathbf{7 5 0}$	700	45
$\mathbf{8 0 0}$	820	45

* For strokes of 99 mm or less, only 1 auto switch mounting bracket can be installed on the motor side.

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 60 for details about motor mounting and included parts.

LEFS32R

Mounting type: NM1, NM2

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{5 0}$	245	56	180	4	-	-
$\mathbf{1 0 0}$	295	106	230	4	-	-
$\mathbf{1 5 0}$	345	156	280	4	-	-
$\mathbf{2 0 0}$	395	206	330	6	2	300
$\mathbf{2 5 0}$	445	256	380	6	2	300
$\mathbf{3 0 0}$	495	306	430	6	2	300
$\mathbf{3 5 0}$	545	356	480	8	3	450
$\mathbf{4 0 0}$	595	406	530	8	3	450
$\mathbf{4 5 0}$	645	456	580	8	3	450
$\mathbf{5 0 0}$	695	506	630	10	4	600
$\mathbf{5 5 0}$	745	556	680	10	4	600
$\mathbf{6 0 0}$	795	606	730	10	4	600
$\mathbf{6 5 0}$	845	656	780	12	5	750
$\mathbf{7 0 0}$	895	706	830	12	5	750
$\mathbf{7 5 0}$	945	756	880	12	5	750
$\mathbf{8 0 0}$	995	806	930	14	6	900
$\mathbf{8 5 0}$	1045	856	980	14	6	900
$\mathbf{9 0 0}$	1095	906	1030	14	6	900
$\mathbf{9 5 0}$	1145	956	1080	16	7	1050
$\mathbf{1 0 0 0}$	1195	1006	1130	16	7	1050

Applicable motor dimensions

*1 Shaft type: D-cut shaft

Electric Actuator/Slider Type
 Ball Screw Drive

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 60 for details about motor mounting and included parts.

LEFS32R

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.
With auto switch (Option)
LEFS32R

LEFS32L

* For strokes of 99 mm or less, only 1 auto switch mounting bracket can be installed on the motor side.

Dimensions	
Stroke	Gm $]$
$\mathbf{5 0}$	130
$\mathbf{1 0 0}$	130
$\mathbf{1 5 0}$	130
$\mathbf{2 0 0}$	280
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580

Dimensi	[mm]
Stroke	G
550	580
600	580
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030

LEFS Series

Motorless Type

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 60 for details about motor mounting and included parts.

LEFS40R

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FAMounting type		Applicade motor	FB	FC	FD	FE (Max.)	FF	FJ	FK
	M5 $\times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	11	14	30 ± 1	60
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 70$	50	4.6	11	14	30 ± 1	60
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	11	9	25 ± 1	60
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	14.5	12	30 ± 1	60

Electric Actuator/Slider Type
 Ball Screw Drive

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 60 for details about motor mounting and included parts.

LEFS40R

Positioning pin hole*1 (Option): Body bottom

With auto switch (Option)
LEFS40R

LEFS40L

Dimensions	
Stroke	G mm$]$
$\mathbf{1 5 0}$	130
$\mathbf{2 0 0}$	280
$\mathbf{2 5 0}$	280
$\mathbf{3 0 0}$	280
$\mathbf{3 5 0}$	430
$\mathbf{4 0 0}$	430
$\mathbf{4 5 0}$	430
$\mathbf{5 0 0}$	580
$\mathbf{5 5 0}$	580
$\mathbf{6 0 0}$	580

Dimensions	
Stroke	$\mathrm{Gm}]$
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030
1100	1180
1200	1180

- This product does not include the motor and motor mounting screws. (Provided by the customer)
- Prepare a motor with a round shaft end.

For the "NM1" or "NM3," prepare a D-cut shaft.
Motor Mounting: In-line

- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Mounting type: NZ, NY, NX, NW, NV, NU, NT, NM2

[Included parts] Hexagon

* Note for mounting a motor to the NM2 mounting type

Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Mounting type: NM1

[Included parts] Hexagon socket head set screw/MM
(Tightening torque: TT [$\mathrm{N} \cdot \mathrm{m}$])

* Note for mounting a hub to the NM1 mounting type

When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below.)

* Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Size: 25 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NY	$\mathrm{M} 2.5 \times 10$	1.0	8	12.4
NX	$\mathrm{M} 2.5 \times 10$	1.0	8	6.9
NM1	$\mathrm{M} 3 \times 4$	0.63	5	11.9
NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	10

Size: 32 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 4 \times 12$	2.5	11	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.4
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 40 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5.1
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 32, 40

Description	Quantity								
	Mounting type								
	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Motor side hub	1	1	1	1	1	1	1	1	1
Hexagon scchet head cap screwset screw (to secure the hub)* 1	1	1	1	1	1	1	1	1	1
Ring spacer	-	-	1	-	1	-	-	1	,

*1 For screw sizes, refer to the hub mounting dimensions.

Motor Mounting: Motor Parallel

Mounting type: NZ, NY, NX, NW, NU, NT, NM2

Included Parts List

Size: 25

Description	Quantity
Motor flange	1
Motor side pulley	1
Cover plate	1
Timing belt	1
Hexagon socket head cap screw/set screw (to secure the pulley)*1	1
Hexagon socket head cap screw*1 (to secure the motor flange)	2
Round head combination screw M3 x6	4

*1 For screw sizes, refer to the pulley mounting dimensions.

Mounting procedure

1) Secure the motor side pulley to the motor (provided by the customer) with the MM1 hexagon socket head cap screw. For mounting type "NM1/ NM3", secure them with the MM1 hexagon socket head set screw.
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
3) Put the timing belt on the motor side pulley and body side pulley, and then secure it temporarily with the hexagon socket head cap screws ($2 \times \mathrm{MM} 2$). (Refer to the left diagram.)
4) Apply the belt tension/tensile force: BT and tighten the timing belt with the hexagon socket head cap screws ($2 \times \mathrm{MM} 2$).
5) Secure the return plate with the round head combination screws $(4 \times M 3 \times 6)$.

Size: 32 Pulley Mounting Dimensions [mm]

Mounting type	MM1	TT1	MM2	TT2	PD	FP	BT
NZ	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	14	6.6	49
NY	$\mathrm{M} 3 \times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	11	6.6	49
NW	$\mathrm{M} 4 \times 12$	2.5	$\mathrm{M} 4 \times 12$	1.5	9	6.6	49
NU	$\mathrm{M} 3 \times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	11	4.2	49
NT	$\mathrm{M} 3 \times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	12	10.6	49
NM1	$\mathrm{M} 3 \times 4$	0.63	$\mathrm{M} 4 \times 12$	1.5	6.35	10.6	49
NM2	$\mathrm{M} 3 \times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	10	5.1	49

Size: 40 Pulley Mounting Dimensions

Size: 40	Pulley Mounting Dimensions	$[\mathrm{mm}]$					
Mounting type	MM1	TT1	MM2	TT2	PD	FP	BT
NZ/NY	M4 $\times 12$	2.5	M4 $\times 12$	1.5	14	4.5	98.1
NW	M 4×12	2.5	M4 $\times 12$	1.5	9	4.5	98.1
NT	$\mathrm{M} 4 \times 12$	2.5	$\mathrm{M} 4 \times 12$	1.5	12	8	98.1

Size: 25 Pulley Mounting Dimensions
mm]

Mounting type	MM1	TT1	MM2	TT2	PD	FP	BT
NZ/NY	$\mathrm{M} 2.5 \times 10$	1.0	$\mathrm{M} 3 \times 8$	0.63	8	8	19.6
NX	$\mathrm{M} 2.5 \times 10$	1.0	$\mathrm{M} 3 \times 8$	0.63	8	5	19.6
NM1	$\mathrm{M} 3 \times 5$	0.63	$\mathrm{M} 3 \times 8$	0.63	5	12.5	19.6
NM2	$\mathrm{M} 2.5 \times 10$	1.0	$\mathrm{M} 3 \times 8$	0.63	6	5.5	19.6
NM3	$\mathrm{M} 3 \times 5$	0.63	$\mathrm{M} 3 \times 8$	0.63	5	9.5	19.6

Size: 32, 40

Description	Quantity	
	$\mathbf{3 2}$	$\mathbf{4 0}$
Motor flange	1	1
Motor side pulley	1	1
Cover plate	1	1
Timing belt	1	1
Hexagon socket head cap screw/set screw (to secure the pulley)*1	1	1
Hexagon socket head cap screw*1 (to secure the motor flange)	2	4
Round head combination screw M3 x6	4	4

*1 For screw sizes, refer to the pulley mounting dimensions.

LEFS Series

Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Except NM1 and NM3) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

1 Size	
25	For LEFD25
32	For LEF[32
40	For LEF[40

(2) Motor mounting position

Nil	In-line
\mathbf{P}	(Right side/Left side) parallel

\section*{(3) Mounting type
 | NZ | NV |
| :---: | :---: |
| NY | NU |
| NX | NT |
| NW | NM2 |}

* Select only NZ, NY, NX or NM2 for the LEFS-MF25.

Compatible Motors and Mounting Types*5

Applicable motor model		Size/Mounting type														
Manufacturer	Series	25						32/40								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V/7/X	-*4	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	$\begin{array}{\|c\|} \hline \bullet \\ \text { (MHMF } \\ \text { Only) } \end{array}$	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
FANUC CORPORATION	Bis (-B)	\bullet	-	-	-	-	-	$\mid(\beta 1 \text { only } \mid$	-	-	\bullet	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-*4	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	$\bullet * 1$	-	$\bullet * 3$	-	-	-	-	-	-	-	-*2	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	$\bullet * 1$	-	$\bullet * 3$	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	$\underset{(46}{\bullet} \text { only) } \mid$	-	-	-	-	-	-	-	-	-	-*2
FASTECH Co.,Ltd.	Ezi-SERVO	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	- *2	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	$\|\underset{(T L .0 n l y}{\bullet}\|$	-	-	-	-	-	-	-	$\begin{gathered} \bullet_{* 1}^{*} \\ \text { (MPNP } \\ \text { only) } \end{gathered}$	-	-	-	$\underset{(T L \text { only) }}{\bullet}$	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline \bullet^{* 1} \\ (80 / 81 \\ \text { only) } \end{array}$	-	$\left\|\begin{array}{c} \bullet * 1 \\ (30 \text { only } \end{array}\right\|$	$\left\|\begin{array}{c} \bullet * 2 \\ (31 \text { only } \end{array}\right\|$	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bullet	-	-	-	-	-	-*1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-

* When the LEF $\square \square \square{ }_{\mathrm{NM} 3}^{\mathrm{NM} 1} \square-\square$ is purchased, it is not possible to change to other mounting types.
*1 Motor mounting position: In-line only
*2 Only size 32 is available when the motor mounting position is right (or left) side parallel.
*3 Motor mounting position: Right (or left) side parallel only
*4 For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor.
*5 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following actuator body "Dimensions" pages.

Dimensions: Motor Flange Option
Motor mounting position: In-line

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Hub (Motor side)	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2
$\mathbf{5}$	Ring spacer (Only for mounting types "NM2" in size 25 and "NX," "NV," and "NM2" in sizes 32 and 40)	1

For NM2

$4 \times$ FA,
Counterbore diameter FG, depth FH

* Spot facing is on the reverse side.

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ/NX	M4 x 0.7	8	$\varnothing 46$	30	3.5	35.5	-	-	57.8	46.5	M2.5 $\times 10$	M4 x 35	8
	NY	M3 x 0.5	8	$\varnothing 45$	30	3.5	35.5	-	-	57.8	46.5	M 2.5×10	M4 x 35	8
	NM2	ø3.4	-	$\square 31$	22*1	$2.5 * 1$	33.1	6.5	22.6	57.8	46.5	M 2.5×10	M4 x 18	6
32	NZ	M5 x 0.8	9	$\varnothing 70$	50	5	46	-	-	69.8	61.4	M3 $\times 12$	M5 x 40	14
	NY	M 4×0.7	8	$\varnothing 70$	50	5	46	-	-	69.8	61.4	$\mathrm{M} 4 \times 12$	M5 x 40	11
	NX	M5 x 0.8	9	ø63	40*1	5	49.7	-	-	69.8	61.4	M4 x 12	M5 x 40	9
	NW	M5 x 0.8	9	$\varnothing 70$	50	5	47.5	-	-	69.8	61.4	M4 x 12	M5 x 40	9
	NV	M4 x 0.7	8	ø63	40*1	5	49.7	-	-	69.8	61.4	M 4×12	M5 x 40	9
	NU	M5 x 0.8	9	$\varnothing 70$	50	5	47.5	-	-	69.8	61.4	M 4×12	M5 x 40	11
	NT	M5 x 0.8	9	$\varnothing 70$	50	5	46	-	-	69.8	61.4	M3 $\times 12$	M5 x 40	12
	NM2	M4 x 0.7	8	$\square 50$	36*1	4.5*1	40.1	-	-	69.8	61.4	M 4×12	M5 x 25	10
40	NZ	M5 x 0.8	9	$\varnothing 70$	50	5	47.5	-	-	89.8	66.9	M3 x 12	M5 x 40	14
	NY	M 4×0.7	8	$\varnothing 70$	50	5	47.5	-	-	89.8	66.9	M3 $\times 12$	M5 x 40	14
	NX	M5 x 0.8	9	ø63	40*1	5	51	-	-	89.8	66.9	M4 x 12	M5 x 40	9
	NW	M5 x 0.8	9	$\varnothing 70$	50	5	48.8	-	-	89.8	66.9	M 4×12	M5 x 40	9
	NV	M4 x 0.7	8	ø63	40*1	5	51	-	-	89.8	66.9	$\mathrm{M} 4 \times 12$	M5 $\times 40$	9
	NU	M5 x 0.8	9	$\varnothing 70$	50	5	48.8	-	-	89.8	66.9	M 4×12	M5 x 40	11
	NT	M5 x 0.8	9	$\varnothing 70$	50	5	47.5	-	-	89.8	66.9	M3 x 12	M5 x 40	12
	NM2	M4 x 0.7	8	$\square 50$	$36 * 1$	4.5*1	41.4	-	-	89.8	66.9	M 4 x 12	M5 x 25	10

[^3]
LEFS Series

Dimensions: Motor Flange Option

Motor mounting position: Motor parallel

Component Parts

No.	Description		Quantity	
		Size		
		$\mathbf{2 5 , 3 2}$	$\mathbf{4 0}$	
$\mathbf{1}$	Motor flange	1	1	
$\mathbf{2}$	Motor pulley	1	1	
$\mathbf{3}$	Hexagon socket head cap screw (to secure the pulley)	1	1	
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2	4	

Motor flange details

Size 25: NM2
$2 \times$ FA
Counterbore diameter FG, depth FH

Size 32: NM2

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ	$2 \times \mathrm{M} 4 \times 0.7$	7.5	ø46	30	3.7	11	-	-	42	-	M2.5 x 10	M3 x 8	8
	NY	$2 \times \mathrm{M} 3 \times 0.5$	5.5	$\varnothing 45$	30	5	11	-	-	38	-	M 2.5×10	M3 $\times 8$	8
	NX	$2 \times \mathrm{M} 4 \times 0.7$	7	$\varnothing 46$	30	3.7	8	-	-	42	-	M2.5 x 10	M3 x 8	8
	NM2	ø3.4	-	$\square 31$	28	-	8.5	7	3.5	42	-	M 2.5×10	M3 x 8	6
32	NZ	$2 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	13	-	-	60	-	M3 $\times 12$	M 4×12	14
	NY	$2 \times \mathrm{M} 4 \times 0.7$	8	ø70	50	4.6	13	-	-	60	-	M3 $\times 12$	M 4×12	11
	NW	$2 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	13	-	-	60	-	M 4×12	M 4×12	9
	NU	$2 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	10.6	-	-	60	-	M3 $\times 12$	$\mathrm{M} 4 \times 12$	11
	NT	$2 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	17	-	-	60	-	M3 $\times 12$	M 4×12	12
	NM2	M4 x 0.7	8	$\square 50$	38.2	-	11.5	-	-	60	7	M3 $\times 12$	M 4×12	10
40	NZ	$4 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	M 4×12	14
	NY	$4 \times \mathrm{M} 4 \times 0.7$	8	$\varnothing 70$	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	14
	NW	$4 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	11	-	-	60	-	$\mathrm{M} 4 \times 12$	$\mathrm{M} 4 \times 12$	9
	NT	$4 \times \mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	14.5	-	-	60	-	M 4×12	M 4×12	12

Motorless Type

Electric Actuator/Slider Type

Belt Drive/LEFB Series
Model Selection

LEFB Series >p. 69

Selection Procedure

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.
Operating
conditions

Step 1
Check the work load-speed. <Speed-Work Load Graph>
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 65.
Selection example) The LEFB40 $\square \mathbf{S} \mathbf{- 2 0 0 0}$ can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2
Check the cycle time.
Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the motor type and load. The value below is recommended.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=1500 / 3000=0.5[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=1500 / 3000=0.5[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{2000-0.5 \cdot 1500 \cdot(0.5+0.5)}{1500} \\
& =0.83[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

The cycle time can be found as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.5+0.83+0.5+0.05 \\
& =1.88[\mathrm{~s}]
\end{aligned}
$$

T4 = 0.05 [s]

* The conditions for the settling time vary depending on the motor or driver to be used

Step 3 Check the allowable moment. <Static allowable moment> (page 38) <Dynamic allowable moment> (page 66) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LEFB40 \square S-2000 should be selected.

<Speed-Work Load Graph> (LEFB40)

L : Stroke [mm] … (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \ldots$ (Operating condition) a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)

T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed

LEFB Series

Motorless Type

Speed-Work Load Graph (Guide)

LEFB $\square / B e l t$ Drive

Cycle Time Graph (Guide)

LEFB $\square /$ Belt Drive

LEFB25/32/40

* Cycle time is for when maximum speed.
* Maximum stroke: LEFB25: 2000 mm LEFB32: 2500 mm LEFB40: 3000 mm Do not use the actuator so that it exceeds these specification ranges.

Work Load-Acceleration/Deceleration Graph (Guide)

LEFB $\square /$ Belt Drive

LEFB25 \square (Duty ratio)

LEFB32 \square (Duty ratio)

LEFB40 \square (Duty ratio)
 Factor" or the Electric Actuator Model Selection Software for confirmation.

LEFB Series

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFB
Acceleration [mm/s²]: a
Size: 25/32/40
Mounting orientation: Horizontal/Bottom/Wall

Work load [kg]: m

Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEFB40
Size: 40
3. $\mathrm{Lx}=\mathbf{2 5 0} \mathbf{~ m m}, \mathrm{Ly}=\mathbf{1 8 0} \mathbf{~ m m}, \mathrm{Lz}=1000 \mathrm{~mm}$

Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 20
Work load center position [mm]: Xc=0, Yc=50, Zc = 200
2. Select the graphs for horizontal of the LEFB40 \square on page 66 .
4. The load factor for each direction can be found as follows.

$$
\alpha x=0 / 250=0
$$

$\alpha y=50 / 180=0.27$
$\alpha z=200 / 1000=0.2$
5. $\alpha x+\alpha y+\alpha z=0.47 \leq 1$

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
	0.05	0.03
LEFB32	0.05	0.03
LEFB40	0.05	0.03

* Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

* This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
* Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance (Initial Reference Value)

Electric Actuator/Slider Type Belt Drive
 LEFB Series Lefbe25,32,40

RoHS

How to Order

6 Auto switch compatibility Nil None C With (Includes 1 mounting bracket)

* If 2 or more are required, please order them separately. (Part no.: LEF-D-2-1 For details, refer to page 86.)
* Order auto switches separately. (For details, refer to pages 87 to 89.)
* When "Wil" is selected, the product will not come with a builitin magnet for an auto swicch, and soa mounting bracket cannot be secured. Be sure to select an appropriate model initially as the product cannot be changed to have auto switch compatibility atter purchase.

3 3 Mounting type
NZ NW NT NY NV NM1 NX NU NM2

7 Positioning pin hole

Nil	Housing B bottom*1	Housing B bottom
K	Body bottom 2 locations	

*1 Refer to the body mounting example on page 91 for the mounting method.

Applicable Stroke Table

,	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
LEFB25	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-							
LEFB32	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	\bullet	-							
LEFB40	\bigcirc	\bullet	\bullet	\bigcirc	\bullet	\bigcirc	\bullet													

* Please contact SMC as all non-standard and non-made-to-order strokes are produced as special orders.

Compatible Motors and Mounting Types*1

Applicable motor model		Size/Mounting type													
Manufacturer	Series	25					32/40								
		NZ	NY	NX	NM1	NM2	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7 / \mathrm{X}$	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	-	-	-	-	-	(31 only)	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	-	-	-	-	-	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	(46 only)	-	-	-	-	-	-	-	-	\bigcirc
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	-	-	-	-	-	-		-	-	-	(TL only)	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bigcirc	-	-	-	-	-	-	(80/81 only)	-	(30 only)	(31 only)	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

Electric Actuator／Slider Type
 Belt Drive LEFB Series
 Motorless Type

Specifications＊2 $\quad \bullet$ Values in this specifications table are the allowable values of the actuator body with the standard motor mounted．

Model			LEFB25	LEFB32	LEFB40
	Stroke［mm］＊1		$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(11100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \end{gathered}$	$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(11100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \\ 2500 \end{gathered}$	300，400， 500 600，700， 800 900，1000，（1100） 1200，（1300，1400） 1500，（1600，1700） （1800，1900）， 2000 2500， 3000
	Work load［kg］	Horizontal	5	15	25
	Speed［ mm / s ］		2000		
	Pushing return to origin speed［mm／s］		30 or less		
	Positioning repeatability［mm］		± 0.06		
	Lost motion［mm］＊3		0.1 or less		
	Equivalent lead［mm］		54		
	Max．acceleration／deceleration［ $\mathrm{mm} / \mathrm{s}^{2}$ ］		20000＊4		
	Impact／Vibration resistance［m／s ${ }^{2}$ ］		50／20		
	Actuation type		Belt		
	Guide type		Linear guide		
	Static allowable moment＊5 ［N•m］	Mep（Pitching）	27	46	110
		Mey（Yawing）	27	46	110
		Mer（Rolling）	52	101	207
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40		
	Operating humidity range［\％RH］		90 or less（No condensation）		
	Actuation unit weight［kg］		0.2	0.3	0.55
	Other inertia［ $\left.\mathrm{kg} \cdot \mathrm{cm}^{2}\right]$		0.1	0.2	0.25
	Friction coefficient		0.05		
	Mechanical efficiency		0.8		
	Motor type		AC servo motor（ $100 \mathrm{~V} / 200 \mathrm{~V}$ ）		
	Rated output capacity［W］		100	200	400
	Rated torque［ $\mathrm{N} \cdot \mathrm{m}$ ］		0.32	0.64	1.3

＊1 Please contact SMC as all non－standard and non－made－to－order strokes are produced as special orders．
＊2 Do not allow collisions at either end of the table traveling distance at a speed exceeding＂pushing return to origin speed．＂
Additionally，when running the positioning operation，do not set within 3 mm of both ends．
＊3 A reference value for correcting errors in reciprocal operation
＊4 Maximum acceleration／deceleration changes according to the work load．
Refer to the＂Work Load－Acceleration／Deceleration Graph（Guide）＂for belt drive on page 65.
＊5 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped
If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product．
＊6 Each value is only to be used as a guide to select a motor of the appropriate capacity．
＊7 For other specifications，refer to the specifications of the motor that is to be installed．

Weight

Model	LEFB25																	
Stroke $[\mathrm{mm}]$	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
Product weight［kg］	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	6.75

Model	LEFB32																		
Stroke［mm］	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500
Product weight［kg］	4.00	4.35	4.70	5.05	5.40	5.75	6.10	6.45	6.80	7.15	7.50	7.85	8.20	8.55	8.90	9.25	9.60	9.95	11.70

Model	LEFB40																			
Stroke［mm］	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
Product weight［kg］	5.72	6.17	6.62	7.07	7.52	7.97	8.42	8.87	9.32	9.77	10.22	10.67	11.12	11.57	12.02	12.47	12.92	13.32	15.62	17.87

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

LEFB25/Motor top mounting type

Mounting type: NM1, NM2
Mounting type: NZ, NY, NX

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ \text { (Max.) } \end{gathered}$	FF	FG	FH	FI	FJ	FK
	Mounting type	$\begin{gathered} \text { Appicable } \\ \text { motor } \end{gathered}$										
NZ	M4 0.7	$\varnothing 4.5$	8	ø46	30	3.5	73	-	-	2	8	25 ± 1
NY	M3 0.5	ø3.4	8	ø45	30	3.5	73	-	-	4	8	25 ± 1
NX	M4 x 0.7	ø4.5	8	ø46	30	3.5	73	-	-	2	8	18 ± 1
NM1	$\varnothing 3.4$	M3	-	$\square 31$	22*1	2.5*1	73	6	21	4	5*2	18 to 25
NM2	ø3.4	M3	-	$\square 31$	22*1	2.5*1	73	6	21	4	6	20 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 83.)
*2 Shaft type: D-cut shaft

Dimensi						[mm
Stroke	L	A	B	n	D	E
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

Electric Actuator/Slider Type
 Belt Drive

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

LEFB25/Motor top mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	G
$\mathbf{3 0 0}$	320
$\mathbf{4 0 0}$	490
$\mathbf{5 0 0}$	490
$\mathbf{6 0 0}$	660
$\mathbf{7 0 0}$	660
$\mathbf{8 0 0}$	830
$\mathbf{9 0 0}$	1000
$\mathbf{1 0 0 0}$	1000
$\mathbf{1 1 0 0}$	1170
$\mathbf{1 2 0 0}$	1170
$\mathbf{1 3 0 0}$	1340
$\mathbf{1 4 0 0}$	1510
$\mathbf{1 5 0 0}$	1510
$\mathbf{1 6 0 0}$	1680
$\mathbf{1 7 0 0}$	1680
$\mathbf{1 8 0 0}$	1850
$\mathbf{1 9 0 0}$	1850
$\mathbf{2 0 0 0}$	2020

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

Mounting type: NZ, NY, NX

Mounting type: NM1, NM2
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\left(\begin{array}{c} \text { FE } \\ (\text { Max. }) \end{array}\right.$	FF	FG	FH	FI	FJ	FK
	Mounting type	Applicable motor										
NZ	M 4×0.7	ø4.5	8	$\varnothing 46$	30	3.5	27	-	-	2	8	25 ± 1
NY	M3 0.5	ø3.4	8	ø45	30	3.5	27	-	-	4	8	25 ± 1
NX	M 4×0.7	ø4.5	8	ø46	30	3.5	27	-	-	2	8	18 ± 1
NM1	ø3.4	M3	-	$\square 31$	22*1	2.5*1	27	6	21	4	5*2	18 to 25
NM2	ø3.4	M3	-	$\square 31$	22*1	2.5*1	27	6	21	4	6	20 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 83.)
*2 Shaft type: D-cut shaft

Electric Actuator/Slider Type
 Belt Drive

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

LEFB25U/Motor bottom mounting type

Positioning pin hole*1 (Option): Body bottom

With auto switch (Option)

| Dimensions | |
| :---: | :---: |\(\quad[\mathrm{mm}] ~\left[\begin{array}{c|c}\hline Stroke \& \mathrm{G}

\hline \mathbf{3 0 0} \& 320

\hline \mathbf{4 0 0} \& 490

\hline \mathbf{5 0 0} \& 490

\hline \mathbf{6 0 0} \& 660

\hline \mathbf{7 0 0} \& 660

\hline \mathbf{8 0 0} \& 830

\hline \mathbf{9 0 0} \& 1000

\hline \mathbf{1 0 0 0} \& 1000

\hline \mathbf{1 1 0 0} \& 1170

\hline \mathbf{1 2 0 0} \& 1170

\hline \mathbf{1 3 0 0} \& 1340

\hline \mathbf{1 4 0 0} \& 1510

\hline \mathbf{1 5 0 0} \& 1510

\hline \mathbf{1 6 0 0} \& 1680

\hline \mathbf{1 7 0 0} \& 1680

\hline \mathbf{1 8 0 0} \& 1850

\hline \mathbf{1 9 0 0} \& 1850

\hline \mathbf{2 0 0 0} \& 2020

\hline\end{array}\right.\)

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

LEFB32/Motor top mounting type

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimensions

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	590	306	430	6	2	400
$\mathbf{4 0 0}$	690	406	530	6	2	400
$\mathbf{5 0 0}$	790	506	630	8	3	600
$\mathbf{6 0 0}$	890	606	730	8	3	600
$\mathbf{7 0 0}$	990	706	830	10	4	800
$\mathbf{8 0 0}$	1090	806	930	10	4	800
$\mathbf{9 0 0}$	1190	906	1030	12	5	1000
$\mathbf{1 0 0 0}$	1290	1006	1130	12	5	1000
$\mathbf{1 1 0 0}$	1390	1106	1230	14	6	1200
$\mathbf{1 2 0 0}$	1490	1206	1330	14	6	1200
$\mathbf{1 3 0 0}$	1590	1306	1430	16	7	1400
$\mathbf{1 4 0 0}$	1690	1406	1530	16	7	1400
$\mathbf{1 5 0 0}$	1790	1506	1630	18	8	1600
$\mathbf{1 6 0 0}$	1890	1606	1730	18	8	1600
$\mathbf{1 7 0 0}$	1990	1706	1830	20	9	1800
$\mathbf{1 8 0 0}$	2090	1806	1930	20	9	1800
$\mathbf{1 9 0 0}$	2190	1906	2030	22	10	2000
$\mathbf{2 0 0 0}$	2290	2006	2130	22	10	2000
$\mathbf{2 5 0 0}$	2790	2506	2630	28	13	2600

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FJ	FK
	Mounting type	Applicable motor							
NZ	M5 x 0.8	$\varnothing 5.8$	9	ø70	50	4	95.5	14	30 ± 1
NY	M 4×0.7	ø4.5	8	ø70	50	4	95.5	11	30 ± 1
NX	M 5×0.8	$\varnothing 5.8$	9	ø63	40*1	4.5*1	99.2	9	20 ± 1
NW	M5 x 0.8	$\varnothing 5.8$	9	$\varnothing 70$	50	5	96.5	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	ø4.5	8	ø63	40*1	4.5*1	99.2	9	20 ± 1
NU	M5 x 0.8	$\varnothing 5.8$	9	ø70	50	5	96.5	11	23 ± 1
NT	M5 x 0.8	$\varnothing 5.8$	9	ø70	50	4	95.5	12	30 ± 1
NM1	M 4×0.7	ø4.5	8	$\square 47.14$	38.1*1	4.5*1	82.5	6.35*2	20 ± 1
NM2	M4 x 0.7	ø4.5	8	$\square 50$	36*1	4.5*1	90.0	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 83.)
*2 Shaft type: D-cut shaft

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

LEFB32/Motor top mounting type

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	G
$\mathbf{3 0 0}$	380
$\mathbf{4 0 0}$	380
$\mathbf{5 0 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{7 0 0}$	780
$\mathbf{8 0 0}$	780
$\mathbf{9 0 0}$	980
$\mathbf{1 0 0 0}$	980
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180
$\mathbf{1 3 0 0}$	1380
$\mathbf{1 4 0 0}$	1380
$\mathbf{1 5 0 0}$	1580
$\mathbf{1 6 0 0}$	1580
$\mathbf{1 7 0 0}$	1780
$\mathbf{1 8 0 0}$	1780
$\mathbf{1 9 0 0}$	1980
$\mathbf{2 0 0 0}$	1980
$\mathbf{2 5 0 0}$	2580

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimensions

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	590	306	430	6	2	400
$\mathbf{4 0 0}$	690	406	530	6	2	400
$\mathbf{5 0 0}$	790	506	630	8	3	600
$\mathbf{6 0 0}$	890	606	730	8	3	600
$\mathbf{7 0 0}$	990	706	830	10	4	800
$\mathbf{8 0 0}$	1090	806	930	10	4	800
$\mathbf{9 0 0}$	1190	906	1030	12	5	1000
$\mathbf{1 0 0 0}$	1290	1006	1130	12	5	1000
$\mathbf{1 1 0 0}$	1390	1106	1230	14	6	1200
$\mathbf{1 2 0 0}$	1490	1206	1330	14	6	1200
$\mathbf{1 3 0 0}$	1590	1306	1430	16	7	1400
$\mathbf{1 4 0 0}$	1690	1406	1530	16	7	1400
$\mathbf{1 5 0 0}$	1790	1506	1630	18	8	1600
$\mathbf{1 6 0 0}$	1890	1606	1730	18	8	1600
$\mathbf{1 7 0 0}$	1990	1706	1830	20	9	1800
$\mathbf{1 8 0 0}$	2090	1806	1930	20	9	1800
$\mathbf{1 9 0 0}$	2190	1906	2030	22	10	2000
$\mathbf{2 0 0 0}$	2290	2006	2130	22	10	2000
$\mathbf{2 5 0 0}$	2790	2506	2630	28	13	2600
$\mathbf{7}$						

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA								
Mounting type	Aøplicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK	
NZ	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	4	37.5	14	30 ± 1
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 70$	50	4	37.5	11	30 ± 1
NX	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	41.2	9	20 ± 1
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	38.5	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 63$	$40^{* 1}$	$4.5^{* 1}$	41.2	9	20 ± 1
NU	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	5	38.5	11	23 ± 1
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	9	$\varnothing 70$	50	4	37.5	12	30 ± 1
NM1	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 47.14$	$38.1^{* 1}$	$4.5^{* 1}$	24.5	$6.35^{* 2}$	20 ± 1
NM2	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\square 50$	$36^{* 1}$	$4.5^{* 1}$	32.0	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 83.)
*2 Shaft type: D-cut shaft

Electric Actuator/Slider Type
 Belt Drive

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

LEFB32U/Motor bottom mounting type

Positioning pin hole*1 (Option): Body bottom

With auto switch (Option)

Dimensions	
Stroke	$\mathrm{Gm}]$
$\mathbf{3 0 0}$	380
$\mathbf{4 0 0}$	380
$\mathbf{5 0 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{7 0 0}$	780
$\mathbf{8 0 0}$	780
$\mathbf{9 0 0}$	980
$\mathbf{1 0 0 0}$	980
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180
$\mathbf{1 3 0 0}$	1380
$\mathbf{1 4 0 0}$	1380
$\mathbf{1 5 0 0}$	1580
$\mathbf{1 6 0 0}$	1580
$\mathbf{1 7 0 0}$	1780
$\mathbf{1 8 0 0}$	1780
$\mathbf{1 9 0 0}$	1980
$\mathbf{2 0 0 0}$	1980
$\mathbf{2 5 0 0}$	2580

LEFB Series

Motorless Type

Dimensions: Belt Drive
Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

LEFB40/Motor top mounting type

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height: 5 mm)

Dimensions

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	641.5	306	478	6	2	400
$\mathbf{4 0 0}$	741.5	406	578	6	2	400
$\mathbf{5 0 0}$	841.5	506	678	8	3	600
$\mathbf{6 0 0}$	941.5	606	778	8	3	600
$\mathbf{7 0 0}$	1041.5	706	878	10	4	800
$\mathbf{8 0 0}$	1141.5	806	978	10	4	800
$\mathbf{9 0 0}$	1241.5	906	1078	12	5	1000
$\mathbf{1 0 0 0}$	1341.5	1006	1178	12	5	1000
$\mathbf{1 1 0 0}$	1441.5	1106	1278	14	6	1200
$\mathbf{1 2 0 0}$	1541.5	1206	1378	14	6	1200
$\mathbf{1 3 0 0}$	1641.5	1306	1478	16	7	1400
$\mathbf{1 4 0 0}$	1741.5	1406	1578	16	7	1400
$\mathbf{1 5 0 0}$	1841.5	1506	1678	18	8	1600
$\mathbf{1 6 0 0}$	1941.5	1606	1778	18	8	1600
$\mathbf{1 7 0 0}$	2041.5	1706	1878	20	9	1800
$\mathbf{1 8 0 0}$	2141.5	1806	1978	20	9	1800
$\mathbf{1 9 0 0}$	2241.5	1906	2078	22	10	2000
$\mathbf{2 0 0 0}$	2341.5	2006	2178	22	10	2000
$\mathbf{2 5 0 0}$	2841.5	2506	2678	28	13	2600
$\mathbf{3 0 0 0}$	3341.5	3006	3178	32	15	3000
$\mathbf{1}$						

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FJ	FK
	Mounting type	Appicable motor							
NZ	M5 $\times 0.8$	ø5.8	9	ø70	50	4	100	14	30 ± 1
NY	M4 $\times 0.7$	ø4.5	8	ø70	50	4	100	14	30 ± 1
NX	M5 $\times 0.8$	ø5.8	9	ø63	40*1	4.5*1	103.2	9	20 ± 1
NW	M5 x 0.8	ø5.8	9	¢70	50	5	101	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	ø4.5	8	ø63	40*1	4.5*1	103.2	9	20 ± 1
NU	M 5×0.8	ø5.8	9	ø70	50	5	101	11	23 ± 1
NT	M5 $\times 0.8$	ø5.8	9	ø70	50	4	100	12	30 ± 1
NM1	M 4×0.7	ø4.5	8	$\square 47.14$	38.1*1	4.5*1	87	6.35*2	20 ± 1
NM2	M4 x 0.7	ø4.5	8	$\square 50$	36*1	4.5*1	94.0	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 83.)
*2 Shaft type: D-cut shaft

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

LEFB40/Motor top mounting type

Positioning pin hole*1 (Option): Body bottom

With auto switch (Option)

Dimensions [mm]

LEFB Series

Motorless Type

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

Dimensions

Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
$\mathbf{3 0 0}$	641.5	306	478	6	2	400
$\mathbf{4 0 0}$	741.5	406	578	6	2	400
$\mathbf{5 0 0}$	841.5	506	678	8	3	600
$\mathbf{6 0 0}$	941.5	606	778	8	3	600
$\mathbf{7 0 0}$	1041.5	706	878	10	4	800
$\mathbf{8 0 0}$	1141.5	806	978	10	4	800
$\mathbf{9 0 0}$	1241.5	906	1078	12	5	1000
$\mathbf{1 0 0 0}$	1341.5	1006	1178	12	5	1000
$\mathbf{1 1 0 0}$	1441.5	1106	1278	14	6	1200
$\mathbf{1 2 0 0}$	1541.5	1206	1378	14	6	1200
$\mathbf{1 3 0 0}$	1641.5	1306	1478	16	7	1400
$\mathbf{1 4 0 0}$	1741.5	1406	1578	16	7	1400
$\mathbf{1 5 0 0}$	1841.5	1506	1678	18	8	1600
$\mathbf{1 6 0 0}$	1941.5	1606	1778	18	8	1600
$\mathbf{1 7 0 0}$	2041.5	1706	1878	20	9	1800
$\mathbf{1 8 0 0}$	2141.5	1806	1978	20	9	1800
$\mathbf{1 9 0 0}$	2241.5	1906	2078	22	10	2000
$\mathbf{2 0 0 0}$	2341.5	2006	2178	22	10	2000
$\mathbf{2 5 0 0}$	2841.5	2506	2678	28	13	2600
$\mathbf{3 0 0 0}$	3341.5	3006	3178	32	15	3000

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FJ	FK
	Mounting type	Appicable motor							
NZ	M5 x 0.8	ø5.8	9	ø70	50	4	34	14	30 ± 1
NY	M 4×0.7	ø4.5	8	ø70	50	4	34	14	30 ± 1
NX	M5 $\times 0.8$	ø5.8	9	ø63	40*1	4.5*1	37.2	9	20 ± 1
NW	M5 x 0.8	ø5.8	9	ø70	50	5	35	9	25 ± 1
NV	M 4×0.7	ø4.5	8	ø63	40*1	4.5*1	37.2	9	20 ± 1
NU	M5 x 0.8	ø5.8	9	ø70	50	5	35	11	23 ± 1
NT	M5 0.8	ø5.8	9	ø70	50	4	34	12	30 ± 1
NM1	M 4×0.7	ø4.5	8	$\square 47.14$	38.1*1	4.5*1	21	6.35*2	20 ± 1
NM2	M 4×0.7	ø4.5	8	$\square 50$	36*1	4.5*1	28.0	10	24 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 83.)
*2 Shaft type: D-cut shaft

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 83 for details about motor mounting and included parts.

LEFB40U/Motor bottom mounting type

Positioning pin hole *1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions	
Stroke	Gm
$\mathbf{3 0 0}$	380
$\mathbf{4 0 0}$	380
$\mathbf{5 0 0}$	580
$\mathbf{6 0 0}$	580
$\mathbf{7 0 0}$	780
$\mathbf{8 0 0}$	780
$\mathbf{9 0 0}$	980
$\mathbf{1 0 0 0}$	980
$\mathbf{1 1 0 0}$	1180
$\mathbf{1 2 0 0}$	1180
$\mathbf{1 3 0 0}$	1380
$\mathbf{1 4 0 0}$	1380
$\mathbf{1 5 0 0}$	1580
$\mathbf{1 6 0 0}$	1580
$\mathbf{1 7 0 0}$	1780
$\mathbf{1 8 0 0}$	1780
$\mathbf{1 9 0 0}$	1980
$\mathbf{2 0 0 0}$	1980
$\mathbf{2 5 0 0}$	2580
$\mathbf{3 0 0 0}$	2980

- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- This product does not include the motor and motor mounting screws. (Provided by the customer)
- Prepare a motor with a round shaft end.

For the "NM1," prepare a D-cut shaft.

- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Mounting type: NZ, NY, NX, NW, NV, NU, NT, NM2

Mounting type: NM1

* Note for mounting a motor to the NM2 mounting type Motor mounting screws for the LEFB25 are fixed starting from the motor flange side. (Opposite of the drawing)
* Note for mounting a hub to the NM1 mounting type

When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below)

* Motor mounting screws for the LEFB25 are fixed starting from the motor flange side. (Opposite of the drawing)

Motor Mounting Diagram

Mounting type: NZ, NY, NW, NU, NT

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

Mounting type: NX, NV, NM1, NM2

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw (Mounting type: NX, NV, NM2) or MM hexagon socket head set screw (Mounting type: NM1).
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Mount the ring spacer to the motor.
4) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

* For the LEFB25

4) Remove the motor flange, which has been temporarily mounted, from the housing B, and secure the motor to the motor flange using the motor mounting screws (that are to be prepared by the customer).
5) Tighten the motor flange to the housing B using motor flange mounting screws (included parts). (Tightening torque: 1.5 [$\mathrm{N} \cdot \mathrm{m}$])

Match the convex part of the motor hub to the concave part of the spider that is mounted on the body side hub.

Spider
[Built-in parts]

Size: 25 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 2.5 \times 10$	1.0	8	11
NY	$\mathrm{M} 2.5 \times 10$	1.0	8	11
NX	$\mathrm{M} 2.5 \times 10$	1.0	8	5.5
NM1	$\mathrm{M} 3 \times 4$	0.63	5	11
NM2	$\mathrm{M} 2.5 \times 10$	1.0	6	11

Included Parts List

Size: 32 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 4 \times 12$	2.5	11	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	12.5
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	12.5
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	4.5
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 40 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NY	$\mathrm{M} 3 \times 12$	1.5	14	17.5
NX	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NW	$\mathrm{M} 4 \times 12$	2.5	9	13
NV	$\mathrm{M} 4 \times 12$	2.5	9	5.2
NU	$\mathrm{M} 4 \times 12$	2.5	11	13
NT	$\mathrm{M} 3 \times 12$	1.5	12	17.5
NM1	$\mathrm{M} 4 \times 5$	1.5	6.35	5
NM2	$\mathrm{M} 4 \times 12$	2.5	10	12

Size: 25

Description	Quantity			
	Mounting type			
	NZ	NY	NX	NM1

Size: 32, 40

Description	Quantity								
	Mounting type								
	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Motor side hub	1	1	1	1	1	1	1	1	1
Hexagon socket head cap screw/set screw (to secure the hub)*1	1	1	1	1	1	1	1	1	1
Ring spacer	-	-	1	-	1	-	-	1	1

[^4]*1 For screw sizes, refer to the hub mounting dimensions.

LEFB Series
 Motor Mounting Parts

Motor Flange Option

After purchasing the product, the motor can be changed to the mounting types shown below by replacing with this option. (Except NM1) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

(1) Size
$\mathbf{2 5}$ For LEF■25 $\mathbf{3 2}$ For LEF $\square 32$ 40 For LEF $\square 40$

(2) Mounting type

$N Z$	NV
NY	NU
NX	NT
NW	NM2

* Select only NZ, NY, NX or NM2 for the LEFB-MF25.

Compatible Motors and Mounting Types*1

Applicable motor model		Size/Mounting type													
Manufacturer	Series	25					32/40								
		NZ	NY	NX	NM1	NM2	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/44/J5	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	E-V/7/X	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	$\underset{\substack{\bullet \\ \text { (MHMF } \\ \text { only }}}{\bullet}$	\bullet	-	-	-	-	-	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bullet	-	-	-	-	$\underset{(\beta 1 \text { only) }}{\bullet}$	-	-	\bullet	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	$\stackrel{\bullet}{-}$	-	-	-	-	-	-	-	-	\bullet
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	$(\mathrm{TL} \stackrel{\bullet}{\mathrm{on}} \mathrm{l} \text {) }$	-	-	-	-	-	-	$\underset{\substack{\bullet \\ \text { (MPNP } \\ \text { only }}}{\bullet}$	-	-	-	(TL only)	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	-	(80/81 only)	-	$\text { (} 30 \text { only) }$	$\underset{(31}{\bullet} \stackrel{\bullet}{\text { only }})$	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bullet	-	-	-	-	\bullet	-	-	-	-	-	-	-	-

[^5]
LEFB Series

Dimensions: Motor Flange Option

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Hub (Motor side)	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2
$\mathbf{5}$	Ring spacer (Only for mounting types "NM2" in size 25 and "NX," "NV," and "NM2" in sizes 32 and 40)	1

For NM2

$4 \times$ FA,
$\xrightarrow{\text { Counterbore diameter FG, depth FH }}$

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
25	NZ/NX	M4 x 0.7	8	ø46	30	3.5	31.5	-	-	57.8	65.5	M2.5 $\times 10$	M4 $\times 30$	8
	NY	M3 x 0.5	8	ø45	30	3.5	31.5	-	-	57.8	65.5	M 2.5×10	M 4×30	8
	NM2	ø3.4	-	$\square 31$	22*1	2.5*1	31.5	6	21	57.8	65.5	M 2.5×10	M 4×30	6
32	NZ	M5 x 0.8	9	ø70	50	4	44	-	-	69.8	83.5	M3 x 12	M5 x 45	14
	NY	M 4×0.7	8	ø70	50	4	44	-	-	69.8	83.5	M 4 x 12	M 5×45	11
	NX	M5 x 0.8	9	ø63	40*1	5	47.7	-	-	69.8	83.5	M 4 x 12	M 5×45	9
	NW	M5 x 0.8	9	ø70	50	5	45	-	-	69.8	83.5	M 4 x 12	M 5×45	9
	NV	M 4×0.7	8	ø63	40*1	5	47.7	-	-	69.8	83.5	M 4 x 12	M5 x 45	9
	NU	M5 $\times 0.8$	9	๑70	50	5	45	-	-	69.8	83.5	M 4×12	M5 $\times 45$	11
	NT	M5 x 0.8	9	ø70	50	4	44	-	-	69.8	83.5	M3 x 12	M5 x 45	12
	NM2	M4 x 0.7	8	$\square 50$	36*1	4.5*1	38.5	-	-	69.8	83.5	M4 x 12	M5 x 25	10
40	NZ	M5 x 0.8	9	ø70	50	4	44	-	-	89.8	85	M3 x 12	M 5×45	14
	NY	M4 $\times 0.7$	8	ø70	50	4	44	-	-	89.8	85	M3 x 12	M 5×45	14
	NX	M5 $\times 0.8$	9	ø63	40*1	5	47.2	-	-	89.8	85	$\mathrm{M} 4 \times 12$	M 5×45	9
	NW	M5 x 0.8	9	$\varnothing 70$	50	5	45	-	-	89.8	85	M 4×12	M 5×45	9
	NV	$\mathrm{M} 4 \times 0.7$	8	ø63	40*1	5	47.2	-	-	89.8	85	$\mathrm{M} 4 \times 12$	M 5×45	9
	NU	M5 $\times 0.8$	9	$\varnothing 70$	50	5	45	-	-	89.8	85	M 4×12	M5 $\times 45$	11
	NT	M5 $\times 0.8$	9	$\varnothing 70$	50	4	44	-	-	89.8	85	M3 x 12	M5 x 45	12
	NM2	M4 x 0.7	8	$\square 50$	36*1	4.5*1	38	-	-	89.8	85	M 4 x 12	M 5×25	10

[^6]LEF Series
Auto Switch Mounting

Auto Switch Mounting Position

Model						Size	A	B	Operating range
LEFS	25	45	51	4.9					
	32	55	61	3.9					
	40	79	85	5.3					

* The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
* The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations depending on the ambient environment.
* Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting

Rotate the bolts for auto switch mounting bracket three to four times to loosen them (Removing them is not required), and slide and remove the auto switch mounting bracket. Then, insert a switch into the groove on the mounting bracket.
As the mounting bolts for installing the product body interfere with the auto switch mounting bracket, mount the auto switch mounting bracket after installing the product body. After installing product body, tighten the bolts for the auto switch mounting bracket.

* The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
* The direction of the lead wire entry is specified. If it is mounted in the opposite direction, the auto switch may malfunction.
* Tighten the auto switch mounting screws (provided together with the auto switch), using a precision screwdriver with a handle diameter of approximately 5 to 6 mm .
* If more than two auto switch mounting brackets are required, please order them separately. All eight bolts for attaching the auto switch mounting bracket at the stroke end are tightened into the body when the product is shipped.
For strokes of 99 mm or less, only four bolts are tightened on the motor side.

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

| D-M9 $\square, ~ D-M 9 ~$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | V (With indicator light)

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications				Refer to the SMC website for details on products that are compliant with international standards.		
PLC: Programmable Logic Controller						
D-M9 $\square \mathrm{E}$, D-M9 $\square \mathrm{EV}$ (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP			
Applicable load	IC circuit, Relay, PLC				24 VDC	lay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					
Current consumption	10 mA or less					-
Load voltage	28 VDC	or less		-	24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to	40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V	r less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA	or less
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$		
	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

[g]

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW/D-M9PW/D-M9BW

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)			
Auto switch model	D-M9NW	D-M9PW	D-M9BW
Electrical entry direction	In-line		
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA)		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.		
Standards	CE/UKCA marking		

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW	D-M9PW	D-M9BW
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores	/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model				D-M9NW
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW	D-M9BW
	$1 \mathrm{~m}(\mathbf{M})$	14	7	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

LEF Series
 Specific Product Precautions 1

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If a load in excess of the specification limits is applied to the guide, adverse effects such as the generation of play in the guide, reduced accuracy, or reduced service life of the product may occur.
2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a malfunction.

Selection

© Warning

1. Do not increase the speed in excess of the specification limits.
Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, adverse effects such as the generation of noise, reduced accuracy, or reduced service life of the product may occur.
2. Do not use the product in applications where excessive external force or impact force is applied to it. This can cause a malfunction.
3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every few dozens of cycles.
Failure to do so may result in the product running out of lubrication.

Model	Partial stroke
LEF $\square \mathbf{2 5}$	65 mm or less
LEF $\square \mathbf{3 2}$	70 mm or less
LEF $\square \mathbf{4 0}$	105 mm or less

4. When external force is to be applied to the table, it is necessary to add the external force to the work load as the total carried load when selecting a size.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table will increase, which may lead to the malfunction of the product.
5. Depending on the shape of the motor to be mounted, some of the product's interior parts (hub, spider, etc.) may be visible from the motor mounting surface. If this is undesirable, please contact your nearest sales office for details on options such as covers.

Handling

\triangle Caution

1. Never allow the table to collide with the stroke end.

When the driver parameters, origin or programs are set incorrectly, the table may collide with the stroke end of the actuator during operation. Be sure to check these points before use. If the table collides with the stroke end of the actuator, the guide, ball screw, belt, or internal stopper may break. This can result in abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
2. The actual speed of this actuator is affected by the work load and stroke.
Check the model selection section of the catalog.
3. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch, or cause other damage to the body or table mounting surfaces.
Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.
5. Do not apply strong impact or an excessive moment while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of the mounting surface within 0.1 $\mathrm{mm} / 500 \mathrm{~mm}$.

If a workpiece or base does not sit evenly on the body of the product, play in the guide or an increase in the sliding resistance may occur.
7. Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range.
8. Grease is applied to the dust seal band for sliding. When wiping off the grease to remove foreign matter, etc., be sure to apply it again.
9. When bottom mounted, the dust seal band may become warped.

LEF Series
 Specific Product Precautions 2

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Handling

\triangle Caution

10. When mounting the product, use screws of adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position
Body fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\varnothing \mathbf{A}$ $[\mathrm{mm}]$	\mathbf{L} $[\mathrm{mm}]$
$\mathbf{L E F} \square \mathbf{2 5}$	M4	1.5	4.5	24
$\mathbf{L E F} \square \mathbf{3 2}$	M5	3.0	5.5	30
$\mathbf{L E F} \square \mathbf{4 0}$	M6	5.2	6.6	31

The traveling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathrm{L}($ Max. screw-in depth) $[\mathrm{mm}]$
LEF $\square \mathbf{2 5}$	M5 50.8	3.0	8
LEF $\square \mathbf{3 2}$	$\mathrm{M} 6 \times 1$	5.2	9
LEF $\square \mathbf{4 0}$	M8 $\times 1.25$	12.5	13

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.
12. The belt drive actuator cannot be used for vertical applications.
13. Check the specifications for the minimum speed of each actuator.
Failure to do so may result in unexpected malfunctions such as knocking.
14. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications due to the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check		
Inspection before daily operation	\bigcirc	-		
Inspection every 6 months $/ 1000 \mathrm{~km} /$	\bigcirc	\bigcirc		
5 million cycles*1			\quad	
:---				

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts
2. Loose or mechanical play in fixed parts or fixing screws
3. Do not operate by fixing the table and moving the actuator body.

Motorless Type Electric Actuators

High Rigidity Slider Type

Ball Screw Drive LEJS Series

Motorless Type

Electric Actuator/High Rigidity Slider Type

Ball Screw Drive/LEJS(-M) Series
Model Selection
LEJS Series \upharpoonright p. 105 LEJS-M Series \upharpoonright p. 109

Selection Procedure

Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Check the speed-work load.
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 94.
Selection example) The LEJS63■B-300 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.
Method 1: Check the cycle time graph. (pages 95, 96)
The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time:

T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1 and T3 can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio.
Confirm that they do not exceed the upper limit, by referring to the "Work load-Acceleration/Deceleration Graph (Guide)" on pages 97 to 100.
For the ball screw type, there is an upper limit of the speed depending on the stroke. Confirm that it does not exceed the upper limit, by referring to the specifications on page 106.

- T2 can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4 varies depending on the motor type and load. The value below is recommended.
T4 = 0.05 [s]

Calculation example) T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}]$
$T 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}$
$=\frac{300-0.5 \cdot 300 \cdot(0.1+0.1)}{300}$

$$
=0.90[\mathrm{~s}]
$$

T4 = $0.05[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$

$$
\begin{aligned}
& =0.1+0.90+0.1+0.05 \\
& =1.15[\mathrm{~s}]
\end{aligned}
$$

* The conditions for the settling time vary depending on the motor or driver to be used.

Step 3

Check the allowable moment.
<Static allowable moment> (page 94) <Dynamic allowable moment> (page 101) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Selection example)
Select the LEJS63 \square B-300 from the graph on the right side.
Confirm that the external force is within the allowable external force ($20[\mathrm{~N}]$).
(The external force is the resistance due to cable duct, flexible trunking or air tubing.)

<Speed-Work Load Graph> (LEJS63)

L : Stroke [mm]
V: Speed [mm/s]
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed
T5: Resting time [s]
Time the product is not running
T6: Total time [s]
Total time from T1 to T5
Duty ratio: Ratio of T to T6 $T \div T 6 \times 100$

<Dynamic Allowable Moment> (LEJS63) Stroke Speed."

LEJS40/Ball Screw Drive

Horizontal

Vertical

LEJS63/Ball Screw Drive

Horizontal

Vertical

LEJS100/Ball Screw Drive

Horizontal

Vertical

Allowable Stroke Speed

Model	Motor	Lead		Stroke [mm]												
		Symbol	[mm]	Up to 200	Up to 300 Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200	Up to 1300	Up to 1400	Up to 1500
LEJS40	100 W equivalent	H	24		1800		1580	1170	910	720	580	480	410	-	-	-
		A	16		1200		1050	780	600	480	390	320	270	-	-	-
		B	8		600		520	390	300	240	190	160	130	-	-	-
		(Motor roation speed)			(4500 rpm)		(3938 rpm)	(2925 rpm)	(2250 rpm)	(1800 rpm)	(1463 rpm)	(1200 rpm)	(1013 rpm)	-	-	-
LEJS63	$\begin{gathered} 200 \mathrm{~W} \\ \text { equivalent } \end{gathered}$	H	30	-	1800				1390	1110	900	750	630	540	470	410
		A	20	-	1200				930	740	600	500	420	360	310	270
		B	10	-	600				460	370	300	250	210	180	150	130
		(Motor roation speed)		-		(3600 rpm			(2790 rpm)	(2220 rpm)	(1800 rpm)	(1500 rpm)	(1260 rpm)	(1080 rpm)	(930 rpm)	(810 rpm)
LEJS100	$\begin{gathered} 750 \mathrm{~W} \\ \text { equivalent } \end{gathered}$	H	50	2300						1900	1600	1400	1200	1000	900	900
		A	25	1250						950	800	700	600	500	450	450
		B	10	500						380	320	280	240	200	180	180
		(Motor roation speed)		(2760 rpm)						(2280 rpm)	(1920 rpm)	(1680 rpm)	(1440 rpm)	(1200 rpm)	(1080 rpm)	(1050 rpm)

Static Allowable Moment* ${ }^{*}$

[N•m]					
Model	Size	Pitching	Yawing	Rolling	
LEJS	$\mathbf{4 0}$	83.9	88.2	88.2	
	$\mathbf{6 3}$	121.5	135.1	135.1	
	$\mathbf{1 0 0}$	805	771	939	

LEJS Series

Motorless Type

Cycle Time Graph (Guide)

LEJS40/Ball Screw Drive

LEJS40 $\square \mathrm{H}$

LEJS40 \square A

LEJS40 \square B

LEJS63/Ball Screw Drive

LEJS63 \square H

LEJS63 \square A

LEJS63 \square B

* These graphs show the cycle time for each acceleration/deceleration.
* These graphs show the cycle time for each stroke at the maximum speed.

Cycle Time Graph（Guide）

LEJS100／Ball Screw Drive

LEJS100 $\square \mathrm{H}$

LEJS100 \square A

LEJS100 $\square B$

[^7]
LEJS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS40/Ball Screw Drive: Horizontal

LEJS40 \square H

LEJS63/Ball Screw Drive: Horizontal
LEJS63 \square H

LEJS63 \square A

LEJS63 \square B

LEJS40 $\square \mathbf{B}$

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS100/Ball Screw Drive: Horizontal

LEJS100 $\square \mathrm{H}$

LEJS100 \square A

LEJS100 \square B

LEJS Series

Motorless Type

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS40/Ball Screw Drive: Vertical

LEJS40 $\square \mathrm{H}$

LEJS63/Ball Screw Drive: Vertical
LEJS63 $\square \mathrm{H}$

LEJS63 \square A

LEJS63 \square B

LEJS40 \square B

LEJS40 \square A

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS100/Ball Screw Drive: Vertical

LEJS100 $\square \mathrm{H}$

LEJS100 \square A

LEJS100 \square B

LEJS Series

Motorless Type

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load

Factor" or the Electric Actuator Model Selection Software for confirmation.
Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation.

Acceleration/Deceleration —— $1000 \mathrm{~mm} / \mathrm{s}^{2} \quad---3000 \mathrm{~mm} / \mathrm{s}^{2} \quad-5000 \mathrm{~mm} / \mathrm{s}^{2}$

--- $10000 \mathrm{~mm} / \mathrm{s}^{2}$
$\cdots \cdot . . .-20000 \mathrm{~mm} / \mathrm{s}^{2}$

- $5000 \mathrm{~mm} / \mathrm{s}^{2}$

Model

LEJS Series

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEJS
Acceleration [mm/s²]: a
Size: 40/63
Mounting orientation: Horizontal/Bottom/Wall/Vertical
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEJS
Size: 40
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 20
Work load center position [mm]: Xc=0, Yc=50, Zc = 200
2. Select the graph on page 101, top and left side first row.
3. $L x=220$ mm, $L y=210$ mm, Lz = $\mathbf{4 3 0} \mathbf{~ m m}$
4. The load factor for each direction can be found as follows.

$$
\begin{aligned}
& \alpha x=0 / 220=0 \\
& \alpha y=50 / 210=0.24 \\
& \alpha z=200 / 430=0.47
\end{aligned}
$$

5. $\alpha x+\alpha y+\alpha z=0.71 \leq 1$

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
	0.05	0.03
LEJS63	0.05	0.03
LEJS100	0.05	0.04

* Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

[^8]
Electric Actuator/High Rigidity Slider Type Ball Screw Drive

 LEJS Series LeJs40,63How to Order

(1) Accuracy	2 Size 40 63	$\begin{aligned} & 3 \text { Mounting type } \\ & \text { NZ } \end{aligned}$	(4) Lead [mm]			$\begin{aligned} & 5 \text { Stroke }[\mathrm{mm}] \\ & 200 \\ & \hline \end{aligned}$
Nil ${ }^{\text {a }}$ Basic type			Symbol	LEJS40	LEJS63	
H \quad High-precision type		NY	H	24	30	to
		NX	A	16	20	1500
		NW*1	B	8	10	* For details, refer to
		NV*1				
		NU*1				
		NT*1				
		*1 Size 63 only				

Applicable Stroke Table

Model $\left.\begin{array}{c}\text { Stroke } \\ \text { Imm }\end{array}\right)$	200	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	$\mathbf{9 0 0}$	$\mathbf{1 0 0 0}$	1200	1500
LEJS40	\bullet	-									
LEJS63	-	\bullet									

* Please contact SMC for non-standard strokes as they are produced as special orders.

For auto switches, refer to pages 116 to 120.
Compatible Motors and Mounting Types*2

Applicable motor model		Size/Mounting type									
Manufacturer	Series	40			63						
		NZ	NY	NX	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/4/J5	\bullet	-	-	\bullet	-	-	-	-	-	-
YASKAWA Electric Corporation	E-V/7/X	-*1	-	-	\bullet	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	\bullet	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	\bullet	-	-	-	-	-
Panasonic Corporation	mINAS A5/A6	$\underset{(\text { MHMF only) }}{\bullet}$	\bullet	-	-	\bullet	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bullet	-	-	$\text { (} \beta 1 \text { only) }$	-	-	\bullet	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	\bullet	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-*1	-	-	\bullet	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	\bullet	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL		-	-	-	-	(MPNP only)	-	-	-	
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-		-			-
Siemens AG	SIMOTICS S-1FK7	-	-	\bullet	-	-	\bullet	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	\bullet	-	-	-	-	-	-
ANCA Motion	AMD2000	-	-	-	-	-	-	-	-	-	-

[^9]Specifications

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

Model				LEJS40			LEJS63		
Actuator specifications	Stroke [mm]*1			$\begin{gathered} 200,300,400,500,600,700,800 \\ 900,1000,1200 \end{gathered}$			$\begin{gathered} 300,400,500,600,700,800,900 \\ 1000,1200,1500 \end{gathered}$		
	Work load [kg]*2		Horizontal	15	30	55	30	45	85
			Vertical	3	5	10	6	10	20
	Speed*3	Stroke range	Up to 500	1800	1200	600	1800	1200	600
			501 to 600	1580	1050	520			
			601 to 700	1170	780	390			
			701 to 800	910	600	300	1390	930	460
			801 to 900	720	480	240	1110	740	370
			901 to 1000	580	390	190	900	600	300
			1001 to 1100	480	320	160	750	500	250
			1101 to 1200	410	270	130	630	420	210
			1201 to 1300	-	-	-	540	360	180
			1301 to 1400	-	-	-	470	310	150
			1401 to 1500	-	-	-	410	270	130
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			20000					
	Positioning repeatability [mm]		Basic type	± 0.02					
			High-precision type	± 0.01					
	Lost motion [mm]*4		Basic type	0.1 or less					
			High-precision type	0.05 or less					
	Ball screw specifications		Thread size [mm]	$\varnothing 12$			$\varnothing 15$		
			Lead [mm]	24	16	8	30	20	10
			Shaft length [mm]	Stroke + 118.5			Stroke + 126.5		
	Impact/Vibration resistance [m/s ${ }^{\mathbf{2}}{ }^{*}{ }^{\text {5 }}$			50/20					
	Actuation type			Ball screw					
	Guide type			Linear guide					
	Static allowable moment*6 [$\mathrm{N} \cdot \mathrm{m}$]		ep (Pitching)	83.9			121.5		
			ey (Yawing)	88.2			135.1		
			er (Rolling)		88.2		135.1		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)					
	Actuation unit weight [kg]			0.86			1.37		
	Other inertia [$\mathrm{kg} \cdot \mathrm{cm}^{2}$]			0.031			0.129		
	Friction coefficient			0.05					
	Mechanical efficiency			0.8					
흘	Motor type			AC servo motor ($100 \mathrm{~V} / 200 \mathrm{~V}$)					
	Rated output capacity [W]			100			200		
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			0.32			0.64		

*1 Please contact SMC for non-standard strokes as they are produced as special orders.
*2 Check the "Speed-Work Load Graph (Guide)" on page 94.
*3 The allowable speed changes according to the stroke.
*4 A reference value for correcting errors in reciprocal operation
*5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.
If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.
*7 Each value is only to be used as a guide to select a motor of the appropriate capacity.
*8 For other specifications, refer to the specifications of the motor that is to be installed.

* Sensor magnet position is located in the table center.

For detailed dimensions, refer to the "Auto Switch Mounting Position."

* Do not allow collisions at either end of the table traveling distance.

Additionally, when running the positioning operation, do not set within 2 mm of both ends.

* Please contact SMC for the manufacture of intermediate strokes.
(LEJS40/Manufacturable stroke range: 200 to 1200 mm , LEJS63/Manufacturable stroke range: 300 to 1500 mm)

Weight

Model	LEJS40									
Stroke [mm]	200	300	400	500	600	700	800	900	1000	1200
Product weight [kg]	5.0	5.8	6.5	7.3	8.1	8.8	9.6	10.4	11.1	12.7
Model	LEJS63									
Stroke [mm]	300	400	500	600	700	800	900	1000	1200	1500
Product weight [kg]	10.4	11.7	12.9	14.2	15.4	16.7	17.9	19.1	21.6	25.4

LEJS Series

Motorless Type

Dimensions: Ball Screw Drive
Refer to the "Motor Mounting" on page 113 for details about motor mounting and included parts.

LEJS40

 LEJS40NY $\square-\square$

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height: 6 mm)

Dimensions

Dimensions				[mm]
Model	n1	C	D	E
LEJS $\square 40 \mathrm{~N} \square \square-200$	6	1	200	80
LEJS $\square 40 \mathrm{~N} \square \square-300$	6	1	200	180
LEJS $\square 40 \mathrm{~N} \square \square-400$	8	2	400	80
LEJS $\square 40 \mathrm{~N} \square \square-500$	8	2	400	180
LEJS $\square 40 N \square \square-600$	10	3	600	80
LEJS $\square 40 \mathrm{~N} \square \square-700$	10	3	600	180
LEJS $\square 40 \mathrm{~N} \square \square-800$	12	4	800	80
LEJS $\square 40 N \square \square-900$	12	4	800	180
LEJS $\square 40 N \square \square-1000$	14	5	1000	80
LEJS $\square 40 N \square \square-1200$	16	6	1200	80

107

Motor Mounting, Applicable Motor Dimensions

Mounting type	$\mathbf{n} 2$	FA		FB	FC	FD	FE (Max.)	FJ	FK
		Applicable motor	FB	2	M4 $\times 0.7$	$\varnothing 4.5$	7	$\varnothing 46$	30
3.5	8	25 ± 1							
NY	4	$\mathrm{M} \times 0.5$	$\varnothing 3.4$	6	$\varnothing 45$	30	3.5	8	25 ± 1
NX	2	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	7	$\varnothing 46$	30	3.5	8	18 ± 1

Dimensions：Ball Screw Drive

Refer to the＂Motor Mounting＂on page 113 for details about motor mounting and included parts．

LEJS63

Applicable motor dimensions

＊1 When mounting the actuator using the body mounting reference plane，use a pin．Set the height of the pin to be 5 mm or more because of round chamfering．（Recommended height： 6 mm ）

Dimensions				
Model	n	C	D	E
LEJS $\square 63 \mathrm{~N} \square \square-300$	6	1	200	180
LEJS $\square 63 \mathrm{~N} \square \square-400$	8	2	400	80
LEJS $\square 63 \mathrm{~N} \square \square-500$	8	2	400	180
LEJS $\square 63 \mathrm{~N} \square \square-600$	10	3	600	80
LEJS $\square 63 \mathrm{C} \square \square-700$	10	3	600	180
LEJS $\square 63 \mathrm{~N} \square \square-800$	12	4	800	80
LEJS $\square 63 \mathrm{~N} \square \square-900$	12	4	800	180
LEJS $\square 63 \mathrm{~N} \square \mathrm{-1000}$	14	5	1000	80
LEJS $\square 63 \mathrm{~N} \square \square-1200$	16	6	1200	80
LEJS $\square 63 \mathrm{~N} \square \square-1500$	18	7	1400	180

Motor Mounting，Applicable Motor Dimensions

Motor Mounting，Applicable Motor Dimensions								［mm］
Mounting type	FA		FB	FC	FD	FE $($ Max．$)$	FJ	FK
	M5 5×0.8	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	14	30 ± 1
NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	6	$\varnothing 70$	50	3.3	11	30 ± 1
NX	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	6	$\varnothing 63$	40	3.5	9	20 ± 1
NW	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	9	25 ± 1
NV	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	6	$\varnothing 63$	40	3.5	9	20 ± 1
NU	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	11	23 ± 1
NT	$\mathrm{M} 5 \times 0.8$	$\varnothing 5.8$	7	$\varnothing 70$	50	3.3	12	30 ± 1

(1) Accuracy		(3) Mounting type NZ		(4) Lead [mm]		(5) Stroke [mm] ${ }^{* 1}$			-Standard OProduced upon receipt oi order		
Nil	Basic type			H	30	790	890	990	1190	1490	1790
H	High-precision type	NY		A	20	\bullet	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(2) Size		NX		B	10		Please contact SMC for non-standard strokes as they are produced as special orders.				
		NW									
		NV				(6) B	-in in	med	su		
63		NU				M	-in in	t-in in	nediat	upport	

Specifications

Lead [mm]			30	20	10	
Speed [mm/s]	Stroke range	790	1800	1200	600	For the model selection method, refer to page 93. Specifications other than those listed are the same as the standard product. Refer to page 106 for details. For details on the construction, refer to the Web Catalog.
		890 990				
		1190				
		1490				
		1790				

For auto switches, refer to pages 116 to 120.
Compatible Motors and Mounting Types*2

Applicable motor model		Size/Mounting type						
Manufacturer	Series	63						
		NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	-	-
YASKAWA Electric Corporation	г-V/7/X	- *1	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	-	\bigcirc	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	-	\bigcirc	-	-	-	-	-
FANUC CORPORATION	β is (-B)	($\beta 1$ only)	-	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	**	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	-	-	(MP/VP only)	-	-	-	(TL only)
Beckhoff Automation GmbH	AM 30/31/80/81	-	-	(80/81 only)	-	(30 only)	(31 only)	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	-
ANCA Motion	AMD2000	-	-	-	-	-	-	-

[^10]The motor mounting method and the included parts are the same as the standard product. Refer to page 113 for details.

*1 Upper dimension: 790 to 1190 mm stroke
*2 Lower dimension: 1490 to 1790 mm stroke

pane using the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height: 6 mm)

1. During operation, the intermediate support mechanism emits a collision noise due to the structure.
2. Compared to the standard product, the entire length of the product will be longer for each stroke. For details, refer to the dimensions.
3. The stopper type origin position return method cannot be used as the return to origin method (due to the bumper).

Dimensions and Weight

Model	L	B	n	C	D	E	Product weight [kg]
LEJS $\square 63 \mathrm{C} \square \square$-790M	1154.5	970	12	4	800	180	18.4
LEJS $\square 63 \mathrm{~N} \square \square$-890M	1254.5	1070	14	5	1000	80	19.7
LEJS $\square 63 \mathrm{~N} \square \square$-990M	1354.5	1170	14	5	1000	180	20.9
LEJS $\square 63 \mathrm{~N} \square \square$-1190M	1554.5	1370	16	6	1200	180	23.4
LEJS $\square 63 \mathrm{C} \square \square$-1490M	1954.5	1770	20	8	1600	180	28.9
LEJS $\square 63 \mathrm{~N} \square \square$-1790M	2254.5	2070	24	10	2000	80	32.7

Motor Mounting, Applicable Motor Dimensions [mm]

Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FJ	FK
	Mounting type	Applicable motor						
NZ	M5 x 0.8	$\varnothing 5.8$	7	$ø 70$	50	3.3	14	30 ± 1
NY	M4 x 0.7	ø4.5	6	ø70	50	3.3	11	30 ± 1
NX	M5 x 0.8	$\varnothing 5.8$	6	ø63	40	3.5	9	20 ± 1
NW	M5 x 0.8	$\varnothing 5.8$	7	ø70	50	3.3	9	25 ± 1
NV	M4 x 0.7	ø4.5	6	ø63	40	3.5	9	20 ± 1
NU	M5 x 0.8	$\varnothing 5.8$	7	ø70	50	3.3	11	23 ± 1
NT	M5 x 0.8	$\varnothing 5.8$	7	$ø 70$	50	3.3	12	30 ± 1

Electric Actuator/High Rigidity Slider Type Ball Screw Drive
 为

 LEJS100-X400How to Order

Lead [mm]

\mathbf{H}	50
\mathbf{A}	25
\mathbf{B}	10

2 Stroke [mm]

200	200
300	300
400	400
500	500
600	600
800	800
1000	1000
1200	1200
1500	1500

Specifications

	Stroke*1 [mm]			200, 300, 400, 500, 600, 800, 1000, 1200, 1500		
	Lead [mm]			50	25	10
	Work load*2[kg]	Horizontal	3000 [mm/s ${ }^{2}$]	60	150	400
			5000 [mm/s $\left.{ }^{2}\right]$	43	93	150
			$10000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	22	36	-
		Vertical	3000 [mm/s ${ }^{2}$]	14	29	80
			5000 [mm/s ${ }^{2}$]	12	29	30
			$10000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	8	9	-
	Max. speed*3 [mm/s]	Stroke range	200 to 800	2300	1250	500
			1000	1600	800	320
			1200	1200	600	240
			1500	900	450	180
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			10000		
	Positioning repeatability [mm]			± 0.01		
	Lost motion*4 [mm]			0.05 or less		
	Ball screw specifications		Thread size [mm]	ø25		
			Shaft length [mm]	Stroke + 284.5		
	Impact/Vibration resistance ${ }^{* 5}\left[\mathrm{~m} / \mathbf{s}^{2}\right]$			50/20		
	Actuation type			Linear guide		
	Guide type					
	Static allowable moment*6 [$\mathrm{N} \cdot \mathrm{m}$]	le ${ }^{\text {a }}$ Mep	p (Pitching)	805		
			((Yawing)	771		
		Mer	(Rolling)		939	
	Operating temperature range [${ }^{\mathrm{C}}$]			5 to 40		
	Operating humidity range [\%RH]			90 or less (No condensation)		
	Actuation unit weight [kg]			4.58		
	Other inertia [$\mathbf{k g} \cdot \mathrm{cm}^{2}$]			0.43		
	Friction coefficient			0.05		
	Mechanical efficiency			0.8		
흥	Motor type			AC servo motor (200 VAC)		
등	Rated output capacity [W]			750		
융흫	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			2.4		
通	Rated rotation [rpm]			3000		

*1 Strokes other than those listed in the table above are available as special orders. Please contact SMC for further details.
*2 For details, refer to "Speed-Work Load Graph (Guide)" on page 94
*3 The allowable speed changes according to the stroke.
*4 A reference value for correcting errors in reciprocal operation
*5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.
If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.
*7 Each value is only to be used as a guide to select a motor of the appropriate capacity.

* Values in this specifications table are the allowable values of the actuator body with the standard motor mounted. Do not use the actuator so that it exceeds these values.
* Before mounting the coupling, remove any dust, oil, etc., adhered to the shaft and the inner surface of the coupling
* This product does not come with a motor, motor mounting screws, or couplings. They should be prepared separately by the customer.
* Take measures to prevent the loosening of the motor mounting screws.
* Do not allow collisions at either end of the table traveling distance. Additionally, when running the positioning operation, do not set within 7 mm of both ends.

Dimensions

Recommended coupling

Manufacturer	Part no.
Nabeya Bi-tech Kaisha	MJT-40C-RD-15-19
Miki Pulley Co., Ltd	ALS-040-B-15B-19B
KTR Japan Co., Ltd.	ROTEX-GS19-98Sha-GS-2.5-ø15-2.5-ø19
SUNGIL Machinery Co., Ltd.	SJCB-40C-GR-15X19

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 5 mm or more. (Recommended height: 6 mm)
The surfaces of plates M and E on the ends of the product may slightly protrude from the body mounting reference plane (Body/B dimension range). Be sure to provide a clearance of 1 mm or more to avoid interference.

Dimensions and Weight

Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}	\mathbf{G}	Weight $[\mathrm{kg}]$
$\mathbf{2 0 0}$	545.5	214	400	6	2	360	325	17.6
$\mathbf{3 0 0}$	645.5	314	500	6	2	360	325	19.7
$\mathbf{4 0 0}$	745.5	414	600	8	3	540	505	21.8
$\mathbf{5 0 0}$	845.5	514	700	8	3	540	505	23.9
$\mathbf{6 0 0}$	945.5	614	800	10	4	720	685	26
$\mathbf{8 0 0}$	1145.5	814	1000	12	5	900	865	30.2
$\mathbf{1 0 0 0}$	1345.5	1014	1200	14	6	1080	1045	34.3
$\mathbf{1 2 0 0}$	1545.5	1214	1400	16	7	1260	1225	38.5
$\mathbf{1 5 0 0}$	1845.5	1514	1700	20	9	1620	1585	44.8

LEJS Series

Motorless Type

Motor Mounting

- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub. - This product does not include the motor and motor mounting screws. (Provided by the customer)

Prepare a motor with a round shaft end.

- Take measures to prevent the loosening of the motor mounting screws.

Dimensions					[mm]
Size	Mounting type	MM	TT	NN	PD
40	NZ	M 2.5×10	0.65	12.5	8
	NY	M 2.5×10	0.65	12.5	8
	NX	M 2.5×10	0.65	7	8
63	NZ	M3 x 12	1.5	18	14
	NY	M 4×12	2.7	18	11
	NX	M 4×12	2.7	8	9
	NW	M 4 x 12	2.7	12	9
	NV	M4 x 12	2.7	8	9
	NU	M 4 x 12	2.7	12	11
	NT	M3 $\times 12$	1.5	18	12

Included Parts List

Size: 40

Description	Quantity	Note
Motor hub	1	-
Hexagon socket head cap screw (to secure the hub)	1	M2.5 x 10: Mounting type "NZ," "NY," "NX"

Size: 63

Description	Quantity	Note
Motor hub	1	-
Hexagon socket head cap screw (to secure the hub)	1	M3 x 12: Mounting type "NZ," "NT"
Hexagon socket thin head cap screw (to secure the hub)		M4 x 12: Mounting type "NY," "NX," "NW," "NV," "NU"

LEJS Series
 Motor Mounting Parts

Motor Flange Option

As the mounting type "NZ" is selected for the model and this option is mounted, the mounting types that can be used are shown below.

How to Order

2 Mounting type
NY
NX
NW
NV
NU
NT

* Component parts vary depending on the mounting type. Refer to the "Component Parts" on page 115.

Compatible Motors and Mounting Types*2

Applicable motor model		Size/Mounting type									
Manufacturer	Series	40			63						
Manuracturer		NZ	NY	NX	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/4/J5	\bullet	-	-	\bullet	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7 / \mathrm{X}$	-*1	-	-	\bullet	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	\bullet	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	\bullet	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	$\stackrel{\bullet}{(\text { MHF only) }}$	\bullet	-	-	\bullet	-	-	-	-	-
FANUC CORPORATION	Bis (-B)	\bullet	-	-	$\text { (} \beta 1 \text { only) }$	-	-	\bullet	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-*1	-	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	\bullet	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	-	-	-	-	$\underset{\text { (MPNP only) }}{\bullet}$	-	-	-	(TL only)
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	(80/81 only)	-	(30 only)	(31 only)	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bullet	-	-	\bullet	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	\bullet	-	-	-	-	-	-
ANCA Motion	AMD2000	-	-	-	-	-	-	-	-	-	-

*1 For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor.
*2 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following actuator body "Dimensions" pages.

LEJS Series

Motorless Type

Dimensions: Motor Flange Option

Motor plate details

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	M1	T1	M2	T2	PD	FP
40	NY	M3 $\times 0.5$	6	ø45	30	3.5	6	99	49	M 4×12	2.7	M 2.5×10	0.65	8	12.5
	NX	-	-	-	-	-	-	-	-	-	-	M 2.5×10	0.65	8	7
63	NY	M4 x 0.7	6	$\varnothing 70$	50	3.5	6	123	68	M 4×12	2.7	M4 x 12	2.7	11	18
	NX	M5 x 0.8	6	ø63	40	3.5	6	123	68	M4 x 12	2.7	M4 x 12	2.7	9	8
	NW	-	-	-	-	-	-	-	-	-	-	M 4×12	2.7	9	12
	NV	M4 x 0.7	6	$ø 63$	40	3.5	6	123	68	M4 $\times 12$	2.7	M 4×12	2.7	9	8
	NU	-	-	-	-	-	-	-	-	-	-	M 4×12	2.7	11	12
	NT	-	-	-	-	-	-	-	-	-	-	M3 x 12	1.5	12	18

Component Parts

Size: 40

No.	Description	Quantity	
		Mounting type	
		NY	NX
$\mathbf{1}$	Motor plate	1	-
$\mathbf{2}$	Ring	1	-
$\mathbf{3}$	Hub (Motor side)	1	1
$\mathbf{4}$	Hexagon socket thin head cap screw	$\mathbf{1}$	-
$\mathbf{5}$	Hexagon socket head cap screw	4	

Size: 63

No.	Qescription	Mounting type							
		NX	NW	NV	NU	NT			
$\mathbf{1}$		1	1	-	1	-	-		
$\mathbf{2}$		1	1	-	1	-	-		
$\mathbf{3}$		1	1	1	1	1	1		
$\mathbf{4}$		1	1	1	1	1	1		
$\mathbf{5}$	Hexagon socket head cap screw	4	4	-	4	-	-		

LEJS40， 63 Series
 Auto Switch Mounting

Auto Switch Mounting Position

							［mm］
Model	Size	A	B	C	Operating range		
LEJS	40	77	80	160	5.5		
	63	83	86	172	7.0		

＊Since the operating range is provided as a guideline including hysteresis，
it cannot be guaranteed（assuming approximately $\pm 30 \%$ dispersion）．
It may change substantially depending on the ambient environment．

Auto Switch Mounting

When mounting the auto switches，they should be inserted into the actuator＇s auto switch mounting groove as shown in the drawing below． After setting in the mounting position，use a flat head watchmaker＇s screwdriver to tighten the auto switch mounting screw that is included．

Auto Switch Mounting Screw Tightening Torque ［ $\mathrm{N} \cdot \mathrm{m}$ ］

Auto switch model	Tightening torque
D－M9 $\square \mathbf{(V)}$	0.10 to 0.15
D－M9 $\square \mathbf{W}(\mathbf{V})$	

＊When tightening the auto switch mounting screw（included with the auto switch）， use a watchmaker＇s screwdriver with a handle diameter of about 5 to 6 mm ．

LEJS100-X400
 Side Supports/Auto Switch Mounting

Side Supports

Side supports: MY-S50A

* The side supports consist of a set of right and left brackets.

Usage Guide for Side Supports

When mounting with the side supports, be sure to use the number of side supports (N) and the support spacing (L1) shown in the figure and table below as a guide.

Stroke	N (Qty.)	L1 $[\mathrm{mm}]$	Screw size	Max. tightening torque [N.m]
200	6			
300	6			
400	6			
500	6	15	M8 $\times 1.25$	12.5
600	8			
800	8			
1000	10			
1200	10			
1500	14			

- Secure the side supports using the support spacing (L) in the table above.
- When mounting with the side supports, use in combination with the pin on the bottom of the body.
- For vertical or bottom mounting, please refrain from using only the side supports.

Auto Switch Mounting

When mounting an auto switch, first, hold a switch spacer between your fingers and press it into the slot. When doing this, confirm that it is set in the correct mounting orientation, or reinsert it if necessary. Next, insert the auto switch into the slot and slide it until it is positioned under the switch spacer.
After confirming the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

Auto Switch Mounting Screw Tightening Torque

Auto switch model	Tightening torque
D-M9 $\square \mathbf{(V)}$	0.10 to 0.15
D-M9 $\square \mathbf{W}(\mathbf{V})$	

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications				Refer to the SMC website for details on products that are compliant with international standards.		
PLC: Programmable Logic Controller						
D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP			-
Applicable load	IC circuit, Relay, PLC				24 VD	ay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					
Current consumption	10 mA or less					-
Load voltage	28 VD	or less		-	24 VDC (1	to 28 VDC$)$
Load current	40 mA or less				2.5 to	40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V	r less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 m	or less
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$		
Conductor	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

. Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 $\square E$, D-M9 $\square E V$ (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	lue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

D-M9■EV

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications international standards.

PLC: Programmable Logic Controller
D-M9 \square W, D-M9 \square WV (With indicator light)

Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less		-	24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$		
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$		
Min. bending radius $[\mathrm{mm}]$ (Reference values)				

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight
[g]

Auto switch model				D-M9NW(V)
Lead wire length	D-M9PW(V)	D-M9BW(V)		
	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

LEJS Series

Specific Product Precautions 1

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If a load in excess of the specification limits is applied to the guide, adverse effects such as the generation of play in the guide, reduced accuracy, or reduced service life of the product may occur.
2. Do not use the product in applications where excessive external force or impact force is applied to it.

The product can be damaged.
The components including the motor are manufactured to precise tolerances. So that even a slight deformation may cause a malfunction or seizure.

Selection

\triangle Warning

1. Do not increase the speed in excess of the specification limits.
Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, adverse effects such as the generation of noise, reduced accura$c y$, or reduced service life of the product may occur.
2. When the product repeatedly cycles with partial strokes (100 mm or less), lubrication can run out. Operate it at a full stroke at least once a day or every a thousand cycles.
3. When external force is to be applied to the table, it is necessary to add the external force to the work load as the total carried load when selecting a size.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table will increase, which may lead to the malfunction of the product.
4. Depending on the shape of the motor to be mounted, some of the product's interior parts (hub, spider, etc.) may be visible from the motor mounting surface. If this is undesirable, please contact your nearest sales office for details on options such as covers.

Handling

\triangle Caution

1. Never allow the table to collide with the end of stroke.

When the driver parameters, origin or programs are set incorrectly, the table may collide with the stroke end of the actuator during operation. Be sure to check these points before use.

If the table collides with the stroke end of the actuator, the guide, ball screw, belt, or internal stopper may break. This can result in abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
2. The actual speed of this actuator is affected by the work load and stroke.

Check the model selection section of the catalog.
3. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch, or cause other damage to the body or table mounting surfaces.
Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.
5. Do not apply strong impact or an excessive moment while mounting the product or a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of the mounting surface within 0.1 mm/500 mm.
If a workpiece or base does not sit evenly on the body of the product, play in the guide or an increase in the sliding resistance may occur.
In the case of overhang mounting (including cantilever), use a support plate or support guide to avoid deflection of the actuator body.
7. When mounting the actuator, use all mounting holes.
If all mounting holes are not used, it influences the specifications, e.g., the amount of displacement of the table increases.
8. Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range.
9. Do not apply external force to the dust seal band.

Particularly during the transportation

LEJS Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Handling

\triangle Caution

10. When mounting the product, use screws of adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

Workpiece fixed

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.
11. Do not operate by fixing the table and moving the actuator body.
12. When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height: 6 mm)

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 1000 \mathrm{~km} / 5$ million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts

* For lubrication, use lithium grease No. 2.

2. Loose or mechanical play in fixed parts or fixing screws

Motorless Type Electric Actuator

Large Slider Type

Belt Drive LET-X11 Series

p. 125

LET-X11 Series $>$ p. 133

Selection Procedure

 Check the speed-work load.Step 2 Check the cycle time.
Step 3
Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

| Operating
 conditions | \bullet Work load: $100[\mathrm{~kg}]$ |
| :--- | :--- | :--- | :--- |
| | \bullet Speed: $300[\mathrm{~mm} / \mathrm{s}]$ |
| | \bullet Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ |

Check the speed-work load.
Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 126.
Selection example) The LET100NNS-300-X11 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.
Method 1: Check the cycle time graph. (page 127)
The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time:

T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T 1 and T 3 can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio.
Confirm that they do not exceed the upper limit, by referring to the "Work loadAcceleration/Deceleration Graph (Guide)" on pages 128 and 129.

- T2 can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4 varies depending on the motor type and load. The value below is recommended.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

* The conditions for the settling time vary depending on the motor or driver to be used.

Calculation example) T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{300-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.90[\mathrm{~s}]
\end{aligned}
$$

T4 $=0.05$ [s]
The cycle time can be found as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.90+0.1+0.05 \\
& =\mathbf{1 . 1 5}[\mathrm{s}]
\end{aligned}
$$

Step 3 Check the allowable moment. <Static allowable moment> (page 126)

 <Dynamic allowable moment> (page 130)Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Selection example)

Select the LET100NNS-300-X11 from the graph on the right side.
Confirm that the external force is within the allowable external force (20 [N).
(The external force is the resistance due to cable duct, flexible trunking or air tubing.)

<Speed-Work Load Graph> (LET100)

L: Stroke [mm]
V: Speed [mm/s]
a1: Acceleration [mm/s²]
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginingo of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed
T5: Resting time [s]
Time the product is not running
T6: Total time [s]
Total time from T1 to T5
Duty ratio: Ratio of T to T6 $T \div T 6 \times 100$

<Dynamic Allowable Moment> (LET100)

Speed-Work Load Graph (Guide)

LET80

Horizontal

Vertical

LET100

Vertical

Static Allowable Moment*1

[N.m]						
Model	Size	Pitching	Yawing	Rolling		
LET	$\mathbf{8 0}$	380	380	114		
	$\mathbf{1 0 0}$	1157	1157	529		

*1 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.
If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.

LET-X11 Series

Motorless Type

Cycle Time Graph (Guide)

LET80

Reduction ratio: 1/3

Reduction ratio: 1/5

Reduction ratio: 1/9

* These graphs are examples of when the standard motor and the reducer (motor flange option) are mounted.
* These graphs show the cycle time for each acceleration/deceleration
* These graphs show the cycle time for each stroke at the maximum speed.

LET100

Reduction ratio: 1/3

Reduction ratio: 1/5

Reduction ratio: 1/9

Reduction ratio: 1/15

Work Load-Acceleration/Deceleration Graph (Guide)

LET80/Belt Drive: Horizontal

LET100/Belt Drive: Horizontal

LET80/Belt Drive: Vertical*1

LET100/Belt Drive: Vertical*1

*1 For vertical actuator mounting, the specifications differ depending on the mounting position of the motor.
Be aware that actuator specifications will be reduced if the motor is mounted on the lower side (the ground side).

These graphs are examples. Determine after taking into account the load factor of the motor or driver to be used.

LET-X11 Series

Work Load by Stroke-Acceleration/Deceleration Graph (Guide)

LET80

LET100

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation.
Acceleration/Deceleration —— $2500 \mathrm{~mm} / \mathrm{s}^{2} \quad-5000 \mathrm{~mm} / \mathrm{s}^{2} \quad---10000 \mathrm{~mm} / \mathrm{s}^{2} \quad \cdots \cdot-\cdots 20000 \mathrm{~mm} / \mathrm{s}^{2}$

LET-X11 Series

Motorless Type

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation.

Calculation of Guide Load Factor

1．Decide operating conditions．

Model：LET－X11
Size：80／100
Mounting orientation：Horizontal／Bottom／Wall／Vertical
Acceleration［mm／s²］：a
Work load［kg］：m
Work load center position［mm］：Xc／Yc／Zc
2．Select the target graph while referencing the model，size，and mounting orientation．
3．Based on the acceleration and work load，find the overhang［mm］：Lx／Ly／Lz from the graph．
4．Calculate the load factor for each direction．
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5．Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ ，and $\alpha \mathbf{z}$ is 1 or less．
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded，please consider a reduction of acceleration and work load，or a change of the work load center position and series．

Example

1．Operating conditions
Model：LET－X11
Size： 100
Mounting orientation：Horizontal
Acceleration［mm／s²］： 5000
Work load［kg］： 100
Work load center position［mm］：Xc＝0，Yc＝50，Zc＝ 200
2．Select the graph on the top right side of page 130.

$\xrightarrow[~ M ~]{4}$
$\xrightarrow{4}$
3．$L x=500 \mathrm{~mm}, \mathrm{Ly}=\mathbf{2 0 0} \mathbf{~ m m}, \mathrm{Lz}=1450 \mathrm{~mm}$
4．The load factor for each direction can be found as follows． $\alpha x=0 / 500=0$
$\alpha y=50 / 200=0.25$
$\alpha z=200 / 1450=0.14$
5．$\alpha \mathbf{x}+\alpha y+\alpha z=0.39 \leq 1$

Electric Actuator/Large Slider Type Belt Drive

2 Motor type*1

Symbol	Motor type
NN	Without motor flange

3 Lead [mm]		
Symbol	LET80	LET100
S	130	240

(4) Stroke [mm]
300 300 to to 3000 $\mathbf{3 0 0 0}$ * For details, refer to the applicable stroke table below.

Applicable Stroke Table

Size	Stroke [mm]												
	300	400	500	600	700	800	900	1000	1200	1500	2000	2500	3000
80/100	-	-	-	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-

* Please contact SMC for non-standard strokes as they are produced as special orders.

For auto switches, refer to pages 140 to 143.
Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type			
Manufacturer		Series	$\mathbf{8 0}$	$\mathbf{1 0 0}$	
			NN		
Mitsubishi Electric Corporation	MELSERVO-J4/J5	\bullet	\bullet		
YASKAWA Electric Corporation	Σ-V/7/X	\bullet	\bullet		
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	\bullet		
KEYENCE CORPORATION	SV/SV2	\bullet	\bullet		
Delta Electronics, Inc.	ASDA-A2	\bullet	\bullet		
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-		
FANUC CORPORATION	β is (-B)	\bullet	-		
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-		
ANCA Motion	AMD2000	\bullet	-		

[^11]－Do not use the actuator so that it exceeds these values．

Model			LET80	LET100
	Stroke［mm］＊1		300 to 1000 （Every 100st）， 1200， 1500 to 3000 （Every 500st）	300 to 1000 （Every 100st）， 1200， 1500 to 3000 （Every 500st）
	Max．work load［kg］	Horizontal	75	240
		Vertical	70	200
	Speed［mm／s］＊2		5000	
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		50000	
	Positioning repeatability［mm］		± 0.08	
	Lead［mm］		130	240
	Max．force［ N ］		800	2500
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 3}$		50／5	
	Actuation type		Belt	
	Guide type		Linear guide	
	Static allowable moment＊4 ［N•m］	Mp	380	1157
		My	380	1157
		Mr	114	529
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40	
	Operating humidity range［\％RH］		90 or less（No condensation）	
	Enclosure		IP20（Excludes motor mounting part）	
	Actuation unit weight［kg］		$2.09+\left(0.27 \times 10^{-3}\right) \times[\mathrm{ST}]$	$6.77+\left(0.52 \times 10^{-3}\right) \times[\mathrm{ST}]$
	Other inertia［kg．cm ${ }^{2}$ ］		5.76	27.54
	Friction coefficient		0.05	
	Mechanical efficiency		0.8	

＊1 Please contact SMC for non－standard strokes as they are produced as special orders．
＊2 For details，refer to the＂Speed－Work Load Graph（Guide）＂on page 126.
＊3 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊4 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped．
If the product is exposed to impact or repeated load，be sure to take adequate safety measures when using the product．
＊5 Each value is only to be used as a guide to select a motor．
＊Sensor magnet position is located in the table center．
For detailed dimensions，refer to the＂Auto Switch Mounting Position＂on page 140.
＊Do not allow collisions at either end of the table traveling distance．
Also，when performing positioning operation，do not command a range of［LET80： 22 mm ，LET100： 25 mm from both ends．
＊For the manufacturing of intermediate strokes，please contact SMC．
（LET80／Manufacturable stroke range： 300 to 3000 mm ，LET100／Manufacturable stroke range： 300 to 3000 mm ）

Weight

Size	Stroke［mm］												
	300	400	500	600	700	800	900	1000	1200	1500	2000	2500	3000
80	14.1	15.8	17.5	19.0	20.7	22.4	23.9	25.6	28.9	33.8	42.0	50.2	58.4
100	36.5	39.3	42.3	45.1	47.9	50.8	53.8	56.6	62.3	70.9	85.3	99.7	114.1

LET-X11 Series

Motorless Type

Dimensions

View A

When the side cover is removed

Size	L	A1	A2	M	H1	H2	D1			D2		D3		D4	D5	D6	W1
80	440	44	100	98	109.4	86.9	M5 x 0.8 depth 7.5			6 H 7 depth 5		M6 x 1.0 depth 9		25	62	23	120.6
100	600	50	140	135	166	135	M8x 1.25 depth 12			8 H 7 depth 7		M8x 1.25 depth 12		35	95	33	185.6
Size	W2	W3	HP1	HP2	HW1	HW2	HW3	TP1	TP2	TP3	T1	T2	T3				
80	40	3.9	86	60	35	3	2.4	116	76	55	200	68	7				
100	80	5.2	95	106	40	5	2.8	169	99	90	280	107	9				

Electric Actuator/Large Slider Type

- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- This product does not include the motor and motor mounting screws. (Provided by the customer)

Prepare a motor with a round shaft end
Motor Mounting

- Take measures to prevent the loosening of the motor mounting screws
[NG/NGC: Provided by the customer] [NGC3/5/9/15: Included parts] Motor shaft mounting screw/MM5, Plug
(Tightening torque: TT5 [$\mathrm{N} \cdot \mathrm{m}$])

Motor
rovided by the custom Motor mounting screw

[NG/NGC: Provided by the customer] [NGC3/5/9/15: Included parts] Reducer

PP (Mounting distance)
Bushing Disassembly Procedure Diagram

[NG: Provided by the customer]
[NGC: Included parts]
Motor side coupling/MM2
(Tightening torque: TT2 [N.m])
[NG/NGC: Provided by the customer] [NGC3/5/9/15: Included parts]
Reducer mounting screw/MM4
(Tightening torque: TT4 [N.m])

[NG: Provided by the customer] [NGC: Included parts] Actuator side coupling/MM3 (Tightening torque: $\mathrm{TT}_{3}[\mathrm{~N} \cdot \mathrm{~m}]$)

The outer diameter (O.D.) of the coupling to be used must not exceed the corresponding dimensions shown below.

Size	Coupling O.D.
$\mathbf{8 0}$	$\varnothing 55 \mathrm{~mm}$ or less
$\mathbf{1 0 0}$	$\varnothing 80 \mathrm{~mm}$ or less

Mounting procedure

1) After attaching the motor to the reducer using the motor shaft mounting screw, attach a plug.
2) Attach the motor to the reducer using the motor mounting screws (provided by the customer).
3) Attach the motor side coupling to the reducer using the screw included with the coupling.
4) Attach the motor flange to the reducer using the reducer mounting screws.
5) Insert the divided actuator side coupling into the actuator, and tighten it with the bolt supplied with the coupling.*1
6) Attach the reducer flange to the actuator using the reducer flange mounting screws.
(Align the two sides of the coupling so that they fit together.)
*1 Follow the procedures below to loosen the actuator side coupling.
1. Remove the fastening bolt
2. Insert the bolt for disassembly into the actuator side coupling.
3. Tighten the bolt for disassembly.

Bolt for Disassembly Size

Size	Reduction ratio	Bolt for disassembly size
$\mathbf{8 0}$	$1 / 3$	M8
	$1 / 5,1 / 9$	M10
$\mathbf{1 0 0}$	Common	M12

Size	Flange type	MM1	TT1	MM2	TT2	MM3	TT3	MM4	TT4	MM5	TT5	PP	PD
LET80	NGA, NGB	M6	5.2	-									
	NGCA			M5	8	M6	10	-					
	NGC3							M5	3	M4	4.3	4.5	12h6
	NGCB			M6	13	M8	20	-					
	NGC5, NGC9							M6	5.2	M5	8.7	5.2	19 h 7
LET100	NGA, NGB	M8	12.5	-									
	NGCA			M8	30	M10	40	-					
	NGC3, NGC5							M6	5.2	M6	15	5.2	19h7
	NGCB			M8	30	M10	40	-					
	NGC9, NGC15							M8	13	M6	15	10.2	24h7

[^12]
LET-X11 Series

Motor Mounting Parts

How to Order
Flange Assembly LET - MF 100-NGA
1
2
(2) Flange type

Size	Symbol	Motor type	(Note)	Reducer flange A	Reducer flange B	Coupling (For flange A)	Coupling (For flange B)	Reducer
LET80	NGA	Mounting type GA	With motor flange	-				
	NGB	Mounting type GB	With motor flange		\bigcirc			
	NGCA	Mounting type GA $+$ Coupling included	With coupling	-		-		
	NGCB	Mounting type GB Coupling included	With coupling		-		-	
	NGC3	Mounting type GA $+$ With reducer*1, *2, *3	Reduction ratio 1/3	-		-		-
	NGC5	Mounting type GB With reducer*1, *2, *3	Reduction ratio 1/5		-		-	\bigcirc
	NGC9	Mounting type GB $+$ With reducer*1, *2, *3	Reduction ratio 1/9		-		-	-
LET100	NGA	Mounting type GA	With motor flange	-				
	NGB	Mounting type GB	With motor flange		\bigcirc			
	NGCA	Mounting type GA $+$ Coupling included	With coupling	-		-		
	NGCB	Mounting type GB Coupling included	With coupling		-		-	
	NGC3	Mounting type GA With reducer*1, *2, *3	Reduction ratio 1/3	-		-		-
	NGC5	Mounting type GA $+$ With reducer*1, *2, *3	Reduction ratio 1/5	-		-		-
	NGC9	Mounting type GB With reducer*1, *2, *3	Reduction ratio 1/9		-		-	\bigcirc
	NGC15	Mounting type GB With reducer*1, *2, *3	Reduction ratio 1/15		-		-	\bigcirc

[^13]
Dimensions: Motor Flange Option

Applicable motor

Dimensions

Size	FA	FC	FD	FE (Max.)	FJ	FL
$\mathbf{8 0}$	$ø 5.5$	$\varnothing 70$	50	4.6	14	29 to 31
$\mathbf{1 0 0}$	$ø 6.6$	$\varnothing 90$	70	4.5	19	40 to 44

Reducer flange

Reducer

Reducer Flange Dimensions

Size	Flange type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	FL	FM	FN	FP
80	A	5.5	43	60	$50_{+0.01}^{+0.04}$	5	55	9.5	18	97	78	62	47	2	11
	B	6.6	58	90	$70_{+0.03}^{+0.06}$	5	75	11	22	97	78	62	69	2	18
100	A	6.6	70	90	$70_{+0.03}^{+0.06}$	5	80.5	11	23.5	110	120	95	70	2.5	20
	B	9	70	115	$90_{+0.03}^{+0.06}$	5	86	14	25.5	110	120	95	90	2.5	20

Reducer Dimensions

Size	Reduction ratio	GA	GB	GC	GD	GE	GF	GG	GJ	GK	GL	GM	GN	GP	GQ
80	1/3	M5 x 12	60	50	12h7	20	104.5	72.5	70	50	14	M5 x 8.5	4	52	60
	1/5	M6 x 20	90	70	19h7	30	139.5	89.5	70	50	14	M5 $\times 10$	4	81	60
	1/9	M6 x 20	90	70	19h7	30	139.5	89.5	70	50	14	M5 x 10	4	81	60
100	1/3, 1/5	M6 x 20	90	70	19h7	30	143.5	93.5	90	70	19	M6 x 10	7.5	81	80
	1/9	M8 x 20	115	90	24h7	40	158.5	97.5	90	70	19	M6 x 10	7.5	101	80
	1/15	M8 x 20	115	90	24h7	40	171	110	90	70	19	M6 x 10	7.5	101	80

Coupling

Dimensions

Size	Reduction ratio	PA	PB	PC	PD	PE
$\mathbf{8 0}$	$1 / 3$	25	42.5	21	12	40
	$1 / 5,1 / 9$	25	55.3	31	19	55
$\mathbf{1 0 0}$	$1 / 3,1 / 5$	35	62.3	37	19	65
	$1 / 9,1 / 15$	35	62.3	37	24	65

LET-X11 Series

Side Supports
MY-S50A

Side Support Intervals [mm]

Size	W1	W2
$\mathbf{8 0}$	162	140
$\mathbf{1 0 0}$	228	206

* The side supports consist of a set of right and left brackets.

Usage Guide for Side Supports

When mounting with the side supports, be sure to use the number of side supports (N) and the support spacing (L1) shown in the figure and table below as a guide.

* Number of side supports: N is the combined number of left and right supports.

Stroke	Screw size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{mm}$]	$\begin{gathered} \mathrm{L} 1 \\ {[\mathrm{~mm}]} \end{gathered}$	Number of side supports: \mathbf{N} [pcs.]	
				80	100
Up to 600	M8 $\times 1.25$	12.5	15	6	8
Up to 900				8	10
Up to 1200				10	12
Up to 2000				12	14
Up to 3000				14	16

* Secure the side supports using the support spacing (L) in the table above.

Electric Actuator Mounting T-nuts

The T-nuts are used for mounting using the T-slots of the actuator.
When mounting with T-nuts only, mount the product while referring to © (Mount using more than the number of T-nuts used to secure the body.) in the "Handling" section of the Specific Product Precautions.

* The T-nuts are the same size for the LET80 and 100.

Thread size Symbol Thread 08 M8

LET-X11 Series
 Auto Switch Mounting

Auto Switch Mounting Position

* The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations (as much as $\pm 30 \%$) depending on the ambient environment.

Auto Switch Mounting (Size: 80, 100)

When mounting an auto switch, first, hold a switch spacer between your fingers and press it into the slot. When doing this, confirm that it is set in the correct mounting orientation, or reinsert it if necessary. Next, insert the auto switch into the slot and slide it until it is positioned under the switch spacer.
After confirming the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

Auto Switch Mounting Screw Tightening Torque [$\mathrm{N} \cdot \mathrm{m}$]

Auto switch model	Tightening torque
$\mathbf{D}-\mathbf{M 9} \square \mathbf{(V)}$	0.10 to 0.15
$\mathbf{D}-\mathbf{M 9} \square \mathbf{W}(\mathbf{V})$	

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	ue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications				Refer to the SMC website for details on products that are compliant with international standards.		
PLC: Programmable Logic Controller						
D-M9 \square E, D-M9 \square EV (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP			-
Applicable load	IC circuit, Relay, PLC				24 VDC	ay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					
Current consumption	10 mA or less					-
Load voltage	28 VDC	or less		-	24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to	40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V	r less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA	or less
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	lue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

[g]

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

D-M9 $\square E V$

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

RoHS Refer to the SMC website for details

Auto Switch Specifications on products that are compliant with

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

PLC: Programmable Logic Controller						
D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC r	elay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less		-	24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)				
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$						
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)					
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$						
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15						
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$						
Min. bending radius $[\mathrm{mm}]$ (Reference values)						17		

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 $\square \mathbf{W}$

D-M9 $\square W V$

Design

\triangle Warning

1．When mounting it vertically，at an angle，or in other situations where there is a height difference，install safety measures from the outside．（Latches，movable bolts，fall prevention devices，etc．）
－Design the structure so that the human body does not come into direct contact with the driven object or moving parts of the actuator． Install a protective cover to prevent direct contact with the human body， or if there is a risk of contact，install a sensor or the like to ensure a safe structure such as an emergency stop before contact is made．
Even after the actuator has stopped，do not approach the movable range until it is sufficiently safe．
The load may fall due to a power outage or a broken belt，which may cause serious damage to the human body or the machine． －Be sure to select a motor with brake． －Implement safety measures externally to prevent damage from falling due to broken belt．
（Latches，movable bolts，fall prevention devices，etc．）

\triangle Caution

1．Do not apply a load in excess of the specification limits． Select a suitable actuator by work load and allowable moment．If a load in excess of the specification limits is applied to the guide， adverse effects such as the generation of play in the guide， reduced accuracy，or reduced service life of the product may occur．
2．Do not use the product in applications where excessive external force or impact force is applied to it．
The product can be damaged．The components，including the motor，are manufactured to precise tolerances．Even a slight deformation may cause a malfunction or seizure．

Selection

\triangle Warning

1．Do not increase the speed in excess of the specification limits．
Select a suitable actuator by the relationship between the allowable work load and speed，and the allowable speed of each stroke．If the product is used outside of the specification limits，adverse effects such as the generation of noise，reduced accuracy，or reduced service life of the product may occur．
2．When the product repeatedly cycles with partial strokes （ 100 mm or less），lubrication can run out．Operate it at a full stroke at least once a day or every a thousand cycles．
3．When external force is to be applied to the table，it is necessary to add the external force to the work load as the total carried load when selecting a size． When a cable duct or flexible moving tube is attached to the actuator，the sliding resistance of the table will increase，which may lead to the malfunction of the product．
4．Use the acceleration／deceleration within the range that does not exceed the specification limit．
This can cause malfunctions such as tooth skipping of the belt．
5．Do not operate the motor in a state where the torque exceeds 100% of the rated value without reaching the set speed．
This can cause malfunctions such as tooth skipping of the belt．

Selection

Warning

6．If the actuator is to be installed in a position other than horizontal installation，use an actuator with a lock．
If you use an actuator without a lock，there is no holding force when the power or servo is turned off，so the workpiece may drop．

Handling

© Warning

1．Do not allow the table（slider）to hit the end of stroke． If an incorrect input instruction is given，such as using it outside the specification range or changing the driver setting／ origin position to give an operation instruction outside the actual stroke，the table（slider）can conflict．Perform a trial run to confirm that the table does not hit the end of stroke．
If the table collides with the stroke end，the guide，belt， housing，etc．，will be damaged and will not operate normally． Also，take measures against drops since the workpiece will drop freely due to its own weight when it is vertical．

\triangle Caution

1．The actual speed of this actuator is affected by the work load and stroke．
Check the model selection section of the catalog．
2．Do not apply a load，impact，or resistance in addition to the transferred load during return to origin．
3．Do not dent，scratch，or cause other damage to the body or table mounting surfaces．
Doing so may cause unevenness in the mounting surface，play in the guide，or an increase in the sliding resistance．
4．Do not apply strong impact or an excessive moment while mounting the product or a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．
5．Keep the flatness of the mounting surface within $0.1 \mathrm{~mm} /$ 500 mm ．
If a workpiece or base does not sit evenly on the body of the product，play in the guide or an increase in the sliding resistance may occur．
In the case of overhang mounting（including cantilever），use a support plate，etc．，to avoid deflection of the actuator body．
6．When installing this product，fix it with more side supports and T－nuts than the number of installations．
Reducing the number of mounting units will affect performance，such as increasing the displacement of the table．
7．Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range．
Particularly during the transportation

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Handling

\triangle Caution

8. When mounting the actuator, use bolts with adequate size and tighten them with adequate torque.
Tightening the screws with a higher torque than the maximum may cause malfunction, whilst tightening with a lower torque can cause the displacement of the mounting position or fall.

Side support mounting					
Number of side supports: N (MY-S50A)					
$($ L1)	L		L		L1
* Number of side supports: N is the combined number of left and right supports.					
Stroke	Bolt size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	$\begin{array}{\|c\|} \hline \mathrm{L} 1 \\ {[\mathrm{~mm}]} \end{array}$	Mounting quantity	
				80	100
Up to 600	M8 $\times 1.25$	$12.5 \pm 10 \%$	15	6	8
Up to 900				8	10
Up to 1200				10	12
Up to 2000				12	14
Up to 3000				14	16

* Fix the support interval (L) of the side support at equal intervals.
* Please use MY-S50A for the side support used for installation.

Workpiece mounting

Size	Bolt size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{mm}]$	L (Max. screw-in depth) $[\mathrm{mm}]$
$\mathbf{8 0}$	$\mathrm{M} 5 \times 0.8$	3	9
$\mathbf{1 0 0}$	$\mathrm{M} 8 \times 1.25$	12.5	15

9. Do not operate by fixing the table and moving the actuator body.
10. Vibration may occur during operation, this could be caused by the operating conditions.
If it occurs, adjust response value of auto tuning of driver to be lower.
During the first auto tuning noise may occur, the noise will stop when the tuning is complete.
11. When the fluctuations in the load are caused during operation, malfunction, noise, or alarm generation may occur. (In the case of the AC servo motor)
The gain tuning may not be suitable for fluctuating loads. Adjust the gain properly by following the instructions in the driver manual.
12. When lifting the product, be careful not to overturn or drop it.
Doing so may damage the product.
13. Depending on the acceleration and stroke, this actuator may make noise when the belt comes into contact with the pulley flange.
Perform one of the following.
a. Decrease acceleration.
b. Apply grease to the inner surface of the pulley flange (belt contact surface).

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*1	\bigcirc	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts

* For lubrication, use lithium grease No. 2.

2. Loose or mechanical play in fixed parts or fixing screws

- Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Facing cloth wear

The facing cloth fibers have become fuzzy, the rubber quality has gone down, and the texture of the facing cloth has become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner has become rounded and frayed threads stick out
c. Belt partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible

Motorless Type Electric Actuators

	Rod Type LEY Series	
D． 147		
		$\xrightarrow{\text { u }}$
		先
		邑
		¢
	Guide Rod Type LEYG Series	
p． 169	01	¢
		豆
		¢ ¢
		劲
	ЭSMC	146

Motorless Type

Electric Actuator/Rod Type

LEY Series

Model Selection

Selection Procedure

Positioning Control Selection Procedure

Step 1
Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.
Operating
conditions
-Work load: $16[\mathrm{~kg}] \quad$ - Speed: $300[\mathrm{~mm} / \mathrm{s}]$

- Acceleration/Deceleration: $5000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Stroke: $300[\mathrm{~mm}]$
- Workpiece mounting condition: Vertical upward
downward transfe

Step 1
Check the work load-speed. <Speed-Vertical Work Load Graph> Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-vertical work load graph on page 149.
Selection example) The LEY25B can be temporarily selected as a possible candidate based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the

<Speed-Vertical Work Load Graph> (LEY25)

$$
\text { target model, refer to horizontal work load in the specifications on pages } 154 \text { and } 155 \text { and, the precautions. }
$$

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method. Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\begin{array}{|l|l|}
\hline \mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}] \\
\hline
\end{array}
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

* The conditions for the settling time vary depending on the motor or driver to be used.
Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
$\mathrm{T} 4=0.05[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathbf{s}]$

Selection Procedure

Pushing Control Selection Procedure

For use in combination with a motor from a different manufacturer, check the available product

Selection Example

The model selection method shown below corresponds to SMC's standard motor. information of the motor to be used.

Operating
conditions

Step 1 Check the force.

<Force Conversion Graph>

Select a model based on the ratio to rated torque and force while referencing the force conversion graph.
Selection example)
Based on the graph shown on the right side,

- Ratio to rated torque: 90 [\%]
- Force: 255 [N]

The LEY25B can be temporarily selected as a possible candidate.

Step 2 Check the lateral load on the rod end.

<Graph of Allowable Lateral Load on the Rod End>
Confirm the allowable lateral load on the rod end of the actuator: LEY25B, which has been selected temporarily while referencing the graph of allowable lateral load on the rod end.
Selection example)
Based on the graph shown on the right side,

- Attachment weight: $0.5[\mathrm{~kg}] \approx 5[\mathrm{~N}]$
- Product stroke: 300 [mm]

The lateral load on the rod end is within the allowable range.
Based on the above calculation result, the LEY25B-300 should be selected.

<Force Conversion Graph> (LEY25)

<Graph of Allowable Lateral Load on the Rod End>

LEY Series

 Stroke Speed."
LEY25 \square (Motor mounting position: Parallel/In-line)

LEY32 \square (Motor mounting position: Parallel)

LEY32D (Motor mounting position: In-line)

LEY63 \square (Motor mounting position: Parallel/In-line)

LEY100 \square (Motor mounting position: Parallel/In-line)

[^14]

The values shown below are allowable values of the actuator body．Do not use the actuator so that it exceeds these specification ranges．
Speed－Horizontal Work Load Graph
＊The allowable speed is restricted depending on the stroke．Select it by referring to the＂Allowable Stroke Speed．＂

LEY25 \square（Motor mounting position：Parallel／In－line）

LEY32 \square（Motor mounting position：Parallel）

LEY63 \square（Motor mounting position：Parallel／In－line）

LEY32D（Motor mounting position：In－line）

LEY100 \square（Motor mounting position：Parallel／In－line）

＊Each value is the value when a reducer is built into the product．

Allowable Stroke Speed

Model	Motor	Lead		Stroke［mm］								
		Symbol	［mm］	Up to 100	Up to 200 Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000
$\left(\begin{array}{c} \text { LEY25 } \square \\ \text { Motor mounting position: } \\ \text { Parallel/In-line } \end{array}\right)$	100 W equivalent	A	12		900	600	－	－	－	－	－	－
		B	6		450	300	－	－	－	－	－	－
		C	3		225	150	－	－	－	－	－	－
		（Motor rotation speed）			（4500 rpm）	（3000 rpm）	－	－	－	－	－	－
$\left(\begin{array}{c} \text { LEY32 } \square \\ \text { Motor mounting position: } \\ \text { Parallel } \end{array}\right)$	200 W equivalent	A	20		1200		800	－	－	－	－	－
		B	10		600		400	－	－	－	－	－
		C	5		300		200	－	－	－	－	－
		（Motor rotation speed）			（3600 rpm）		（2400 rpm）	－	－	－	－	－
$\left(\begin{array}{c}\text { LEY32D } \\ \text { Motor mounting position：} \\ \text { In－line }\end{array}\right)$	200 W equivalent	A	16		1000		640	－	－	－	－	－
		B	8		500		320	－	－	－	－	－
		C	4		250		160	－	－	－	－	－
		（Motor rotation speed）			（3750 rpm）		（2400 rpm）	－	－	－	－	－
$\left[\begin{array}{c} \text { LEY63 } \square \\ \text { Motor mounting position: } \\ \text { Parallel/In-line } \end{array}\right]$	400 W equivalent	A	20		1000			800	600	500	－	－
		B	10		500			400	300	250	－	－
		C	5		250			200	150	125	－	－
		（Motor rotation speed）			（3000 rpm）			（2400 rpm）	（1800 rpm）	（1500 rpm）	－	－
		L	2．86＊1	70							－	－
		（Motor rotation speed）		（1470 rpm）							－	－
LEY100 $\square$$\left[\begin{array}{c} \text { Motor mounting position: } \\ \text { Parallel/In-line } \end{array}\right]$	750 W equivalent	B	10		500			370	285	225	180	150
		＊2	3.3	167				123	95	75	60	50
		＊3	2	100				74	57	45	36	30
		（Motor rotation speed）		（3000 rpm）				（2225 rpm）	（1708 rpm）	（1353 rpm）	（1098 rpm）	（908 rpm）

[^15]
LEY Series

Force Conversion Graph (Guide)

* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.

LEY25 \square (Motor mounting position: Parallel/In-line)

LEY32 \square (Motor mounting position: Parallel)

LEY32D \square (Motor mounting position: In-line)

* When using the force control or speed control, set the maximum value to be no more than 90% of the rated torque.

LEY63 \square (Motor mounting position: Parallel/ln-line)

LEY100 \square (Motor mounting position: Parallel/In-line)

* Each value is the value when a reducer is built into the product.

Graph of Allowable Lateral Load on the Rod End (Guide)
[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Model Selection $L E Y$ Series

Motorless Type
Size $25,32,63,100$

Force-Stroke Graph

* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.

LEY100 \square (Motor mounting position: Parallel/In-line)

Motorless Type

Electric Actuator Rod Type LEY Series LEY25, 32,63

How to Order

LEY H $25 \square$ NZ B-100

1 Accuracy
NiI
H
High-precision type
:---:
Nil
R
L
Right side parallel
D

2 Size
25
32
63

4	
Mounting type	
NZ	NU
NY	NT
NX	NM1
NW	NM2
NV	NM3

5 Lead [mm]

Symbol	LEY25	LEY32	LEY63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86^{* 1}$

*1 Only available for top/right/left side parallel motor types (Equivalent leads which include the pulley ratio [4:7])

* The values shown in () are the leads for the top/right/left side parallel motor types. Except mounting type NM1 (Equivalent leads which include the pulley ratio [1.25:1])

6 Stroke $[\mathrm{mm}]$	
$\mathbf{3 0}$	30
to	to
$\mathbf{8 0 0}$	800

* Refer to the applicable stroke table.

8 Rod end thread

| Nil | Rod end female thread |
| :--- | :--- | M

hich includ	e pulley ratio $[1.25: 1])$ M	d end nut	included.
(9) Mounting*1			
Symbol	Type	Motor mounting position	
		Parallel	In-line
Nil	Ends tapped/Body bottom tapped*2	\bigcirc	\bigcirc
L	Foot	-	-
F	Rod flange*2	- ${ }^{4}$	\bigcirc
G	Head flange*2	- *5	-
D	Double clevis*3	\bigcirc	-

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting with the ends tapped, rod flange, or head flange types, use the actuator within the following stroke range. LEY25: 200 mm or less, LEY32: 100 mm or less, LEY63: 400 mm or less
*3 For the mounting with the double clevis type, use the actuator within the following stroke range.
. LEY25: 200 mm or less, LEY32: 200 mm or less
*4 If the stroke of the LEY25 is 30 mm or less, the rod flange may interfere with the motor.
*5 The head flange type is not available for the in-line type and the LEY32/63.
Compatible Motors and Mounting Types*4

Applicable motor model		Size/Mounting type																					
Manufacturer	Series	25						32									63						
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/44/5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	Σ-V/7/X	$0^{* 3}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	$\begin{gathered} \bullet \\ (\text { MHMF } \\ \text { only } \end{gathered}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-
FANUC CORPORATION	β is (-B)	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline(\beta 1 \text { only }) \\ \hline \end{array}$	-	-	-	-	-	-	-	-	$\text { (}(31 \text { only) }$	-	-	\bullet	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	$\bullet^{* 3}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybid stepping motors	-	-	-	**	-	- ${ }^{*}$	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	${ }^{* 1}$	-	$\bullet^{* 2}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	\bullet $\left.\begin{gathered}\text { ARAZ } \\ \text { (46 only }\end{gathered} \right\rvert\,$	-	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MPNP/TL	$\mid(T L \text { only })$	-	-	-	-	-	-	-	$\begin{gathered} \boldsymbol{e}^{* * 1} \\ \left(\begin{array}{c} \text { (PNPN } \\ \text { only) } \end{array}\right. \\ \hline \end{gathered}$	-	-	-	$\mid(T L \text { only } \mid$	-	-	-	-	$\begin{array}{\|c\|} \hline \boldsymbol{e}^{* 1} \\ \left(\begin{array}{c} \text { (PVP } \\ \text { only) } \end{array}\right. \\ \hline \end{array}$	-	-	-	$\mid(T L \text { only } \mid$
Beckhoff Automation GmbH	AM 30/31/80/81	-	-	-	-	-	-	-	-	$\begin{gathered} \mathbf{Q}^{*} \text { (MOO/ } \\ \text { (AM80 } \\ \text { AM81 } \\ \text { only) } \end{gathered}$	-	$\underset{\substack{\boldsymbol{e}^{* 1} \\ \text { (M30 } \\ \text { only) }}}{ }$	$\begin{gathered} \stackrel{\ominus}{(\text { AM31 }} \\ \text { only) } \end{gathered}$	-	-	-	-	-	$\begin{array}{\|c} \bullet^{*} * 1 \\ \text { (AM80/ } \\ \text { AM81 } \\ \text { only) } \end{array}$	-	$\underset{\substack{\boldsymbol{Q}^{* 1} \\ \text { (AM30 } \\ \text { only) }}}{ }$	$\underset{\substack{\boldsymbol{Q}^{* 1} \\ \text { (M31 } \\ \text { only) }}}{ }$	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	**	-	-	-	-	-	-	-	-	${ }^{* 1}$	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Motor mounting position: Parallel only
3 For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor.
$* 4$ The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following "Dimensions" pages.

For auto switches, refer to pages 189 to 192.

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

Model				LEY25 (Parallel) LEY25D (In-line)			LEY32 (Parallel)			LEY32D (In-line)		
	Work load [kg]		Horizonta* ${ }^{\text {P }}$	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Force [N] ${ }^{2}$ (Set value: Rated torque 45 to 90%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max.*3 speed [mm/s]	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s]*4			35 or less			30 or less					
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000								
	Positioning repeatability [mm]		Basic type	± 0.02								
			High-precision type	± 0.01								
	Lost motion*5 [mm]		Basic type	0.1 or less								
			High-precision type	0.05 or less								
	Ball screw specifications		Thread size [mm]	$\varnothing 10$			$\varnothing 12$					
			Lead [mm] $\times 0$ (incuduing pulley ratio $1.25: 1)$	12	6	3	$\begin{gathered} 16 \\ (20) * 9 \end{gathered}$	$\begin{gathered} 8 \\ (10)^{* 9} \end{gathered}$	$\begin{gathered} 4 \\ (5)^{* 9} \end{gathered}$	16	8	4
			Shaft length [mm]	Stroke + 93.5			Stroke + 104.5					
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 6}$			50/20								
	Actuation type			Ball screw + Belt (Parallel) Ball screw (In-line)			Ball screw + Belt [Pulley ratio 1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)								
	Operating temperature range [${ }^{\text {C }}$]			5 to 40								
	Operating humidity range [\%RH]			90 or less (No condensation)								
	Actuation unit weight [kg] (* [ST]: Stroke)			$\begin{aligned} & 0.15+\left(0.69 \times 10^{-3}\right) \times[S T]: 100 \text { st or less } \\ & 0.16+\left(0.69 \times 10^{-3}\right) \times[S T]: \text { Over } 100 \mathrm{st} \end{aligned}$			$\begin{aligned} & 0.24+\left(1.40 \times 10^{-3}\right) \times[S T]: 100 \text { st or less } \\ & 0.28+\left(1.40 \times 10^{-3}\right) \times[S T]: \text { Over } 100 \mathrm{st} \end{aligned}$					
	Other inertia [kg.cm ${ }^{2}$]			0.012 (LEY25), 0.015 (LEY25D)			0.035 (LEY32), 0.061 (LEY32D)					
	Friction coefficient			0.05								
	Mechanical efficiency			0.8								
	Motor type			AC servo motor								
	Rated output capacity [W]			100			200					
	Rated torque [N.m]			0.32			0.64					

*1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range for the force control (Speed control mode, Torque control mode)
The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 151.
*3 The allowable speed changes according to the stroke.
*4 The allowable collision speed for collision with the workpiece
*5 A reference value for correcting errors in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Each value is only to be used as a guide to select a motor of the appropriate capacity.
*8 For other specifications, refer to the specifications of the motor that is to be installed.

Weight

Product Weight

Series	LEY25 (Motor mounting position: Parallel)									LEY32 (Motor mounting position: Parallel)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.8	0.9	1.1	1.3	1.5	1.7	1.8	2.0	2.2	1.4	1.5	1.8	2.3	2.6	2.9	3.1	3.4	3.7	4.0	4.3
Series	LEY25D (Motor mounting position: In-line)									LEY32D (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.8	0.9	1.1	1.3	1.5	1.7	1.9	2.0	2.2	1.4	1.6	1.8	2.3	2.6	2.9	3.2	3.4	3.7	4.0	4.3

Additional Weight

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)		0.17	0.20
Head flange (including mounting bolt)			
Double clevis (including pin, retaining ring, and mounting bolt)		0.16	0.22

Specifications $\quad \bullet$ Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.

- Do not use the actuator so that it exceeds these values.

Model				LEY63D (In-line)			LEY63 (Parallel)			
	Work load [kg]		Horizontal*1	40	70	80	40	70	80	200
			Vertical	19	38	72	19	38	72	115
	Force [N]*2 (Set value: Rated torque 45 to 150%)			156 to 521	304 to 1012	573 to 1910	156 to 521	304 to 1012	573 to 1910	1003 to 3343
	Max.*3 speed [mm/s]	Stroke range	Up to 500	1000	500	250	1000	500	250	70
			505 to 600	800	400	200	800	400	200	
			605 to 700	600	300	150	600	300	150	
			705 to 800	500	250	125	500	250	125	
	Pushing speed [mm/s]*4			30 or less						
	Max. acceleration/deceleration [mm/s²]			5000						3000
	Positioning repeatability [mm]		Basic type	± 0.02						
			High-precision type	± 0.01						
	Lost motion*5 [mm]		Basic type	0.1 or less						
			High-precision type	0.05 or less						
	Ball screw specifications		Thread size [mm]	$ø 20$						
			Lead [mm]	20	10	5	20	10	5	5 (2.86)
			Shaft length [mm]	Stroke + 147						
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 6}$			50/20						
	Actuation type			Ball screw			Ball screw + Belt [Pulley ratio 1:1]			Ball screw + Belt [Pulley ratio 4:7]
	Guide type			Sliding bushing (Piston rod)						
	Operating temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$			5 to 40						
	Operating humidity range [\%RH]			90 or less (No condensation)						
	Actuation unit weight [kg] (* [ST]: Stroke)			$\begin{aligned} & 0.84+\left(2.77 \times 10^{-3}\right) \times[\mathrm{ST}]: 200 \text { st or less } \\ & 0.94+\left(2.77 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 200 \mathrm{st}, 500 \text { st or less } \\ & 1.03+\left(2.77 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 500 \mathrm{st} \end{aligned}$						
	Other inertia [kg.cm ${ }^{2}$]			0.056 (LEY63D)			0.110			0.053
	Friction coefficient			0.05						
	Mechanical efficiency			0.8						
	Motor type			AC servo motor						
	Rated output capacity [W]			400						
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]			1.27						

*1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range for the force control (Speed control mode, Torque control mode)
The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 151.
*3 The allowable speed changes according to the stroke.
*4 The allowable collision speed for collision with the workpiece
*5 A reference value for correcting errors in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Each value is only to be used as a guide to select a motor of the appropriate capacity.
*8 For other specifications, refer to the specifications of the motor that is to be installed.

Weight

Product Weight

Model	LEY63D (Motor mounting position: In-line)												
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Product weight [kg]	3.7	4.2	4.8	5.3	6.5	7.0	7.6	8.2	8.8	9.3	11.0	12.1	13.3
Model	LEY63 (Motor mounting position: Parallel)												
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Product weight [kg]	3.5	4.0	4.7	5.2	6.4	6.9	7.5	8.0	8.6	9.1	10.8	12.0	13.1

Additional Weight
Size [kg] Rod end male thread Male thread Nut Rod flange (including mounting bolt) 0.12 Foot bracket (2 sets including mounting bolt) 0.51 Double clevis (including pin, retaining ring, and mounting bolt) 0.26

LEY25, 32, 63

*1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends for size 25, 32, and do not set within 4 mm of both ends for size 63.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof):
LEY63 $\square \square \square-\square \mathbf{P}$ (View ZZ)

*3 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].

Dimensions

Size	Stroke range [mm]	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U	Y1	Y2	G
25	30 to 100	89.5	13	20	44	45.5	M8 x 1.25	24	17	12.5	34	M5 x 0.8	8	46	92	1	26.5	22	4
	105 to 400	114.5																	
32	20 to 100	96	13	25	51	56.5	M8 x 1.25	31	22	16.5	40	M6 x 1.0	10	60	118	1	34	27	4
	105 to 500	126																	
63	50 to 200	123	21	40	76	82	M16 x 2	44	36	33.4	60	M8 x 1.25	16	80	146	4	32.2	29	8
	205 to 500	158																	
	505 to 800	193																	

* The L measurement is when the unit is at the retracted stroke end position.

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	30 to 35	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100									
	105 to 120		42	41		75				
	125 to 200		59	49.5						
	205 to 400		76	58						
32	30 to 35	25	22	36	30	50	M6x 1	8.5	5	6
	40 to 100		36	43						
	105 to 120					80				
	125 to 200		53	51.5						
	205 to 500		70	60						
63	50 to 70	38	24	50	44	65	M8 x 1.25	10	6	7
	75 to 120		45	60.5						
	125 to 200		58	67						
	205 to 500		86	81		100				
	505 to 800					135				

Dimensions: Top/Right/Left Side Parallel Motor

Refer to the "Motor Mounting" on pages 177 and 178 for details about motor mounting and included parts.

Motor flange dimensions
LEY25: NZ, NY, NX
LEY32: NZ, NY, NW, NU, NT

LEY63: NZ, NY, NW, NT
$4 \times$ FA
thread depth FB Motor mounting

LEY25: NM1, NM2, NM3

LEY32: NM1, NM2

Motor Mounting, Applicable Motor Dimensions

Size	Mounting type	FA		FB	FC	FD	$\left.\begin{array}{c} \text { FE } \\ (\text { Max. } \end{array}\right)$	FF	FG	FJ	FK
		Mounting type	$\begin{array}{\|c\|} \hline \text { Applicable } \\ \text { motor } \end{array}$								
25	NZ	M4 $\times 0.7$	$\varnothing 4.5$	7.5	$\varnothing 46$	30	3.7	11	42	8	25 ± 1
	NY	M3 $\times 0.5$	$\varnothing 3.4$	5.5	$\varnothing 45$	30	5	11	38	8	25 ± 1
	NX	M4 x 0.7	$\emptyset 4.5$	7	$\varnothing 46$	30	3.7	8	42	8	18 ± 1
	NM1	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	8.5	42	5*1	24 ± 1
	NM2	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	8.5	42	6	20 ± 1
	NM3	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	5.5	42	5*1	20 ± 1
32	NZ	M5 x 0.8	$\varnothing 5.5$	8.5	ø70	50	4.6	13	60	14	30 ± 1
	NY	M4 $\times 0.7$	$\varnothing 4.5$	7	ø70	50	4.6	13	60	11	30 ± 1
	NW	M5 x 0.8	$\varnothing 5.5$	8.5	$\varnothing 70$	50	4.6	13	60	9	25 ± 1
	NU	M5 x 0.8	$\varnothing 5.5$	8.5	ø70	50	4.6	13	60	11	23 ± 1
	NT	M5 x 0.8	$\varnothing 5.5$	8.5	$\varnothing 70$	50	4.6	17	60	12	30 ± 1
	NM1	M4 x 0.7	$\varnothing 4.5$	(5)	$\square 47.1$	38.1	-	5	56.4	6.35*1	20 ± 1
	NM2	M4 $\times 0.7$	$\varnothing 4.5$	8	$\square 50$	38.1	-	11.5	60	10	24 ± 1
63	NZ	M5 x 0.8	$\varnothing 5.5$	8.5	$\varnothing 70$	50	4.6	11	60	14	30 ± 1
	NW	M5 x 0.8	$\varnothing 5.5$	8.5	$\varnothing 70$	50	4.6	11	60	9	25 ± 1
	NY	M4 x 0.7	$\varnothing 4.5$	8	ø70	50	4.6	11	60	14	30 ± 1
	NT	M5 x 0.8	$\varnothing 5.5$	8.5	ø70	50	4.6	14.5	60	12	30 ± 1

Applicable motor dimensions

*1 Shaft type: D-cut shaft

25

Left side parallel motor type: LEY 32L
63

Right side parallel motor type: LEY 32R
63

[^16]Dimensions：In－line Motor
Refer to the＂Motor Mounting＂on page 181 for details about motor mounting and included parts．

LEY25， 32

＊1 Do not allow collisions at either end of the rod operating range at a speed exceeding＂pushing speed．＂Additionally，when running the positioning operation，do not set within 2 mm of both ends
＊2 The direction of rod end width across flats（ $\square \mathrm{K}$ ）differs depending on the products．

Dimensions

Size	Stroke range［mm］	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U
25	30 to 100	89.5	13	20	44	45.5	M8 x 1.25	24	17	12.5	34	M5 x 0.8	8	45	46.5	1.5
	105 to 400	114.5														
32	30 to 100	96	13	25	51	56.5	M8 x 1.25	31	22	16.5	40	M6 x 1.0	10	60	61	1
	105 to 500	126														

＊The L measurement is when the unit is at the retracted stroke end position．

Size	Stroke range［mm］	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	30 to 35	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	105 to 120					75				
	125 to 200		59	49.5						
	205 to 400		76	58						
32	30 to 35	25	22	36	30	50	M6 x 1.0	8.5	5	6
	40 to 100		36	43						
	105 to 120					80				
	125 to 200		53	51.5						
	205 to 500		70	60						

LEY Series

Dimensions: In-line Motor

Refer to the "Motor Mounting" on page 181 for details about motor mounting and included parts.

Motor flange dimensions

LEY25: NZ, NY, NX
LEY32: NZ, NY, NX, NW, NV, NU, NT

LEY32: NM1

LEY25: NM1, NM2

LEY32: NM2

Motor Mounting, Applicable Motor Dimensions

Size	Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\text { Max. }) \end{gathered}$	FF	FG	FH	FJ	FK
		Mounting type	$\begin{gathered} \text { Applicable } \\ \text { motor } \end{gathered}$									
25	NZ	M4 x 0.7	$\varnothing 4.5$	7.5	$\varnothing 46$	30	3.7	47	45	-	8	25 ± 1
	NY	M3 $\times 0.5$	$\varnothing 3.4$	6	ø45	30	4	47	45	-	8	25 ± 1
	NX	M 4×0.7	$\varnothing 4.5$	7.5	$\varnothing 46$	30	3.7	47	45	-	8	18 ± 1
	NM1	ø3.4	M3	17	$\square 31$	22	2.5	36	45	19	5*1	18 to 25
	NM2	$\varnothing 3.4$	M3	28	$\square 31$	22	2.5	47	45	30	6	20 ± 1
32	NZ	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	3.3	60	60	-	14	30 ± 1
	NY	M4 x 0.7	$\varnothing 4.5$	8	$\varnothing 70$	50	3.3	60	60	-	11	30 ± 1
	NX	M5 $\times 0.8$	$\varnothing 5.8$	8.5	ø63	40	3.5	63	60	-	9	20 ± 1
	NW	M5 $\times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	3.3	60	60	-	9	25 ± 1
	NV	M4 x 0.7	$\varnothing 4.5$	8	ø63	40	3.3	63	60	-	9	20 ± 1
	NU	M5 $\times 0.8$	$\varnothing 5.8$	8.5	$\varnothing 70$	50	3.3	60	60	-	11	23 ± 1
	NT	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	3.3	60	60	-	12	30 ± 1
	NM1	M4 x 0.7	$\varnothing 4.5$	9.5	$\square 47.1$	38.1	2	34	60	51.5	6.35*1	20 ± 1
	NM2	M4 x 0.7	$\varnothing 4.5$	8	$\square 50$	36	3.3	60	60	-	10	24 ± 1

[^17]Applicable motor dimensions

Electric Actuator
 Rod Type

Dimensions：In－line Motor
Refer to the＂Motor Mounting＂on page 182 for details about motor mounting and included parts．

LEY63

IP65 equivalent（Dust－tight／Water－jet－proof）：LEY63DNDロ－\square P（View Z）

＊3 When using the dust－tight／water－jet－proof（IP65 equivalent），correctly mount the fitting and tubing to the vent hole tap，and then place the end of the tubing in an area not exposed to dust or water．The fitting and tubing should be provided separately by the customer．
Select［Applicable tubing O．D．：$\varnothing 4$ or more，Connection thread：Rc1／8］．

\section*{Dimensions
 ＊The L measurement is when the unit is at the retracted stroke end position．
 | Size | Stroke range［mm］ | MA | MC | MD | MH | ML | MO | MR | XA | XB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 63 | 50 to 70 | 38 | 24 | 50 | 44 | 65 | M8 x 1.25 | 10 | 6 | 7 |
| | 75 to 120 | | 45 | 60.5 | | | | | | |
| | 125 to 200 | | 58 | 67 | | | | | | |
| | 205 to 500 | | 86 | 81 | | 100 | | | | |
| | 505 to 800 | | | | | 135 | | | | |

Size	$\begin{array}{c\|} \hline \text { Stroke } \\ \text { range }[\mathrm{mm}] \end{array}$	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U
63	50 to 200	123	21	40	76	82	M16 $\times 2$	44	36	33.4	60	M8 $\times 1.25$	16			
	205 to 500 505 to 800	158												78	83	5

Motor Mounting，Applicable Motor Dimensions
［mm］

Size	Mounting type	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ (\mathrm{Max} .) \end{gathered}$	FF	FG	FH	FK	FJ	FL
		Mounting type	Applicable motor										
63	NZ	M5 x 0.8	$\varnothing 5.5$	10	$\varnothing 70$	50	3.5	67.7	78	22.5	50	14	30 ± 1
	NY	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	$\varnothing 70$	50	3.5	67.7	78	22.5	50	14	30 ± 1
	NX	M5 x 0.8	$\varnothing 5.5$	10	ø63	40	3.5	72.7	78	27.5	55	9	20 ± 1
	NW	M5 x 0.8	$\varnothing 5.5$	10	$\varnothing 70$	50	3.5	67.7	78	22.5	50	9	25 ± 1
	NV	$\mathrm{M} 4 \times 0.7$	$\varnothing 4.5$	8	ø63	40	3.5	72.7	78	27.5	55	9	20 ± 1
	NU	M5 x 0.8	ø5．5	10	ø70	50	3.5	67.7	78	22.5	50	11	23 ± 1
	NT	M5 x 0.8	$\varnothing 5.5$	10	$\varnothing 70$	50	3.5	67.7	78	22.5	50	12	30 ± 1

LEY Series

Motorless Type

Dimensions

25 A

Rod end male thread: LEY32 $\square \square B-\square \square M$
63 C

* Refer to the Web Catalog for details on the rod end nut and mounting bracket.
* Refer to the precautions on pages 194 and 195 when mounting end brackets such as knuckle joint or workpieces.

Size	B1	\mathbf{C}_{1}	$\mathbf{H} \mathbf{1}$	$\mathbf{L} 1$	L2	MM
$\mathbf{2 5}$	22	20.5	8	36	23.5	M14 $\times 1.5$
$\mathbf{3 2}$	22	20.5	8	40	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{6 3}$	27	26	11	72.4	39	$\mathrm{M} 18 \times 1.5$

* The L1 measurement is when the unit is at the retracted stroke end position.

Included parts

- Foot bracket - Body mounting bolt

Outward mounting

[mm														
Size	Stroke range [mm]	A	LS	LS ${ }_{1}$	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
	30 to 100	134.6	98.8	19.8	6.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
25	105 to 400	159.6	123.8											
32	30 to 100	153.7	114	19.2	9.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	105 to 500	183.7	144											
63	50 to 200	196.8	133.2	25.2	25.2	9	5	50	3.2	95	88	110	14.2	8
	205 to 500	231.8	168.2											
	505 to 800	266.8	203.2											

Material: Carbon steel (Chromating)

* The A and LL measurements are when the unit is at the retracted stroke end position.
* When the motor mounting is the right or left side parallel type, the head side foot bracket should be mounted outward.

Dimensions

Rod flange: LEY3225 63

Head flange: LEY25 $\square \mathbf{C}-\square \square \square \mathbf{G}$

Rod/Head Flange

Rod/Head Flange							
Size	FD	FT	FV	FX	FZ	LL	\mathbf{M}
$\mathbf{2 5}$	5.5	8	48	56	65	4.5	34
$\mathbf{3 2}$	5.5	8	54	62	72	8.5	40
$\mathbf{6 3}$	9	9	80	92	108	24.4	60

Material: Carbon steel (Nickel plating)

* The LL measurement is when the unit is at the retracted stroke end position.

* Refer to the Web Catalog for details on the rod end nut and mounting bracket.

Double Clevis
[mm]

Size	Stroke range [mm]	A	CL	CD	CT	CU	CW	CX	CZ	L	RR
25	30 to 100	158.5	148.5	10	5	14	20	18	36	12.5	10
	105 to 200	183.5	173.5								
32	30 to 100	178.5	168.5	10	6	14	22	18	36	16.5	10
	105 to 200	208.5	198.5								
63	50 to 200	232.6	218.6	14	8	22	30	22	44	33.4	14
	205 to 300	267.6	253.6								

Material: Cast iron (Coating)

* The A, CL, and L measurements are when the unit is at the retracted stroke end position.

Electric Actuator/ Rod Type

5 Stroke [mm]

$\mathbf{1 0 0}$	100
to	to
$\mathbf{1 0 0 0}$	1000

* For details, refer to the applicable stroke table below.
(3) Motor type*1

Symbol	Type	Note
NN	$\varnothing 80-\mathrm{M} 5$ thread hole	

(4) Lead [mm]

Symbol	LEY100
B	10

*1 Order the motor adapter, motor flange, and return box separately. Refer to pages 167 and 168 for details.

6 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Mounting*1

Symbol	Type	Motor mounting position	
		Parallel	In-line
$\mathbf{N i l}$	Ends tapped*2	\bullet	\bullet
\mathbf{L}	Foot bracket (in-line)	-	\bullet
\mathbf{H}	Foot bracket	\bullet	\bullet
F	Rod flange*2	\bullet	\bullet
\mathbf{D}	Double clevis*3	\bullet	-

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 Do not mount using the "ends tapped" or "flange" options for the horizontal type with one end secured.
*3 Double clevis type: Use within the stroke limit of 400 or less and the thrust limit of 6000 or less.

Applicable Stroke Table

Size	Stroke [mm]										
	100	200	300	400	500	600	700	800	900	1000	Manufacturable stroke range
100	\bigcirc	-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	100 to 1000

* Please contact SMC for non-standard strokes as they are produced as special orders.

Compatible Motors and Mounting Types

Manufacturer	Series	NN
Mitsubishi Electric Corporation	MELSERVO-J4/J5	\bullet
YASKAWA Electric Corporation	Σ-V/7/X	\bullet
NIDEC SANKYO CORPORATION	S-FLAG	\bullet
KEYENCE CORPORATION	SV/SV2	\bullet
Delta Electronics, Inc.	ASDA-A2	\bullet

Specifications
＊The values in this specifications table are the allowable values of the actuator body with the standard motor mounted．
＊Do not use the actuator so that it exceeds these values．

Model				LEY100 \square NNB
	Stroke［mm］${ }^{* 9}$			100，200，300，400，500，600，700，800，900， 1000
	Work load［kg］		Horizonta＊${ }^{* 1}$	240／1200［When equipped with reducer（reduction ratio 1／5）］
			Vertical	80／200［When equipped with reducer（reduction ratio 1／5）］
	Rated force［N］／Set value：Rated torque $87 \% * 2$			1100／5500［When equipped with reducer（reduction ratio 1／5）］
	Max．force［N］／Set value：Max．torque 192\％＊2＊3			2600／12000［When equipped with reducer（reduction ratio 1／5）］
	Max．speed $[\mathrm{mm} / \mathrm{s}]^{* 4}$	Stroke range	Up to 500	500
			600	370
			700	285
			800	225
			900	180
			1000	150
	Pushing speed［mm／s］＊5			20 or less
	Max．acceleration／deceleration［mm／s ${ }^{\mathbf{2}}$ ］			3000／2000［When equipped with reducer（reduction ratio 1／5）］
	Positioning repeatability［mm］			± 0.02
	Lost motion［mm］＊6			0.1 or less
	Ball screw specifications	Thread size［mm］		ø32
		Lead［mm］		10
		Shaft length［mm］		Stroke＋ 202
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 7}$			Motor mounting position：In－line 50／20，Motor mounting position：Parallel 50／15
	Actuation type			Motor mounting position：In－line／Ball screw，Motor mounting position：Parallel／Ball screw＋Belt
	Guide type			Sliding bushing（Piston rod）
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40
	Operating humidity range［\％RH］			90 or less（No condensation）
	Actuation unit weight［kg］（＊［ST］：Stroke）			$2.80+\left(7.50 \times 10^{-3}\right) \times[\mathrm{ST}]$
	Other inertia［kg．cm］			0.047
	Friction coefficient			0.05
	Mechanical efficiency			0.9
	Motor type			AC servo motor
	Rated output capacity［W］			750
	Rated torque［ $\mathrm{N} \cdot \mathrm{m}$ ］			2.4
	Rated rotation［rpm］			3000

＊1 This is the max．value of the horizontal work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．
The actual work load changes according to the condition of the external guide．Confirm the load using the actual device．
＊2 The force setting range for the force control（Speed control mode，Torque control mode）
The force changes according to the set value．Set it with reference to the＂Force Conversion Graph（Guide）＂on page 151.
＊3 The max．force changes according to the stroke．Check the＂Force－Stroke Graph＂on page 152.
For＂double clevis type＂：Maximum thrust limited to 6000 or less
＊4 The allowable speed changes according to the stroke．
＊5 The allowable collision speed for collision with the workpiece
＊6 A reference value for correcting errors in reciprocal operation
＊7 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊8 Each value is only to be used as a guide to select a motor of the appropriate capacity．
＊9 For＂double clevis type＂：Stroke limited to 400 or less．

Weight

Product Weight

Stroke［mm］		100	200	300	400	500	600	700	800	900	1000
LEY100DNNB	Motorless	8.1	9.8	11.4	13.1	14.7	16.3	18.0	19.6	21.3	22.9

Additional Weight

Size		$\mathbf{1 0 0}$
Motor option	With lock	1.0
Rod end thread	Male thread	0.11
	Nut	0.05
	Foot bracket （in－line）	0.8
	Foot bracket	1.4
	Flange	1.1
	Double clevis	1.3

LEY Series

Dimensions: Parallel/In-line

Refer to the "Motor Mounting" on pages 179, 180, and 183 for details about motor mounting and included parts.

LEY100

Dimensions with * indicate the dimensions when a male rod end is selected.

Rod end female thread: LEY100 \square NNB- \square

Rod flange: LEY100 \square NNB- $\square \square \square F$

Foot bracket: LEY100 \square NNB- $\square \square \square$ L

[^18]

* The foot bracket (option "L") is only for the in-line type.

Double clevis: LEY100NNB- $\square \square \square$

Included parts
- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring

* The motor flange assembly needs to be ordered separately.
* The diagram shows the assembled motor flange assembly.

LEY100 Series
 Options

Motor Flange Assembly

Motor mounting position: In-line

1 Mounting Type							
Mounting type	Component parts						
	adapter	B Motor flange		(C) Coupling		(D) Reducer	
		Mounting type NZ	Mounting type NG	O.D. ø40	O.D. ø55	Reduction ratio $1 / 3$	Reduction ratio $1 / 5$
NZ	\bigcirc	\bigcirc	-	\triangle	-	-	-
NZC	-	-	-	\bigcirc	-	-	-
NG	\bigcirc	-	-	-	\triangle	\triangle	
NGC	\bigcirc	-	\bullet	-	\bullet	\triangle	
NGC3	\bigcirc	-	-	-	-	-	-
NGC5	\bigcirc	-	-	-	\bigcirc	-	\bigcirc
N	-	\triangle		\triangle		\triangle	

* The parts marked with a are component parts. The parts marked with a \triangle should be prepared by the customer as necessary.
* Component parts © , B, C and (D) come with mounting screws.
* The motor mounting screws should be provided by the customer.

Compatible Motors

Manufacturer	Series	NZC/NGC3/NGC5
Mitsubishi Electric Corporation	MELSERVO-J4/J5	\bullet
YASKAWA Electric Corporation	Σ-V/7/X	\bullet
NIDEC SANKYO CORPORATION	S-FLAG	\bullet
KEYENCE CORPORATION	SV/SV2	\bullet
Delta Electronics, Inc.	ASDA-A2	\bullet

Applicable motor dimensions

Applicable Motor Dimensions
Size
$\mathbf{F A}$
$\mathbf{1 0 0}$

B Motor flange (Mounting type NZ \square)
B Motor flange (Mounting type NG \square)

OCoupling
(DReducer (Reduction ratio 1:3/1:5)

Motor Flange Assembly

Motor mounting position: Parallel

Motor flange type

Symbol	Motor type	Component parts							
		A. Return box	B. Return plate	C. Pulley		D. Timing belt	E Motor flange	F. Reducer	
				Actuator side	Motor side			Reduction ratio $1 / 3$	Reduction ratio 1/5
NG	Mounting type G	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	-
NG3	Mounting type G + With reducer*	\bigcirc	-						
NG5	Mounting type $\mathrm{G}+$ With reducer*	\bigcirc	\bigcirc	-	-	-	-	-	-
N	Without motor flange	\bigcirc	-	-	\triangle	-	\triangle	\triangle	\triangle

* The parts marked with a are component parts. The parts marked with a \triangle should be prepared by the customer as necessary.
* Component parts come with mounting screws.
* The motor mounting screws should be provided by the customer.

E Motor flange

HLX-1ヨา

Mounting Bracket

LEY - L100	
	(1)
(1) Mounting bracket	
Symbol	Mounting bracket
L	Foot bracket (in-line)
H	Foot bracket
F	Flange
D	Double clevis

L: Foot bracket

F: Flange

Motorless Type

Electric Actuator/Guide Rod Type

LEYG Series
Model Selection

LEYG Series $>p .173$

Moment Load Graph

The model selection method shown below corresponds to SMC's standard motor.
For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Selection Conditions

Mounting orientation		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Vertical Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graph (1), (2)	Graph (5), (6)*1	Graph (7), 8)
	Ball bushing bearing	Graph (3), (4)	Graph (9, (10)	Graph (11), (12)

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.
Vertical Mounting, Sliding Bearing

[^19]
Moment Load Graph

Horizontal Mounting，Sliding Bearing

（7）$L=50$ mm Max．speed $=$ Over 200 mm／s

（6）$L=\mathbf{1 0 0} \mathbf{~ m m}$ Max．speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

（8）$L=100$ mm Max．speed $=$ Over 200 mm／s

Horizontal Mounting，Ball Bushing Bearing
（9）$L=\mathbf{5 0} \mathbf{~ m m}$ Max．speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

（11）$L=50 \mathrm{~mm}$ Max．speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

（10）$L=100 \mathrm{~mm}$ Max．speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

（12）$L=100 \mathrm{~mm}$ Max．speed $=$ Over $\mathbf{2 0 0}$ mm／s

Operating Range when Used as a Stopper

LEYG \square M（Sliding bearing）

[^20]

LEYG Series

Motorless Type

Speed-Vertical Work Load Graph

LEYG25 (Motor mounting position: Parallel/In-line)

LEYG32 \square (Motor mounting position: Parallel)

LEYG32D (Motor mounting position: In-line)

Speed-Horizontal Work Load Graph

* These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 169 and 170.

LEYG25 \square (Motor mounting position: Parallel/In-line)

LEYG32 \square (Motor mounting position: Parallel)

LEYG32D (Motor mounting position: In-line)

Model Selection LEYG Series
 Motorless Type

Force Conversion Graph

* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.

LEYG25 \square (Motor mounting position: Parallel/In-line)

LEYG32 \square (Motor mounting position: Parallel)

LEYG32D (Motor mounting position: In-line)

[^21]

Electric Actuator Guide Rod Type

How to Order

For auto switches, refer to pages 189 to 192.

Compatible Motors and Mounting Types*4

Applicable motor model		Size/Mounting type														
Manufacturer	Series	25						32								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7 / \mathrm{X}$	-*3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bigcirc	-	-	-	-	-	$\text { (} \beta 1 \text { only) }$	-	-	-	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	*3	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	${ }^{* 1}$	-	*2	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	-*1	-	- *2	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	AR/AZ (46 only)	-	-	-	-	-	-	-	-	-	\bigcirc
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/ TL		-	-	-	-	-	-	-	$\begin{gathered} * \\ \text { (MPNP only) } \end{gathered}$	-	-	-		-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	-	-	$\begin{array}{\|c} \hline \boldsymbol{Q}^{* 1} \\ \left(\begin{array}{c} \text { (an80AM81 } \\ \text { only) } \end{array}\right. \end{array}$	-	$\begin{array}{\|c\|} \hline \mathbf{O}^{* 1} \\ \text { (AM30 } \\ \text { only) } \\ \hline \end{array}$	(AM31 only)	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	* ${ }^{\text {- }}$	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

[^22]*3 For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor. *4 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following "Dimensions" pages.

Electric Actuator
 Guide Rod Type LEYG Series
 Motorless Type

Specifications \quad Values in this specifications table are the allowable values of the actuator body with the standard motor mounted．

Model			LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}}$（Parallel） 			LEYG32 ${ }_{\text {L }}^{\text {L }}$（Parallel ${ }^{\text {a }}$			LEYG32 ${ }_{\text {L }}{ }^{\text {D }}$（In－line）		
Actuator specifications	Work load［kg］	Horizontal＊1	18	50	50	30	60	60	30	60	60
		Vertical	7	15	29	7	17	35	10	22	44
	Force［ N ］＊2 （Set value：Rated torque 30 to 90% ）		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．speed［mm／s］		900	450	225	1200	600	300	1000	500	250
	Pushing speed［mm／s］＊3		35 or less			30 or less					
	Max．acceleration／deceleration［ $\mathrm{mm} / \mathrm{s}^{2}$ ］		5000								
	Positioning repeatability［mm］	Basic type	± 0.02								
		High－precision type	± 0.01								
	Lost motion＊4 ［mm］	Basic type	0.1 or less								
		High－precision type	0.05 or less								
	Ball screw specifications	Thread size［mm］	$\varnothing 10$			$\varnothing 12$					
		Lead［mm］ ＊8（including puley ratio 1．25：1）	12	6	3	$\begin{gathered} 16 \\ (20) * 8 \end{gathered}$	$\begin{gathered} 8 \\ (10) * 8 \end{gathered}$	$\begin{gathered} 4 \\ (5) * 8 \end{gathered}$	16	8	4
		Shaft length［mm］	Stroke＋ 93.5			Stroke＋ 104.5					
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 5}$		50／20								
	Actuation type		$\begin{gathered} \text { Ball screw + Belt (LEY } \square \text {) } \\ \text { Ball screw (LEYロD) } \end{gathered}$			Ball screw＋Belt ［Pulley ratio 1．25：1］			Ball screw		
	Guide type		Sliding bearing（LEYG $\square \mathrm{M}$ ），Ball bushing bearing（LEYG $\square \mathrm{L}$ ）								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40								
	Operating humidity range［\％RH］		90 or less（No condensation）								
	Actuation unit weight［kg］ （＊［ST］：Stroke）	Sliding bearing LEYG $\square \mathbf{M}$	$0.29+\left(2.20 \times 10^{-3}\right) \times[\mathrm{ST}]: 185$ st or less $0.34+\left(1.92 \times 10^{-3}\right) \times[\mathrm{ST}]:$ Over 185 st			$\begin{aligned} & 0.48+\left(2.91 \times 10^{-3}\right) \times[\mathrm{ST}]: 180 \text { st or less } \\ & 0.55+\left(2.62 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 180 \mathrm{st} \end{aligned}$					
		Ball bushing bearing LEYG $\square \mathbf{L}$	$0.33+\left(1.69 \times 10^{-3}\right) \times[$ ST］： 110 st or less $0.36+\left(1.80 \times 10^{-3}\right) \times[\mathrm{ST}]:$ Over 110 st			$\begin{aligned} & 0.50+\left(2.40 \times 10^{-3}\right) \times[\mathrm{ST}]: 110 \mathrm{st} \text { or less } \\ & 0.55+\left(2.51 \times 10^{-3}\right) \times[\mathrm{ST}]: \text { Over } 110 \mathrm{st} \end{aligned}$					
	Other inertia［ $\mathbf{k g} \cdot \mathrm{cm}^{2}$ ］		0.012 （LEYG25） 0.015 （LEYG25D）			0.035 （LEYG32）			0.061 （LEYG32D）		
	Friction coefficient		0.05								
	Mechanical efficiency		0.8								
	Motor type		AC servo motor								
	Rated output capacity［W］		100			200					
	Rated torque［ $\mathrm{N} \cdot \mathrm{m}$ ］		0.32			0.64					

＊1 This is the maximum value of the horizontal work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load changes according to the condition of the external guide．Confirm the load using the actual device．
＊2 The force setting range for the force control（Speed control mode， Torque control mode）
The force changes according to the set value．Set it with reference to the＂Force Conversion Graph＂on page 172
＊3 The allowable collision speed for collision with the workpiece
＊4 A reference value for correcting errors in reciprocal operation
＊Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊6 Each value is only to be used as a guide to select a motor of the ap－ propriate capacity．
7 For other specifications，refer to the specifications of the motor that is to be installed．

LEYG Series

Motorless Type

Dimensions: Top Side Parallel Motor
Refer to the "Motor Mounting" on page 177 for details about motor mounting and included parts.

LEYG25, 32

*1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed."
Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*2 For size 32, the through-holes cannot be used when they are blocked by the overall length of the mounted motor. Use taps for mounting.

LEYG $\square \mathbf{L}$ (Ball bushing bearing) $\quad[\mathrm{mm}]$

Size	Stroke range $[\mathrm{mm}]$	L	DB
$\mathbf{2 5}$	30 to 110	91	
	115 to 190	115	10
	195 to 300	133	
$\mathbf{3 2}$	30 to 110	97.5	13
	115 to 190	116.5	
	195 to 300	134	

LEYG $\square \mathbf{M}$ (Sliding bearing)			$[\mathrm{mm}]$
Size	Stroke range $[\mathrm{mm}]$	\mathbf{L}	DB
	30 to 55	67.5	
$\mathbf{2 5}$	60 to 185	100.5	12
	190 to 300	138	
$\mathbf{3 2}$	30 to 50	74	
	55 to 180	107	
	185 to 300	144	

* The motor mounting and applicable motor dimensions are the same as those of the LEY series. Refer to page 177.

LEYG \square M, LEYG \square L Common

Size	Stroke range [mm]	B	C	DA	EA	EB	EH	EV	EC	ED	G	GA	H	J	K	M	NA	NB
25	30 to 35	89.5	50	20	46	85	103	52.3	11	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8
	40 to 100		67.5															
	105 to 120	114.5																
	125 to 200		84.5															
	205 to 300		102															
32	30 to 35	96	55	25	60	101	123	63.8	12	16.5	5.4	50.3	125.3	38.3	30	40	M6 x 1.0	10
	40 to 100		68															
	105 to 120	126																
	125 to 200		85															
	205 to 300		102															
Size	Stroke range [mm]	NC	OA	OB	P	Q	S	T	\mathbf{U}	WA	WB	WC	X	XA	XB	Y1	Y2	Z
25	30 to 35	6.5	M6 x 1.0	12	80	18	30	95	6.8	35	26	70	54	4	5	26.5	22	8.5
	40 to 100									50	33.5							
	105 to 120											95						
	125 to 200									70	43.5							
	205 to 300									85	51							
32	30 to 35	8.5	M6x 1.0	12	95	28	40	117	7.3	40	28.5	75	64	5	6	34	27	8.5
	40 to 100									50	33.5							
	105 to 120											105						
	125 to 200									70	43.5							
	205 to 300									85	51							

[^23]
Electric Actuator
 Guide Rod Type LEYG Series
 Motorless Type

Dimensions: In-line Motor
Refer to the "Motor Mounting" on page 181 for details about motor mounting and included parts.

Section Y details

LEYG $\square \mathrm{L}$ (Ball bushing bearing) [mm]

Size	Stroke range $[\mathrm{mm}]$	\mathbf{L}	DB
$\mathbf{2 5}$	30 to 110	91	
	115 to 190	115	10
	195 to 300	133	
32	30 to 110	97.5	13
	115 to 190	116.5	
	195 to 300	134	

* The motor mounting and applicable motor dimensions are the same as those of the LEY series. Refer to page 181.

LEYG $\square \mathbf{M}$ (Sliding bearing) [mm]

Size	Stroke range $[\mathrm{mm}]$	L	DB
$\mathbf{2 5}$	30 to 55	67.5	
	60 to 185	100.5	12
	190 to 300	138	
32	30 to 50	74	
	55 to 180	107	16
	185 to 300	144	

LEYG $\square \mathrm{M}$, LEYG $\square \mathrm{L}$ Common

Size	Stroke range $[\mathrm{mm}]$	B	C	DA	EB	EH	EV	EC	ED	G	GA	H	J	K	NA	
25	30 to 35	89.5	50	20	85	103	52.3	11	12.5	5.4	40.3	53.3	30.8	29	M5 x 0.8	
	40 to 100		675													
	105 to 120	114.5	67.5													
	125 to 200		84.5													
	205 to 300		102													
32	30 to 35	96	55	25	101	123	63.8	12	16.5	5.4	50.3	68.3	38.3	30	M6 x 1.0	
	40 to 100		68													
	105 to 120	126														
	125 to 200		85													
	205 to 300		102													
Size	Stroke range [mm]	NC	OA	OB	P	Q	S	T	U	WA	WB	WC	X	XA	XB	Z
25	30 to 35	6.5	M6 x 1.0	12	80	18	30	95	6.8	35	26		54	4	5	8.5
	40 to 100									50	33.5	70				
	105 to 120										33.5	95				
	125 to 200									70	43.5					
	205 to 300									85	51					
32	30 to 35	8.5	M6 x 1.0	12	95	28	40	117	7.3	40	28.5	75	64	5	6	8.5
	40 to 100									50	33.5					
	105 to 120											105				
	125 to 200									70	43.5					
	205 to 300									85	51					

[^24]
LEY/LEYG Series

Motorless Type

- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NW, NM2 mounting types, and D-cut type for the NM1 and NM3 mounting type.
- When mounting a pulley, remove all oil content, dust, and dirt adhered to the shaft and the inside of the pulley.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Motor Mounting: Parallel

LEY25, LEYG25: NM1, NM2, NM3

Motor flange details

LEY25: NZ, NY, NX
LEY32: NZ, NY, NW, NU, NT

Dimensions

Size	Mounting type	MM1	TT1	MM2	TT2
25	NZ	M2.5 $\times 10$	1.0	M3 $\times 8$	0.63
	NY	M 2.5×10	1.0	M3 $\times 8$	0.63
	NX	M2.5 $\times 10$	1.0	M3 $\times 8$	0.63
	NM1	M3 $\times 5$	0.63	M3 $\times 8$	0.63
	NM2	M2.5 $\times 10$	1.0	M3 $\times 8$	0.63
	NM3	M3 $\times 5$	0.63	M3 $\times 8$	0.63
32	NZ	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5
	NY	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5
	NW	M4 x 12	3.6	M 4×12	1.5
	NU	M3 $\times 12$	1.5	M 4×12	1.5
	NT	M3 $\times 12$	1.5	M 4×12	1.5
	NM1	M3 $\times 5$	0.63	M 4×12	1.5
	NM2	M3 $\times 12$	1.5	M 4×12	1.5

LEY32, LEYG32: NM1
[Included parts]
Hexagon socket head set screw/MM1

[Included parts] Motor flange * Refer to the "Motor flange details."

> (for NM2) Motor pulley

LEY25: NM1, NM2, NM3

LEY32: NM1, NM2
$2 \times(\mathrm{M} 4 \times 0.7)$

Motor Mounting Diagram

Mounting procedure

1) Secure the motor pulley to the motor (provided by the customer) with the MM1 hexagon socket head cap screw or hexagon socket head set screw.
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
3) Put the timing belt on the motor pulley and body side pulley, and then secure it temporarily with the MM2 hexagon socket head cap screws. (Refer to the mounting diagram.)
4) Apply the belt tension/tensile force: BT and tighten the timing belt with the MM2 hexagon socket head cap screws. (The reference level is the elimination of the belt deflection.)
5) Secure the return plate with the MM3 hexagon socket head cap screws.

Included Parts List

Size: 25, 32

Description	Quantity	
	Mounting type	
	NZ/NY/NW/NT/NM2	NM1/NM3
Motor flange	1	1
Motor pulley	1	1
Return plate	1	1
Timing belt	1	1
Hexagon socket head cap screw (to mount the return plate)	4	4
Hexagon socket head cap screw (to mount the motor flange)	2	2
Hexagon socket head cap screw (to secure the pulley)	1	-
Hexagon socket head set screw (to secure the pulley)	-	1

Electric Actuators Rod Type／Guide Rod Type

Motor Mounting：Parallel

LEY63

Motor flange details

LEY63：NZ，NY，NW，NT

\triangle Be careful about the motor flange mounting direction．

Dimensions

$[\mathrm{Mm}]$																
Motor type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	FA	FB	FC	FD	FE	FF	FG	BT
NZ	$\mathrm{M} 4 \times 12$	3.6	$\mathrm{M} 4 \times 12$	2.7	$\mathrm{M} 8 \times 16$	12.5	14	4.5	$\mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	11	60	98
NY	$\mathrm{M} 4 \times 12$	3.6	$\mathrm{M} 4 \times 12$	2.7	$\mathrm{M} 8 \times 16$	12.5	14	4.5	$\mathrm{M} 4 \times 0.7$	8	$\varnothing 70$	50	4.6	11	60	98
NW	$\mathrm{M} 4 \times 12$	3.6	$\mathrm{M} 4 \times 12$	2.7	$\mathrm{M} 8 \times 16$	12.5	9	4.5	$\mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	11	60	98
NT	$\mathrm{M} 4 \times 12$	3.6	$\mathrm{M} 4 \times 12$	2.7	$\mathrm{M} 8 \times 16$	12.5	12	8	$\mathrm{M} 5 \times 0.8$	8.5	$\varnothing 70$	50	4.6	14.5	60	98

Motor Mounting Diagram

Mounting procedure
1）Secure the motor pulley to the motor（provided by the customer）with the MM1 hexagon socket head cap screw．
2）Secure the motor to the motor flange with the motor mounting screws（provided by the customer）．
3）Put the timing belt on the motor pulley and body side pulley，and then secure it temporarily with the MM2 hexagon socket head cap screws． （Refer to the mounting diagram．）
4）Apply the belt tensionttensile force：$B T$ and tighten the timing belt with the MM2 hexagon socket head cap screws．（The reference evel is the elimination of the belt deflection．）
5）Secure the return plate with the MM3 hexagon socket head cap screws．

Included Parts List

Size： 63

Description	Quantity
	Motor type
	NZ／NY／NW／NT
Motor flange	1
Motor pulley	1
Return plate	1
Timing belt	1
Hexagon socket head cap screw （to mount the return plate）	4
Hexagon socket head cap screw （to mount the motor flange）	4
Hexagon socket head cap screw （to secure the pulley）	1
O－ring	1

LEY/LEYG Series

Motorless Type

Motor Mounting: Parallel

LEY-MF100P-NG

LEY-MF100P-NG3/LEY-MF100P-NG5

Electric Actuators Rod Type/Guide Rod Type

Motor Mounting: Parallel

Pulley mounting procedure

LEY100

Mounting procedure

1) Loosen hexagon socket head cap screws 1 to 5 on the pulley and taper bushing.
2) Mount the pulley in the correct position.
3) Going in order from screws 1 to 5, perform temporary tightening, secondary tightening, and then the final tightening in that order.
4) Tighten the screw to the final tightening torque.

Mounting Diagram

Mounting procedure (LEY-MF100P-NG)

1) Secure the motor flange to the motor (provided by the customer) using the motor mounting screws (provided by the customer) and hexagon nuts (provided by the customer).
2) Secure the motor side pulley to the motor. (Refer to the pulley mounting procedure.)
3) Secure the body side pulley to the motorless screw shaft. (Refer to the pulley mounting procedure.)
4) Secure the return box to the motorless with the hexagon socket thin head cap screws.
5) Attach the timing belt to the motor pulley and body side pulley, and secure the return box to the motor adapter by temporarily tightening the hexagon socket thin head cap screws. (Refer to the mounting diagram.)
6) Secure the return box to the motor adapter with the hexagon socket head cap screw (belt tension adjustment cap screw). Then, adjust the belt tension and fully tighten the hexagon socket thin head cap screws.
7) Secure the return plate with the hexagon socket head cap screws.

Mounting procedure (LEY-MF100P-NG3/LEY-MF100P-NG5)

1) Insert the plug after securing the reducer to the motor (provided by the customer) with the $M 6 \times 20$ hexagon socket head cap screws.
2) Secure the reducer to the motor with the M6 motor mounting screws (provided by the customer).
3) Secure the motor flange to the reducer with the M6x20 hexagon socket head cap screws.
4) Secure the motor side pulley to the motor. (Refer to the pulley mounting procedure.)
5) Secure the body side pulley to the motorless screw shaft. (Refer to the pulley mounting procedure.)
6) Secure the return box to the motorless with the hexagon socket thin head cap screws.
7) Attach the timing belt to the motor pulley and body side pulley, and secure the return box to the motor adapter by temporarily tightening the hexagon socket thin head cap screws. (Refer to the mounting diagram.)
8) Secure the return box to the motor adapter with the hexagon socket head cap screw (belt tension adjustment cap screw). Then, adjust the belt tension and fully tighten the hexagon socket thin head cap screws.
9) Secure the return plate with the hexagon socket head cap screws.

Motor flange details

LEY100

\triangle Be careful about the motor flange mounting direction.

Included Parts List

Symbol	Motor type	Component parts							
		A. Return box	B. Return plate	C. Pulley		D. Timing belt	E Motor flange	F. Reducer	
				Actuator side	Motor side			Reduction ratio $1 / 3$	Reduction ratio 1/5
NG	Mounting type G	-	-	-	-	-	\bullet	-	-
NG3	Mounting type G + With reducer*	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	-
NG5	Mounting type G + With reducer*	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
N	Without motor flange	\bigcirc	\bigcirc	\bigcirc	\triangle	-	\triangle		\triangle

[^25]
LEY/LEYG Series

Motorless Type

- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NX, NW, NM2 mounting types, and D-cut type for the NM1 mounting type.
Motor Mounting: In-line
- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.
$\operatorname{LEY}_{32}^{25}$ D, LEYG ${ }_{32}{ }^{25}$ D

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the M3 x 4 hexagon socket head set screw
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
3) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
4) Secure the motor flange with the M4 x 5 hexagon socket head set screws.

LEY32D, LEYG32■D: NM1

[Included parts]
Hexagon socket head set screw/MM

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head set screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor block with the motor mounting screws (provided by the customer).

LEY25D, LEYG25■D: NM2

Mounting procedure

1) Insert the ring spacer into the motor (provided by the customer).
2) Secure the motor hub to the motor (provided by the customer) with the M2.5 x 10 hexagon socket head cap screw.
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
4) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
5) Secure the motor flange with the M4 $x 5$ hexagon socket head set screws.

Motor Mounting Diagram

Dimensions					[mm]
Size	Mounting type	MM	TT	PD	PP
25	NZ	M2.5 x 10	1.0	8	12.5
	NY	M 2.5×10	1.0	8	12.5
	NX	M 2.5×10	1.0	8	7
	NM1	M3 $\times 5$	0.63	5	10.5
	NM2	M 2.5×10	1.0	6	12.4
32	NZ	M3 $\times 12$	1.5	14	18
	NY	M4 $\times 12$	3.6	11	18
	NX	M4 $\times 12$	3.6	9	5
	NW	M4 $\times 12$	3.6	9	12
	NV	M4 $\times 12$	3.6	9	5
	NU	M 4×12	3.6	11	12
	NT	M3 x 12	1.5	12	18
	NM1	M 4×5	1.5	6.35	2.1
	NM2	$\mathrm{M} 4 \times 12$	3.6	10	12

Included Parts List

Size: 25

Description	Quantity		
	Mounting type		
	NZ/NY/NX	NM1	NM2
Motor hub	1	1	1
Hexagon socket head cap screw (to secure the hub)	1	-	1
Motor flange	-	1	1
Hexagon socket head set screw (to osecure the hub)		1	-
Hexagon socket head set screw (to secure the motor flange)	-	2	2
Ring spacer	-	-	1

Size: 32

	Quantity	
Description	Mounting type NZ/NY/NXX NW/NV/NU// NT/NM2	NM1
Motor hub	1	1
Hexagon socket head cap screw (to secure the hub)	1	-
Hexagon socket head set screw (to secure the hub)	-	1

Electric Actuators Rod Type/Guide Rod Type

Dimensions					[mm]
Size	Mounting type	MM	TT	PD	PP
63	NZ	M3 $\times 12$	1.5	14	17.7
	NY				
	NX	M4 x 12	3.6	9	6.7
	NW				11.7
	NV	M 4×12	3.6	9	6.7
	NU	M 4×12	3.6	11	11.7
	NT	M3 $\times 12$	1.5	12	17.7

Size: 63

Description	Quantity
	Mounting type
	NZ/NY/NX/NW/NV/NU/NT
Motor hub	1
Hexagon socket head cap screw (to secure the hub)	1
O-ring	1

Included Parts List
Size: 63

LEY/LEYG Series

Motorless Type

Motor Mounting: In-line

LEY100D: LEY-MF100D-NZC

LEY-MF100D-NZ (Without coupling)

Mounting procedure

1) Separate the coupling, and attach half to the motor side and the other half to the actuator side.
2) Attach one half of the coupling to the actuator side using one of the screws included with the coupling.
3) Attach the motor adapter to the actuator using the M10 motor adapter mounting screws.
4) Attach the sintered element to the motor adapter.
5) Attach the motor flange to the motor adapter using the M5 motor flange mounting screws.
6) Attach the other half of the coupling to the motor (provided by the customer) side using the other screw included with the coupling.
7) Attach the motor to the motor flange using the M6 motor mounting screws (provided by the customer). (Align the two sides of the coupling so that they fit together.)

LEY-MF100D-NGC3/5 (Reducer included)

LEY-MF100D-NGC

LEY-MF100D-NG (Without coupling)

[NGC3/5: Included parts] [NGC/NG: Provided by the customer]

Mounting procedure

1) Attach the motor adapter to the actuator using the M10 motor adapter mounting screws.
2) Attach the coupling to the reducer using the screw included with the coupling.
3) Attach the motor flange to the reducer using the M6 reducer mounting screws.
4) Attach the motor flange to the motor adapter using the M5 motor flange mounting screws.
5) Attach the coupling to the actuator using the screw included with the coupling.
(Tighten the coupling from the hole above the motor adapter sintered element.)
6) Attach the sintered element to the motor adapter.
7) After attaching the motor to the reducer using the motor shaft mounting screw, attach a plug.
8) Attach the motor to the reducer using the M6 motor mounting screws (provided by the customer)
*2 Dimension when mounting type "NGC" or "NGC3/5" (with coupling) is selected When option "NG" (without coupling) is selected, attach at a suitable position taking the recommended value of the coupling (provided by the customer) as well as the motor flange dimensions into consideration.

Included Parts List

Description	Quantity						Tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
	(Reference value)						

LEY/LEYG Series
 Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Except NM1 and NM3) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

(1) Size

$\mathbf{2 5}$	For LEY25/LEYG25
$\mathbf{3 2}$	For LEY32/LEYG32
$\mathbf{6 3}$	For LEY63

2	Motor mounting position
\mathbf{P}	Parallel
PL*1	Parallel (Lead L)
\mathbf{D}	In-line

*1 Size 63 only

NZ	NV
NY	NU
NX	NT
NW	NM2

* Refer to "Compatible Motors and Mounting Types" below.

Compatible Motors and Mounting Types*4

Applicable motor model		Size/Mounting type											
Manufacturer	Series	25				32/63							
		NZ	NY	NX	NM2	NZ	NY	NX	NW	NV	NU	NT	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
YASKAWA Electric Corporation	$\Sigma-\mathrm{V} / 7 / \mathrm{X}$	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	(MHMF only)	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bigcirc	-	-	-	($\beta 1$ only)	-	-	\bigcirc	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	AR/AZ (46 only)	-	-	-	-	-	-	-	*3
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	-	-	-	-	-	$\begin{array}{\|c\|} \hline \text { *1 } \\ \text { (MP/VP } \\ \text { only) } \\ \hline \end{array}$	-	-	-	(TL only)	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bigcirc	-	-	-	-	-		-	$\begin{aligned} & \text { *1 } \\ & \text { (AM30 } \\ & \text { only) } \end{aligned}$	*2 (AM31 only)	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	* $* 1$	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	-	-

* When the $L E Y \square \square_{32}^{25} \square{ }_{N M 3}^{N M 1} \square-\square$ or $L E Y \square G_{32}^{25} \square \square \square_{N M 3}^{N M 1} \square-\square$ is purchased, it is not possible to change to other mounting types.
*1 Motor mounting position: In-line only
*2 Only in-line type is available for size 63.
*3 Except size 63
*4 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following actuator body "Dimensions" pages.

LEY/LEYG Series

Dimensions: Motor Flange Option

Motor mounting position: Parallel

(Tigagon socket head cap screw: M2
(Tightening torque: T2 [N•m])
Component Parts

No.	Description	Quantity	
		Size	
		$\mathbf{2 5 , 3 2}$	$\mathbf{6 3}$
$\mathbf{1}$	Motor flange	1	1
$\mathbf{2}$	Motor pulley	1	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the pulley)	1	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor flange)	2	4

Motor flange details

Size: 25, 32

Size 25: NM2
$2 \times$ FA
depth of counterbore FB

Size 32: NM2

Size: 63

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
25	NZ	M4 x 0.7	7.5	46	30	3.7	11	42	M 2.5×10	1.0	M3 x 8	0.63	8	7.5
	NY	M3 x 0.5	5.5	45	30	5	11	42	M 2.5×10	1.0	M3 x 8	0.63	8	7.5
	NX	M 4×0.7	7	46	30	3.7	8	42	M2.5 $\times 10$	1.0	M3 $\times 8$	0.63	8	4.5
	NM2	$\varnothing 3.4$	7	31	30	3.7	8.5	42	M 2.5×10	1.0	M3 $\times 8$	0.63	6	4.8
32	NZ	M5 x 0.8	8.5	70	50	4.6	13	60	M3 x 12	1.5	M 4×12	1.5	14	4.5
	NY	M4 x 0.7	7	70	50	4.6	13	60	M3 x 12	1.5	M 4×12	1.5	11	4.5
	NW	M5 x 0.8	8.5	70	50	4.6	13	60	M 4×12	3.6	M 4×12	1.5	9	4.5
	NU	M5 x 0.8	8.5	70	50	4.6	13	60	M3 x 12	1.5	$\mathrm{M} 4 \times 12$	1.5	11	4.5
	NT	M5 x 0.8	8.5	70	50	4.6	17	60	M 3×12	1.5	M 4×12	1.5	12	8.5
	NM2	M 4×0.7	8	50	38.2	-	11.5	60	M 3×12	1.5	$\mathrm{M} 4 \times 12$	1.5	10	3
63	NZ	M5 x 0.8	8.5	70	50	4.6	11	60	M 4×12	3.6	M 4×12	2.7	14	4.5
	NY	M4 x 0.7	8	70	50	4.6	11	60	$\mathrm{M} 4 \times 12$	3.6	$\mathrm{M} 4 \times 12$	2.7	14	4.5
	NW	M5 x 0.8	8.5	70	50	4.6	11	60	M 4×12	3.6	$\mathrm{M} 4 \times 12$	2.7	9	4.5
	NT	M5 x 0.8	8.5	70	50	4.6	14.5	60	M 4×12	3.6	$\mathrm{M} 4 \times 12$	2.7	12	8

Motor Mounting Parts LEY／LEYG Series

Dimensions：Motor Flange Option

Motor mounting position：In－line［Size：25，32］

Motor flange details

Size：25，Motor type：NM2
Hexagon socket head cap screw：M2 （Tightening torque：T2［N•m］） （1）

Motor flange B details

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
25	NZ	M4 x 0.7	7.5	46	30	3.7	47	45	M2．5 x 10	1.0	M4 $\times 40$	1.5	8	12.5
	NY	M3 $\times 0.5$	6	45	30	4.2	47	45	M 2.5×10	1.0	M 4×40	1.5	8	12.5
	NX	M4 x 0.7	7.5	46	30	3.7	47	45	M 2.5×10	1.0	M 4×40	1.5	8	7
	NM2	$\varnothing 3.4$	28	31	22	2.5	30	45	M 2.5×10	1.0	M 4×40	1.5	6	12.4
32	NZ	M5 x 0.8	8.5	70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	14	18
	NY	M4 x 0.7	8	70	50	3.3	60	60	M4 $\times 12$	3.6	M6 x 60	5.2	11	18
	NX	M5 x 0.8	8.5	63	40	3.5	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 x 60	5.2	9	5
	NW	M5 x 0.8	8.5	70	50	3.3	60	60	M4 $\times 12$	3.6	M6 x 60	5.2	9	12
	NV	M4 x 0.7	8	63	40	3.3	63	60	$\mathrm{M} 4 \times 12$	3.6	M6 $\times 60$	5.2	9	5
	NU	M5 x 0.8	8.5	70	50	3.3	60	60	M4 $\times 12$	3.6	M6 x 60	5.2	11	12
	NT	M5 x 0.8	8.5	70	50	3.3	60	60	M3 $\times 12$	1.5	M6 x 60	5.2	12	18
	NM2	M4 x 0.7	8	50	36	3.3	60	60	M4 $\times 12$	3.6	M6 x 60	5.2	10	12

Component Parts

No．	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Motor hub	1
$\mathbf{3}$	Hexagon socket head cap screw（to secure the hub）	1
$\mathbf{4}$	Hexagon socket head cap screw（to mount the motor block）	2

8コヨ7

Component Parts

No．	Description	Quantity
$\mathbf{1}$	Motor flange A	1
$\mathbf{2}$	Motor flange B	1
$\mathbf{3}$	Motor hub	1
$\mathbf{4}$	Ring spacer	1
$\mathbf{5}$	Hexagon socket head cap screw（to secure the hub）	1
$\mathbf{6}$	Hexagon socket head cap screw（to mount the motor flange A）	2
$\mathbf{7}$	Hexagon socket head set screw（to secure the motor flange B）	2

LEY/LEYG Series

Dimensions: Motor Flange Option

Motor mounting position: In-line [Size: 63]

Hexagon socket head cap screw: M2
(Tightening torque: T2 [N•m])

Component Parts
Motor flange details

No.	Description	Quantity
$\mathbf{1}$	Motor flange	1
$\mathbf{2}$	Motor hub	1
$\mathbf{3}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{4}$	Hexagon socket head cap screw (to mount the motor adapter)	4
$\mathbf{5}$	O-ring (Wire diameter $\varnothing 1.5)$	1
$\mathbf{6}$	O-ring (Wire diameter $\varnothing \mathbf{2 . 0})$	1

Dimensions

Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
63	NZ	M5 x 0.8	10	70	50	3.5	22.5	78	M3 x 12	1.5	M5 x 22	3	14	17.7
	NY	M 4×0.7	8	70	50	3.5	22.5	78	M3 x 12	1.5	M5 x 22	3	14	17.7
	NX	M5 x 0.8	10	63	40	3.5	27.5	78	M4 x 12	3.6	M5 x 22	3	9	6.7
	NW	M5 x 0.8	10	70	50	3.5	22.5	78	M4 x 12	3.6	M5 x 22	3	9	11.7
	NV	M 4×0.7	8	63	40	3.5	27.5	78	M4 x 12	3.6	M5 x 22	3	9	6.7
	NU	M5 x 0.8	10	70	50	3.5	22.5	78	M4 x 12	3.6	M5 x 22	3	11	11.7
	NT	M5 x 0.8	10	70	50	3.5	22.5	78	M3 x 12	1.5	M5 x 22	3	12	17.7

LEY Series
Auto Switch Mounting

Auto Switch Proper Mounting Position

Applicable auto switch：D－M9 \square（V），D－M9 $\square E(V)$ ，$D-M 9 \square W(V), D-M 9 \square A(V)$

Size	Stroke range	Auto switch position				Return to origin distance	Operating range
		Leftward mounting		Rightward mounting			
		A	B	C	D	E	－
25	15 to 100	27	62.5	39	50.5	（2）	4.2
	105 to 400	52		64			
32	20 to 100	30.5	65.5	42.5	53.5	（2）	4.9
	105 to 500	60.5		72.5			
63	50 to 200	37	86	49	74	（4）	9.8
	205 to 500	72		84			
	505 to 800	107		119			

＊The values in the table to the left are to be used as a refer－ ence when mounting auto switches for stroke end detection． Adjust the auto switch after confirming the operating condi－ tions in the actual setting．
＊An auto switch cannot be mounted on the same side as a motor．
For LEYG series models（with a guide），an auto switch cannot be mounted on the guide attachment side（rod side）．
Since the operating range is provided as a guideline including hysteresis，it cannot be guaranteed（assuming approx．$\pm 30 \%$ dispersion）．It may change substantially depending on the ambient environment．

Auto Switch Mounting

Size：16，25，32，40， 63

Tightening Torque for Auto Switch Mounting Screw［N．m］

Auto switch model	Tightening torque
D－M9 $\square(\mathbf{V})$	
D－M9 $\square \mathbf{E}(\mathbf{V})$ D－M9 $\square \mathbf{W}(\mathbf{V})$	0.05 to 0.15
D－M9 $\square \mathbf{A (V)}$	0.05 to 0.10

＊When tightening the auto switch mounting screw （included with the auto switch），use a watchmaker＇s screwdriver with a handle diameter of 5 to 6 mm ．

Size： 100

A switch spacer is required in order to mount an auto switch．
When mounting an auto switch，first，hold a switch spacer between your fingers and press it into the slot．When doing this，confirm that it is set in the correct mounting orientation，or reinsert it if necessary．Next，insert the auto switch into the slot and slide it until it is positioned under the switch spacer． After confirming the mounting position，use a flat head watchmaker＇s screwdriver to tighten the included auto switch mounting screw．

Switch Spacer Part No．
 Switch spacer \quad BMY3－016

Tightening Torque for Auto Switch Mounting Screw

Auto switch model	Tightening torque
$\left.\begin{array}{l}\text { D－M9 } \square(V) \\ \text { D－M9 } \\ \mathbf{W W}\end{array}\right)$	0.10 to 0.15

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	ue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications				Refer to the SMC website for details on products that are compliant with international standards.		
PLC: Programmable Logic Controller						
D-M9 \square E, D-M9 \square EV (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP			-
Applicable load	IC circuit, Relay, PLC				24 VDC	relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					
Current consumption	10 mA or less					-
Load voltage	28 VDC	or less		-	24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to	40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V	or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA	or less
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	lue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

[g]

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)				
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$						
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)					
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$						
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15						
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$						
Min. bending radius [mm] (Reference values)						17		

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 $\square W$

D-M9 $\square W V$

Water Resistant 2-Color Indicator Solid State Auto Switch: Direct Mounting Type D-M9NA(V)/D-M9PA(V)/D-M9BA(V)

RoHS

Auto Switch Specifications

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)
Using flexible cable as standard spec.

Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.
Please contact SMC if using coolant liquid other than water based solution

Weight

Auto switch model		D-M9NA(V)	D-M9PA(V)	D-M9BA(V)
Lead wire length	0.5 m (Nil)	8	8	7
	1 m (M)	14		13
	3 m (L)	41		38
	5 m (Z)	68		63

PLC: Programmable Logic Controller

D-M9 \square A, D-M9 \square AV (With indicator light)						
Auto switch model	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED illuminates. Proper operating range Green LED illuminates.					
Standards	CE/UKCA marking (EMC directive/RoHS directive)					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model							D-M9NA \square	D-M9NAV \square D-M9PA \square D-M9PAV \square	D-M9BA \square	D-M9BAV \square
Sheath	Outside diameter $[\mathrm{mm}]$	2.6								
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)							
	Outside diameter $[\mathrm{mm}]$	0.88								
Conductor	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15								
	Strand diameter $[\mathrm{mm}]$	0.05								
Min. bending radius $[\mathrm{mm}]$ (Reference value)		17								

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Dimensions

D-M9 \square A

D-M9 \square AV

LEY/LEYG Series Specific Product Precautions 1

\triangle
Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Design / Selection

\triangle Warning

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable lateral load on the rod end. If a load in excess of the specification limits is applied to the piston rod, the generation of play in the piston rod sliding parts, reduced accuracy, etc., may occur and adversely affect the operation and service life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause a malfunction.
3. When used as a stopper, select the LEYG series "Sliding bearing" for strokes of 30 mm or less.
4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting").
If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which may adversely affect the operation and service life of the product.

Handling

\triangle Caution

1. To conduct a pushing operation, be sure to set the product to force/speed control, and use the product within the specified pushing speed range for each series.
Do not allow the piston rod to hit the workpiece and end of the stroke in the position control. The lead screw, bearing and internal stopper may be damaged and lead to malfunction.
2. For pushing operations, the maximum torque value of the motor to be used should be set to 90% or less of the rated torque of the reference motor. For the LEY63, 150\% or less.

Failure to do so may result in damage or malfunction.
3. The maximum speed of this actuator is affected by the product stroke.

Check the model selection section of the catalog.
4. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position.
5. Do not scratch or dent the sliding parts of the piston rod by bumping them or placing objects on them.
The piston rod and guide rod are manufactured to precise tolerances, so even a slight deformation may result in a malfunction.
6. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a freely moving connector (such as a floating joint).
7. Do not operate by fixing the piston rod and moving the actuator body.

Excessive load will be applied to the piston rod, resulting in damage to the actuator and a reduced service life of the product.

Handling

\triangle Caution

8. When an actuator is operated with one end fixed and the other free (ends tapped or flange), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such cases, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate at the stroke end.

Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end
9. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod. Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses play in the internal guide, or an increase in the sliding resistance.
Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational torque $[\mathrm{N} \cdot \mathrm{m}]$ or less	LEY25	LEY32	LEY63	LEY100

When screwing a bracket or nut into the piston rod end, hold the flats of the end of the "socket" with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

10. When using auto switches with the guide rod type LEYG series, the following limits apply. Please consider the following before selecting the product.

- Auto switches must be inserted from the front side with the rod (plate) sticking out.
- Auto switches with perpendicular electrical entries cannot be used.
- Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
- Please consult with SMC when using auto switches on the side of the rod that sticks out.

Enclosure

- First Digit: Degree of protection against solid foreign objects

1 Protected

Dust protected
Dust-tight

LEY/LEYG Series Specific Product Precautions 2

\triangle
Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Enclosure

- Second Digit: Degree of protection against water

$\mathbf{0}$	Not protected	-
$\mathbf{1}$	Protected against vertically falling water droplets	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water droplets when enclosure is tilted up to 15°	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet-proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water-jet- proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type
"Water-jet-proof" means that no water enters the equipment that could hinder it from operating normally when water is applied for 3 minutes in the prescribed manner. Take appropriate protective measures as the device is not usable in environments where droplets of water are splashed constantly.

Mounting

©Caution

1. When mounting workpieces or attachments to the piston rod end "socket," hold the flats of the "socket" with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.
Failure to do so may cause abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.
2. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

<LEY Series>

Workpiece fixed/Rod end female thread

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$	End socket width across flats $[\mathrm{mm}]$
LEY25	$\mathrm{M} 8 \times 1.25$	12.5	13	17
LEY32	$\mathrm{M} 8 \times 1.25$	12.5	13	22
LEY63	$\mathrm{M} 16 \times 2$	106	21	36
LEY100	$\mathrm{M} 20 \times 2.5$	204	27	27

Workpiece fixed/Rod end male thread (When "Rod end male thread" is selected.)

Model	Thread size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Effective thread lenghth $[\mathrm{mm}]$	End socket widh across flats $[\mathrm{mm}]$
LEY25	M14 $\times 1.5$	65.0	20.5	17
LEY32	M14 1.5	65.0	20.5	22
LEY63	M18 $\times 1.5$	97.0	26	36

©Caution

Body fixed/Body bottom tapped type (When "Body bottom tapped" is selected.)

Mounting

<LEYG Series>

Workpiece fixed/Plate tapped type

Body fixed/Top mounting

Body fixed/Bottom mounting

Body fixed/Head side tapped type

LEY/LEYG Series
 Specific Product Precautions 3

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Mounting

\triangle Caution

3. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.

Mounting the product on an uneven workpiece or base may result in an increase in the sliding resistance.

Maintenance

© Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacing the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months/ $250 \mathrm{~km} / 5$ million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt Belt corner has become rounded and frayed threads sticks out
c. Belt partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible
2. For IP65 equivalent type, apply grease on the piston rod periodically. Grease should be applied at 1 million cycles or 200 km, whichever comes first.
Grease pack order number: GR-S-010 (10 g)/GR-S-020 (20 g)

LEY100 Series Specific Product Precautions

Be sure to read this before handling the products．

Handling

\triangle Caution

Continuous use at max．force is prohibited．
When using the product at max．force，be sure to use the product within 15 s and with a duty ratio of 20% or less．（With motor）
Example of driving conditions with a duty ratio of 20\％

For the motorless type，be sure to check the specifications of the motor and driver to be used in combination before use． The force should be within the rated force when using continuously．

Motor Flange Assembly

Products from other companies and self－produced products can be used instead．

Symbol	Motor adapter	Motor flange $($ Type $)$	Coupling $(\varnothing 40)$	Coupling $(\varnothing 55)$	Reducer （Reduction ratio）
NZ	\bullet	$\bullet(Z)$	-	-	-
NZC	\bullet	$\bullet(Z)$	\bullet	-	-
NG	\bullet	$\bullet(\mathrm{G})$	-	-	-
NGC	\bullet	$\bullet(\mathrm{G})$	-	\bullet	-
NGC3	\bullet	$\bullet(\mathrm{G})$	-	\bullet	$\bullet(1 / 3)$
NGC5	\bullet	$\bullet(\mathrm{G})$	-	\bullet	$\bullet(1 / 5)$
N	\bullet	-	-	-	-

Slide Table/High Precision Type

In-line LESYH \square D Series

p. 199

Selection Procedure

Positioning Control Selection Procedure

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Check the work load-speed. <Speed-Work load graph> (page 201) Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LESYH16 \square B-50 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2

Check the cycle time.
Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4: Settling time varies depending on the conditions such as motor types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.
$\mathrm{T} 4=0.15[\mathrm{~s}]$

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=200 / 3000=0.07[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=200 / 3000=0.07[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}$
$=\frac{50-0.5 \cdot 200 \cdot(0.07+0.07)}{200}$
$\begin{aligned} &=0.18[\mathrm{~s}] \\ & 4=0.15[\mathrm{~s}]\end{aligned}$
The cycle time can be found as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.07+0.18+0.07+0.15 \\
& =0.47[\mathbf{s}]
\end{aligned}
$$

Operating conditions

- Workpiece mass: 1 [kg] - Workpiece mounting
- Speed: 200 [mm/s] condition:
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 3000 [$\mathrm{mm} / \mathrm{s}^{2}$]
- Cycle time: 0.5 s

LESYH16 $\square \square /$ AC Servo Motor Vertical

<Speed-Work load graph>
troke [mm] \qquad (Operating condition)
V : Speed [mm/s] - (Operating condition)
2. Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$. (Operating condition)

T 1 : Acceleration time $[\mathrm{s}]$... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed

Step 3 Check the allowable moment. <Static allowable moment> (page 201) <Dynamic allowable moment> (page 203)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

LESYH16/Pitching

Based on the above calculation result, the LESYH16 $\square \mathrm{N} \square \mathrm{B}-50$ should be selected.

<Dynamic allowable moment>

Selection Procedure

Force Control Selection Procedure

Selection Example

The model selection method shown below corresponds to SMC's standard motor.
For use in combination with a motor from a different manufacturer, check the
available product information of the motor to be used.
Operating conditions

Step 1 Check the required force.
Calculate the approximate required force for a pushing operation.
Selection example) • Pushing force: 210 [N]

- Workpiece mass: 1 [kg]

The approximate required force can be found to be $210+10=220[\mathrm{~N}]$.
Select a model based on the approximate required force while referencing the specifications (page 206).
Selection example based on the specifications)

- Approximate required force: 220 [N]
- Speed: 100 [mm/s]

The LESYH16 $\square \mathrm{B}$ can be temporarily selected as a possible candidate. Then, calculate the required force for a pushing operation. If the mounting position is vertical upward, add the actuator table weight.
Selection example based on the table weight)

- LESYH16 \square B table weight: 0.7 [kg] The required force can be found to be $220+7=227[\mathrm{~N}]$.

Step 2 Check the pushing force. <Force conversion graph>
Select a model based on the ratio to rated torque and force while referencing the force conversion graph.
Selection example)
Based on the graph shown on the right side,

- Ratio to rated torque: 80 [\%]
- Force: 227 [N]

The LESYH16B can be temporarily selected as a possible candidate.

Step 3 Check the allowable moment.

<Static allowable moment> (page 201)
<Dynamic allowable moment> (page 203)
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.
Table Weight

Model	Stroke $[\mathrm{mm}]$		
	50	100	150
LESYH16	0.4	0.7	-
LESYH25	0.9	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

<Force conversion graph>

Based on the above calculation result, the LESYH16B-100 should be selected.

LESYH16/Pitching

<Dynamic allowable moment>

LESYH Series
 Motorless Type

Speed-Work Load Graph (Guide)

LESYH16

LESYH25

Force Conversion Graph (Guide)

LESYH16 \square (Motor mounting position: Parallel/In-line)

LESYH25 \square (Motor mounting position: Parallel)

LESYH25D \square (Motor mounting position: In-line)

* When using the force control or speed control, set the max. value to be no more than 90% of the rated torque.

Static Allowable Moment

Model	LESYH16		LESYH25			
Stroke [mm]	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	
Pitching [N•m]	26	43	77	112	155	
Yawing [N•m]		48		146	177	152
Rolling [N•m]	48					

Load overhanging direction
m：Work load［kg］
Me：Allowable moment［ $\mathrm{N} \cdot \mathrm{m}$ ］
L：Overhang to the work load center of gravity［mm］
L．Ovelang to he work load conterorgravis

 Model
\qquad $5000 \mathrm{~mm} / \mathrm{s}^{2}$

Horizontal／Bottom

Horizontal（Wall）

LESYH Series

Motorless Type

Dynamic Allowable Moment

These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation.

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LESYH
Size: 16
Size: 1

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.

$$
\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z \leq \mathbf{1}
$$

When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LESYH
Size: 16
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 4.0
Work load center position [mm]: Xc=80, Yc=50, Zc=60
2. Select three graphs from the top of the first row on page 202.

Mounting orientation

3. $L X=\mathbf{2 5 0} \mathbf{~ m m}, L y=\mathbf{1 6 0} \mathbf{~ m m}, L z=\mathbf{7 0 0} \mathbf{~ m m}$
4. The load factor for each direction can be found as follows.
$\alpha x=80 / 250=0.32$
$\alpha y=50 / 160=0.32$
$\alpha z=60 / 700=0.09$
5. $\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z=0.73 \leq 1$

Table Accuracy

* These values are initial guideline values.

Table 1 B side parallelism to A side

Model	Stroke $[\mathrm{mm}]$		
	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESYH16	0.05	0.08	-
LESYH25	0.06	0.08	0.125

Traveling parallelism:
The amount of deflection on a dial gauge when the table travels a full stroke with the body secured on a reference base surface

Model	LESYH16	LESYH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1.	
B side traveling parallelism to A side $[\mathrm{mm}]$	Refer to Graph 1.	
C side perpendicularity to A side $[\mathrm{mm}]$	0.05	
M dimension tolerance $[\mathrm{mm}]$	± 0.3	
W dimension tolerance $[\mathrm{mm}]$	± 0.2	
Radial clearance $[\mu \mathrm{m}]$	-10 to 0	-14 to 0

Graph 1 B side traveling parallelism to A side

Table displacement due to yaw moment load
Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESYH16

LESYH25

Table displacement due to roll moment load
Table displacement of section A when loads are applied to the section F with the slide table retracted.

LESYH16
$\mathbf{L r}=120 \mathrm{~mm}$

LESYH25
$\mathbf{L r}=200 \mathrm{~mm}$

Slide Table/
 High Precision Type

1 Size
16
25

2 Motor mounting position

\mathbf{D}	In-line
R	Right side parallel
L	Left side parallel

3 Mounting type

NZ	NU
NY	NT
NX	NM1
NW	NM2
NV	NM3

4 Lead [mm]

	Size	
	$\mathbf{1 6}$	$\mathbf{2 5}{ }^{* 1}$
A	12	$16(20)$
B	6	$8(10)$

*1 The values shown in () are the leads for the right/left side parallel types. Except mounting type NM1 (Equivalent leads which include the pulley ratio [1.25:1])

5 Stroke [mm]		
Size		
100		
150		

Compatible Motors and Mounting Types*4

Applicable motor model		Size/Mounting type														
Manufacturer	Series	16						25								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	上-V/7/X	- *3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bigcirc	-	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6		\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-
FANUC CORPORATION	β is (-B)	\bigcirc	-	-	-	-	-	$\underset{(\beta 1 \text { only })}{\boldsymbol{\bullet}}$	-	-	\bigcirc	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	-*3	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	- * 1	-	-*2	-	-	-	-	-	-	-	\bigcirc	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	- * ${ }^{+1}$	-	- *2	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-		-	-	-	-	-	-	-	-	-	\bigcirc
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL		-	-	-	-	-	-	-	$\begin{gathered} \mathbf{Q}^{* 1} \\ \text { (MP/VP } \\ \text { only) } \\ \hline \end{gathered}$	-	-	-		-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bigcirc	-	-	-	-	-	-	-	$\begin{aligned} & 0^{* 1} \\ & (80 / 81 \end{aligned}$ only)	-	$\left\|\begin{array}{c} \bullet * 1 \\ (30 \text { only }) \end{array}\right\|$		-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bigcirc	-	-	-	-	-	-*1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bigcirc	-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-

*1 Motor mounting position: In-line only *2 Motor mounting position: Parallel only
*3 For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor.
*4 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following "Dimensions" pages.

Slide Table／High Precision Type LESYH Series

Motorless Type

Specifications

Model			LESYH16		LESYH25（Parallel）		LESYH25（In－line）	
Actuator specifications	Stroke［mm］		50， 100		50，100， 150			
	Work load［kg］	Horizonta＊${ }^{\text {1 }}$	8		12		12	
		Vertical	6	12	10	20	10	20
	Force［ N ］＊2 （Set value：Rated torque 45 to 90% ）		65 to 131	127 to 255	79 to 157	154 to 308	98 to 197	192 to 385
	Max．speed［mm／s］		400	200	400	200	400	200
	Pushing speed［mm／s］${ }^{* 3}$		35 or less		30 or less			
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5000					
	Positioning repeatability［mm］		± 0.01					
	Lost motion［mm］${ }^{* 4}$		0.1 or less					
	Ball screw specifications	Thread size［mm］	$\varnothing 10$		$\varnothing 12$			
		Lead［mm］ （including pulley ratio）	12	6	$\begin{gathered} \hline 16 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (10) \\ \hline \end{gathered}$	16	8
		Shaft length［mm］		3.5				
	Impact／Vibration resistance［m／s ${ }^{2}{ }^{* 5}$		50／20					
	Actuation type		Ball screw Ball	（Parallel） n－line）	Ball ［Pulle	$\begin{aligned} & \text { Belt } \\ & 1.25: 1] \end{aligned}$	Ball screw	
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
${ }_{5}^{\circ}$	Actuation unit weight［kg］	50 st	0.585		1.21			
$\stackrel{\infty}{\underline{D}}$		100 st	0.919		1.68			
"ָ̄		150 st	－		2.19			
	Other inertia ［kg．cm ${ }^{2}$ ］		$\begin{gathered} 0.012 \\ 0.015 \end{gathered}$	$\begin{aligned} & \text { YH16) } \\ & \mathrm{H} 16 \mathrm{D}) \end{aligned}$	$\begin{gathered} 0.035 \text { (LESYH25) } \\ 0.061 \text { (LESYH25D) } \end{gathered}$			
¢	Friction coefficient		0.05					
$\stackrel{\square}{0}$	Mechanical efficiency		0.8					
	Motor type		AC servo motor					
	Rated output capacity［W］				200			
	Rated torque［ $\mathrm{N} \cdot \mathrm{m}$ ］		0.32		0.64			
	Rated rotation［rpm］				3000			

＊1 This is the max．value of the horizontal work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load changes according to the condition of the external guide．Confirm the load using the actual device．
＊2 The force setting range for the force control（Speed control mode， Torque control mode）
The force changes according to the set value．Set it with reference to the＂Force Conversion Graph（Guide）＂on page 201.
＊3 The allowable collision speed for collision with the workpiece
＊4 A reference value for correcting errors in reciprocal operation
＊5 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊6 Each value is only to be used as a guide to select a motor of the appropriate capacity．

Weight

［kg］			
Model	Stroke		
	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESYH16	1.48	1.87	-
LESYH25	2.77	3.37	4.77

LESYH Series

Motorless Type

Dimensions

Dimensions				
Model	Stroke	C	D	E
LESYH16 $\square \square-50$	50	40	6	116.5
LESYH16 $\square \square-100$	100	44	8	191.5

Motor Mounting Position: In-line/Motor Mounting, Applicable Motor Dimensions [mm]

Size	Mounting type	FA		FB	FC	FD	$\begin{array}{c\|} \hline \text { FE } \\ \text { (Max.) } \end{array}$	FF	FG	FJ	FK
		Mounting type	Applicale moior								
LESYH16	NZ	M4 x 0.7	$\varnothing 4.5$	7.5	ø46	30	3.7	47	-	8	25 ± 1
	NY	M3 $\times 0.5$	ø3.4	6	ø45	30	4.2	47	-	8	25 ± 1
	NX	M4 x 0.7	$\varnothing 4.5$	7.5	ø46	30	3.7	47	-	8	18 ± 1
	NM1	$\varnothing 3.4$	M3	17	$\square 31$	22	2.5	36	19	5*2	18 to 25
	NM2	ø3.4	M3	28	$\square 31$	22*1	2.5*1	47	30	6*2	20 ± 1

*1 Dimensions after mounting a ring spacer (Refer to page 210.) *2 Shaft type: D-cut shaft

*1 Do not allow collisions at either end of the table operating range at a speed exceeding "pushing speed." Additionally when running the positioning operation, do not set within 2 mm of both ends.
*2 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
*3 For checking the limit and the intermediate signal. Applicable to the D-M9 $\square, D-M 9 \square E$, and D-M9 \square W (2-color indicator) The auto switches should be ordered separately.

Motor mounting position: Left side parallel | LESYH16LN $\square-\square$

Motor flange dimensions (Motor mounting position: Parallel)
NZ, NY, NX NM1, NM2, NM3

Motor Mounting Position: Parallel/Motor Mounting, Applicable Motor Dimensions [mm]

Size	Mounting type	FA		FB	FC	FD	$\begin{array}{\|c\|} \hline \text { FE } \\ \text { (Max.) } \\ \hline \end{array}$	FF	FG	FJ	FK
		Mounting type	Appicade moior								
LESYH16	NZ	M4 x 0.7	$\varnothing 4.5$	7.5	ø46	30	3.7	11	42	8	25 ± 1
	NY	M3 $\times 0.5$	$\varnothing 3.4$	5.5	ø45	30	5	11	38	8	25 ± 1
	NX	M4 x 0.7	$\varnothing 4.5$	7	ø46	30	3.7	8	42	8	18 ± 1
	NM1	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	8.5	42	5*1	18 to 25
	NM2	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	8.5	42	6	20 ± 1
	NM3	$\varnothing 3.4$	M3	7	$\square 31$	28	3.5	5.5	42	5*1	20 ± 1

[^26]Dimensions

Dimensions

Model	Stroke	B	C	D	E	G			
125][-50	50	96.5	75	4	143	131	36		
YH25]-100	10		48		207				
LESYH25]D-150	150	1265	65		285	161	53		

Motor Mounting Position: In-line/Motor Mounting, Applicable Motor Dimensions [mm]

Size	Mounting type	FA		FB	FC	FD	$\begin{array}{\|c} \hline \text { FE } \\ \text { (Max.) } \end{array}$	FF	FJ	FK
		Mounting type	Applicabe moior							
LESYH25	NZ	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	3.3	60	14	30 ± 1
	NY	M4 x 0.7	$\varnothing 4.5$	8	$\varnothing 70$	50	3.3	60	11	30 ± 1
	NX	M5 x 0.8	$\varnothing 5.8$	8.5	$ø 63$	40	3.5	63	9	20 ± 1
	NW	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	3.3	60	9	25 ± 1
	NV	M4 x 0.7	$\varnothing 4.5$	8	$\varnothing 63$	40	3.3	63	9	20 ± 1
	NU	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	3.3	60	11	23 ± 1
	NT	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	3.3	60	12	30 ± 1
	NM1	M4 x 0.7	$\varnothing 4.5$	9.5	$\square 47.1$	38.1	2	34	6.35*1	20 ± 1
	NM2	M4 x 0.7	$\varnothing 4.5$	8	$\square 50$	36	3.3	60	10	24 ± 1

*1 Do not allow collisions at either end of the table operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
*2 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
*3 For checking the limit and the intermediate signal. Applicable to the D-M9 $\square, D-M 9 \square E$, and D-M9 \square W (2-color indicator) The auto switches should be ordered separately. Refer to pages 215 to 217 for details.

Motor mounting position: Left side parallel LESYH25L $\square-\square$

$\overline{\text { Motor flange dimensions (Motor mounting position: Parallel) }}$ NZ, NY, NW, NU, NT NM1, NM2

Motor Mounting Position: Parallel/Motor Mounting, Applicable Motor Dimensions [mm]

Size	$\begin{gathered} \text { Mounting } \\ \text { type } \end{gathered}$	FA		FB	FC	FD	$\begin{gathered} \text { FE } \\ \text { (Max.) } \end{gathered}$	FF	FJ	FK
		Mounting type	Appicale moior							
LESYH25	NZ	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	14	30 ± 1
	NY	M4 x 0.7	¢ 4.5	7	$\varnothing 70$	50	4.6	13	11	30 ± 1
	NW	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	9	25 ± 1
	NU	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	13	11	23 ± 1
	NT	M5 x 0.8	$\varnothing 5.8$	8.5	$\varnothing 70$	50	4.6	17	12	30 ± 1
	NM1	M4 x 0.7	ø4.5	(5)	$\square 47.1$	38.1	-	5	6.35*1	20 ± 1
	NM2	$\mathrm{M} 4 \times 0.7$	ø4.5	8	$\square 50$	38.1	-	11.5	10	24 ± 1

[^27]- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NW, NM2 mounting types, and D-cut type for the NM1 and NM3 mounting type.

Motor Mounting: Parallel

- When mounting a pulley, remove all oil content, dust, and dirt adhered to the shaft and the inside of the pulley.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

LESYH16: NM1, NM2, NM3

[Included parts] (for NM1)
Hexagon socket head set screw/MM1
(Tightening torque: TT1 [$\mathrm{N} \cdot \mathrm{m}$])

* Mount to D-cut surface of the motor shaft. $\xrightarrow{\text { Provided by the customer] }} \xrightarrow{\mathrm{PP}(\text { Mounting distance })}$ Motor [Included parts] (for NM1) Motor pulley

Refer to the figure on the
right for the motor pulley of NM2.

Motor flange details

LESYH16: NZ, NY, NX
LESYH25: NZ, NY, NW, NU, NT

Dimensions

Size	Mounting type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	FA	FB	FC	FD	FE	FF	FG	BT
16	NZ	M2.5 x 10	1.0	M3 x 8	0.63	$\mathrm{M} 4 \times 10$	1.5	8	7.5	M4 x 0.7	7.5	$\varnothing 46$	30	3.7	11	42	19
	NY	M2.5 $\times 10$	1.0	M3 $\times 8$	0.63	M4 $\times 10$	1.5	8	7.5	M3 $\times 0.5$	5.5	$\varnothing 45$	30	5	11	38	19
	NX	M 2.5×10	1.0	M3 $\times 8$	0.63	M4 $\times 10$	1.5	8	4.5	M4 x 0.7	7	$\varnothing 46$	30	3.7	8	42	19
	NM1	M3 $\times 5$	0.63	M3 $\times 8$	0.63	M4 $\times 10$	1.5	5	11.8	$\varnothing 3.4$	7	$\square 31$	28	3.5	8.5	42	19
	NM2	M 2.5×10	1.0	M3 $\times 8$	0.63	M4 $\times 10$	1.5	6	4.8	$\varnothing 3.4$	7	$\square 31$	28	3.5	8.5	42	19
	NM3	M3 $\times 5$	0.63	M3 $\times 8$	0.63	M4 $\times 10$	1.5	5	8.8	$\varnothing 3.4$	7	$\square 31$	28	3.5	5.5	42	19
25	NZ	M3 $\times 12$	1.5	M 4×12	1.5	M6 x 14	5.2	14	4.5	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	13	60	30
	NY	M3 $\times 12$	1.5	M 4×12	1.5	M6 x 14	5.2	11	4.5	M4 x 0.7	7	$\bigcirc 70$	50	4.6	13	60	30
	NW	M4 $\times 12$	3.6	M 4×12	1.5	M6 x 14	5.2	9	4.5	M5 x 0.8	8.5	๑70	50	4.6	13	60	30
	NU	M3 $\times 12$	1.5	$\mathrm{M} 4 \times 12$	1.5	M6 $\times 14$	5.2	11	4.5	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	13	60	30
	NT	M3 $\times 12$	1.5	M4 $\times 12$	1.5	M6 x 14	5.2	12	8.5	M5 x 0.8	8.5	¢70	50	4.6	17	60	30
	NM1	M3 $\times 5$	0.63	M 4×12	1.5	M6 $\times 14$	5.2	6.35	8	M4 x 0.7	(5)	$\square 47.1$	38.2	-	5	56.4	30
	NM2	M3 $\times 12$	1.5	M4 $\times 12$	1.5	M6 x 14	5.2	10	3	M4 x 0.7	8	$\square 50$	38.2	-	11.5	60	30

Included Parts List

Size: 16, 25

Description	Quantity	
	Mounting type	
	NZ/NY/NW/NT/NM2	NM1/NM3
Motor flange	1	1
Motor pulley	1	1
Return plate	1	1
Timing belt	1	1
Hexagon socket head cap screw (to mount the return plate)	4	4
Hexagon socket head cap screw (to mount the motor flange)	2	2
Hexagon socket head cap screw (to secure the pulley)	1	-
Hexagon socket head set screw (to secure the pulley)	-	1

Slide Table/High Precision Type LESYH Series

Motorless Type

- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NX, NW, NM2 mounting types, and D-cut type for the NM1 mounting type.
Motor Mounting: In-line
- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

LESYH16D: NM1

[Included parts]
Hexagon socket head set screw/MM
Provided by the customer] (Tightening torque: TT [N•m])
Motor mounting screw (M3) * Mount to D-cut surface of the motor shaft. [Provided by the customer] * Screw head height 5 or less, O.D. ø6.5 or less

[Included parts] Hexagon socket head set screw/2 x M4 x 5 (Tightening torque: 1.5 [N.m])

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the M3 x 4 hexagon socket head set screw.
2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer)
3) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
4) Secure the motor flange with the M4 x 5 hexagon socket head set screws.

LESYH25D: NM1

[Included parts]
Hexagon socket head set screw/MM

Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head set screw.
2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
3) Secure the motor to the motor block with the motor mounting screws (provided by the customer)

LESYH16D: NM2

Mounting procedure

1) Insert the ring spacer into the motor (provided by the customer).
2) Secure the motor hub to the motor (provided by the customer) with the M2.5 x 10 hexagon socket head cap screw.
3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer) 4) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
4) Secure the motor flange with the M4x5 hexagon socket head set screws.

Dimensions					[mm]
Size	Mounting type	MM	TT	PD	PP
16	NZ	M 2.5×10	1.0	8	12.5
	NY	M 2.5×10	1.0	8	12.5
	NX	$\mathrm{M} 2.5 \times 10$	1.0	8	7
	NM1	M3 $\times 5$	0.63	5	10.5
	NM2	M 2.5×10	1.0	6	12.4
25	NZ	M3 $\times 12$	1.5	14	18
	NY	M4 x 12	3.6	11	18
	NX	$\mathrm{M} 4 \times 12$	3.6	9	5
	NW	$\mathrm{M} 4 \times 12$	3.6	9	12
	NV	M4 x 12	3.6	9	5
	NU	M4 x 12	3.6	11	12
	NT	M3 $\times 12$	1.5	12	18
	NM1	M 4×5	1.5	6.35	2.1
	NM2	M 4 x 12	3.6	10	12

Included Parts List

Size: 16

Description	Quantity		
	Mounting type		
	NZ/NY/NX	NM1	NM2
Motor hub	1	1	1
Hexagon socket head cap screw (to secure the hub)	1	-	1
Motor flange	-	1	1
Hexagon socket head set screw (to osecure the hub)		1	-
Hexagon socket head set screw (to secure the motor flange)	-	2	2
Ring spacer	-	-	1

Size: 25

	Quantity	
Description	Mounting type NZ/NY/NXX NW/NV/NU// NT/NM2	NM1
Motor hub	1	1
Hexagon socket head cap screw (to secure the hub)	1	-
Hexagon socket head set screw (to secure the hub)	-	1

LESYH Series

Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Excludes options "NM1" and "NM3")
Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

$\mathbf{1}$ Size
$\mathbf{2 5}$
$\mathbf{3 2}$
$\mathbf{F o r}$ the LESYH16

* Please note that the size in the model number is different from the actuator size.

2	Motor mounting position
P	Parallel
D	In-line

(3) Mounting type

NZ	NV
NY	NU
NX	NT
NW	NM2

Compatible Motors and Mounting Types*2

Applicable motor model		Actuator/Mounting type														
Manufacturer	Series	16						25								
		NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
YASKAWA Electric Corporation	E-V/7/X	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
SANYO DENKI CO., LTD.	SANMOTION R	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
OMRON Corporation	OMNUC G5/1S	\bullet	-	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
Panasonic Corporation	MINAS A5/A6	\bullet	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-
FANUC CORPORATION	Bis (-B)	\bullet	-	-	-	-	-		-	-	\bullet	-	-	-	-	-
NIDEC SANKYO CORPORATION	S-FLAG	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
KEYENCE CORPORATION	SV/SV2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
FUJI ELECTRIC CO., LTD.	ALPHA7	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
MinebeaMitsumi Inc.	Hybrid stepping motors	-	-	-	\bullet	-	\bullet	-	-	-	-	-	-	-	\bullet	-
Shinano Kenshi Co., Ltd.	CSB-BZ	-	-	-	\bullet	-	\bullet	-	-	-	-	-	-	-	-	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	\bullet
FASTECH Co., Ltd.	Ezi-SERVO	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	\bullet	-
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	\bullet	-	-	-	-	-	-	-	$\begin{array}{\|c\|c\|} \hline \text { (MPNP } \\ \text { (ony) } \\ \text { onny } \end{array}$	-	-	-	\bullet	-	-
Beckhoff Automation GmbH	AM 30/31/80/81	\bullet	-	-	-	-	-	-	-	$\begin{gathered} 0 * 1 \\ (80 / 81 \\ \text { only) } \end{gathered}$	-	-*1	\bullet	-	-	-
Siemens AG	SIMOTICS S-1FK7	-	-	\bullet	-	-	-	-	-	-*1	-	-	-	-	-	-
Delta Electronics, Inc.	ASDA-A2	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-
ANCA Motion	AMD2000	\bullet	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-

* When the LESYH ${ }_{25}^{16} \square_{\mathrm{NM} 3}^{\mathrm{NM} 1} \square-\square$ is purchased, it is not possible to change to other mounting types.
*1 Motor mounting position: In-line only
*2 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following actuator body "Dimensions" pages.

Dimensions: Motor Flange Option

Motor mounting position: Parallel

Motor flange details
Size: 25, 32

Size 25: NM2

$2 \times$ FA
depth of counterbore FB

Size 32: NM2

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
$\begin{gathered} 25 \\ \text { (LESYH16) } \end{gathered}$	NZ	M 4×0.7	7.5	$\varnothing 46$	30	3.7	11	42	M 2.5×10	1.0	M 3×8	0.63	8	7.5
	NY	M3 x 0.5	5.5	ø45	30	5	11	42	M 2.5×10	1.0	M 3×8	0.63	8	7.5
	NX	M 4×0.7	7	$\varnothing 46$	30	3.7	8	42	M 2.5×10	1.0	M 3×8	0.63	8	4.5
	NM2	ø3.4	7	$\square 31$	30	3.7	8.5	42	M 2.5×10	1.0	M3 $\times 8$	0.63	6	4.8
$\begin{gathered} 32 \\ \text { (LESYH25) } \end{gathered}$	NZ	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	13	60	M3 x 12	1.5	M 4×12	1.5	14	4.5
	NY	M4 x 0.7	7	ø70	50	4.6	13	60	M3 x 12	1.5	M 4×12	1.5	11	4.5
	NW	M5 x 0.8	8.5	$\varnothing 70$	50	4.6	13	60	M 4×12	3.6	M 4×12	1.5	9	4.5
	NU	M5 x 0.8	8.5	ø70	50	4.6	13	60	M3 x 12	1.5	M 4×12	1.5	11	4.5
	NT	M5 x 0.8	8.5	¢70	50	4.6	17	60	M3 $\times 12$	1.5	M 4×12	1.5	12	8.5
	NM2	M 4×0.7	8	$\square 50$	38.2	-	11.5	60	M3 x 12	1.5	M 4×12	1.5	10	3

LESYH Series

Dimensions: Motor Flange Option

Motor mounting position: In-line

Size: 25, Mounting type: NM2

Motor flange B details

Component Parts

No.	Description	Quantity
$\mathbf{1}$	Motor flange A	1
$\mathbf{2}$	Motor flange B	1
$\mathbf{3}$	Motor hub	1
$\mathbf{4}$	Ring spacer	1
$\mathbf{5}$	Hexagon socket head cap screw (to secure the hub)	1
$\mathbf{6}$	Hexagon socket head cap screw (to mount the motor flange A)	2
$\mathbf{7}$	Hexagon socket head set screw (to secure the motor flange B)	2

Dimensions

Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
$\begin{gathered} 25 \\ \text { (LESYH16) } \end{gathered}$	NZ	M4 x 0.7	7.5	$\varnothing 46$	30	3.7	47	45	M 2.5×10	1.0	M4 x 40	1.5	8	12.5
	NY	M3 $\times 0.5$	6	$\varnothing 45$	30	4.2	47	45	M 2.5×10	1.0	M4 x 40	1.5	8	12.5
	NX	M4 x 0.7	7.5	$\varnothing 46$	30	3.7	47	45	M 2.5×10	1.0	M4 x 40	1.5	8	7
	NM2	$\emptyset 3.4$	28	$\square 31$	22	2.5	30	45	$\mathrm{M} 2.5 \times 10$	1.0	M4 x 40	1.5	6	12.4
$\begin{gathered} 32 \\ \text { (LESYH25) } \end{gathered}$	NZ	M5 x 0.8	8.5	ø70	50	3.3	60	60	M3 x 12	1.5	M6 x 60	5.2	14	18
	NY	M4 x 0.7	8	$\varnothing 70$	50	3.3	60	60	M 4 x 12	3.6	M6 x 60	5.2	11	18
	NX	M5 x 0.8	8.5	ø63	40	3.5	63	60	M 4 x 12	3.6	M6 x 60	5.2	9	5
	NW	M5 x 0.8	8.5	$\varnothing 70$	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	9	12
	NV	M4 x 0.7	8	ø63	40	3.3	63	60	M 4×12	3.6	M6 x 60	5.2	9	5
	NU	M5 x 0.8	8.5	$\varnothing 70$	50	3.3	60	60	M 4×12	3.6	M6 x 60	5.2	11	12
	NT	M5 x 0.8	8.5	ø70	50	3.3	60	60	M3 x 12	1.5	M6 x 60	5.2	12	18
	NM2	M4 x 0.7	8	$\square 50$	36	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	10	12

LESYH Series
 Auto Switch Mounting

Auto Switch Mounting Position

	[mm]		
Size	Stroke	\mathbf{A}	\mathbf{B}
$\mathbf{8}$	50	89	126
	75	114	152
$\mathbf{1 6}$	50	100.5	137.5
	100	150.5	212.5
$\mathbf{2} \mathbf{2 5}$	50	108	168
	100	158	232
	150	238	310

Auto Switch Mounting

When mounting the auto switches, they should be inserted into the actuator's auto switch mounting groove as shown in the drawing below.
After setting in the mounting position, use a flat head watchmaker's screwdriver to tighten the auto switch mounting screw that is included.

Auto Switch Mounting Screw Tightening Torque [$\mathrm{N} \cdot \mathrm{m}$]

Auto switch model	Tightening torque
D-M9■(V)	
D-M9■W(V)	0.05 to 0.15
D-M9■E	

1-XX-1ヨา

[^28]
Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	ue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications				Refer to the SMC website for details on products that are compliant with international standards.		
PLC: Programmable Logic Controller						
D-M9 $\square \mathrm{E}$, D-M9 $\square \mathrm{EV}$ (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP			
Applicable load	IC circuit, Relay, PLC				24 VDC	ay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					
Current consumption	10 mA or less					-
Load voltage	28 VDC	or less		-	24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to	40 mA
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or	or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA	or less
Indicator light	Red LED illuminates when turned ON.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	lue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to the Web Catalog for solid state auto switch common specifications
* Refer to the Web Catalog for lead wire lengths.

Weight

[g]

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standards	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)				
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$						
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)					
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$						
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15						
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$						
Min. bending radius [mm] (Reference values)						17		

* Refer to the Web Catalog for solid state auto switch common specifications.
* Refer to the Web Catalog for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 \square W

D-M9 $\square W V$

Design

\triangle Warning

1．Do not apply a load in excess of the specification limits．
Select a suitable actuator by work load and allowable moment． If the product is used outside of the specification limits，the eccentric load applied to the guide will be excessive and have adverse effects such as the generation of play on the guide， reduced accuracy，reduced service life of the product．
2．Do not use the product in applications where exces－ sive external force or impact force is applied to it． This can cause a malfunction．

Handling

\triangle Caution

1．When lining up actuators

SMC actuators can be used with their motors（provided by the customer）adjacent to each other．However，for actuators with a built－in auto switch magnet，maintain a space of 40 mm or more between the motors and the position where the magnet passes．
Refer to the construction drawings in the catalog for the magnet position．

OCan be used with their motors adjacent to each other

\times
Do not allow the motors to be in close proximity to the position where the magnet passes．

Electric actuator built－in magnet portion

2．Do not dent，scratch，or cause other damage to the body，table and end plate mounting surfaces．
Doing so may cause unevenness in the mounting surface，play in the guide，or an increase in the sliding resistance．

\triangle Caution

3．Do not dent，scratch or cause other damage to the surface over which the rail and guide will move．
Doing so may cause play or an increase in the sliding resistance．
4．Do not apply strong impact or an excessive moment while mounting a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．
5．Keep the flatness of mounting surface within 0.02 mm ．
If a workpiece or base does not sit evenly on the body of the product，play in the guide or an increase in the sliding resistance may occur．Do not deform the mounting surface by mounting with workpieces tucked in．

6．Do not drive the main body with the table fixed．

7．When mounting the product，use screws of adequate length and tighten them to the maximum torque or less．
Tightening the screws with a higher torque than recommended may result in a malfunction，while tightening with a lower torque can result in the displacement of the mounting position or，in extreme conditions，the actuator could become detached from its mounting position．

Body fixed／ Side mounting （Body tapped）	Size	Screw size	Max．tightening torque［ $\mathrm{N} \cdot \mathrm{m}$ ］	L（Max．screw－ in depth $[\mathrm{mm}]$ ）
	8	M 4×0.7	1.5	5
	16	M5 x 0.8	3	6.5
	25	M6 x 1	5.2	8.5

Workpiece fixed／Front mounting				
\rightarrow	Size	Screw size	Max．tightening torque［ $\mathrm{N} \cdot \mathrm{m}$ ］	$\begin{gathered} \mathbf{L} \\ {[\mathrm{mm}]} \end{gathered}$
Wh	8	M4 x 0.7	1.5	8
	16	M5 x 0.8	3	10
	25	M6 x 1	5.2	12

To prevent the workpiece retaining screws from penetrating the end plate， use screws that are 0.5 mm or shorter than the maximum screw－in depth．If long screws are used，they may touch the end plate and cause a malfunction．

Workpiece fixed／Top mounting

Size	Screw size	Max．tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	\mathbf{L} $[\mathrm{mm}]$
$\mathbf{8}$	$\mathrm{M} 3 \times 0.5$	0.63	$4.8($ Max．$)$
$\mathbf{1 6}$	$\mathrm{M} 5 \times 0.8$	3	$6.5($ Max．）
$\mathbf{2 5}$	$\mathrm{M} 6 \times 1$	5.2	8 （Max．）

To prevent the workpiece retaining screws from touching the guide block， use screws that are the maximum screw－in depth or less．If long screws are used，they may touch the guide block and cause a malfunction．

8．When external force is to be applied to the table，it is necessary to reduce the work load for the sizing．
When a cable duct or flexible moving tube is attached to the actuator，the sliding resistance of the table will increase，which may lead to the malfunction of the product．

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For electric actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.

Handling

\triangle Caution

9. Do not grasp or peel off a masking tape on the bottom of the body.
The masking tape may peel off and foreign matter may get inside the actuator.
10. When the table operates, the gap can be done between actuator (marked with the arrow below). Be careful not to put hands or fingers in a gap.

11. Install the body as shown below with the \bigcirc.

Since the product support becomes unstable, it may cause a malfunction, noise or an increase in the deflection.

12. Even with the same product number, the table of some products can be moved by hand and the table of some products cannot be moved by hand. However, there is no abnormality with these products. (Without lock)
This difference is caused because there is a little variation with the positive efficiency (when the table is moved by the motor) and there is a large variation with the reverse efficiency (when the table is moved manually) due to the product characteristics. There is hardly any difference among products when they are operated by the motor.

Maintenance

© Warning

1. Ensure that the power supply is stopped before starting maintenance work or replacement of the product.
2. For lubrication, wear protective glasses.
3. Perform maintenance according to the following requirements.

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months*1	-	\bigcirc
Inspection every 250 km*1	-	\bigcirc
Inspection every 5 million cycles*1	-	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for belt check (R/L type only)

Stop operation immediately and replace the belt when any of the following occur.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt

Belt corner has become rounded and frayed threads stick out
c. Belt partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible
, max
LEKFS

Lefi Lers

Levs

$\mathrm{Lx} \cdot 137$

خ

LEYG
最

Motor
Mounting

$L E \square$ Series
 Movement Direction Relative to the Motor Rotation Direction

Slider Type

Applicable models: LEFS $\square \mathrm{N} \square$, LEKFS $\square \mathrm{N} \square$, LEJS $\square \mathrm{N} \square$, LESYH $\square \mathrm{DN} \square /$ Motor mounting position: In-line

Applicable models: LEFB $\square \mathbf{N} \square /$ Motor mounting position: Top mounting

Motor rotation direction

Applicable models: LEFB \square UN $\square /$ Motor mounting position: Bottom mounting

Slider Type

Applicable models: LET $\square /$ Motor mounting position: Right/Left/Rear right/Rear left side

Rod Type
Applicable models: LEY \square DN \square, LEYG \square DN $\square /$ Motor mounting position: In-line

Applicable models: LEY $\square(/ / L / R) N \square$, LEYG $\square(/ / L / R) N \square /$ Motor mounting position: Top/Right/Left side parallel

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Danger indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.

© Warning:Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
\triangle Caution:
Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Our products cannot be used beyond their specifications. Our products are not developed, designed, and manufactured to be used under the following conditions or environments. Use under such conditions or environments is not covered.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Use for nuclear power, railways, aviation, space equipment, ships, vehicles, military application, equipment affecting human life, body, and property, fuel equipment, entertainment equipment, emergency shut-off circuits, press clutches, brake circuits, safety equipment, etc., and use for applications that do not conform to standard specifications such as catalogs and operation manuals.
10. Use for interlock circuits, except for use with double interlock such as installing a mechanical protection function in case of failure. Please periodically inspect the product to confirm that the product is operating properly.
*1) ISO 4414: Pneumatic fluid power - General rules and safety requirements for systems and their components ISO 4413: Hydraulic fluid power - General rules and safety requirements for systems and their components IEC 60204-1: Safety of machinery - Electrical equipment of machines - Part 1: General requirements ISO 10218-1: Robots and robotic devices - Safety requirements for industrial robots - Part 1:Robots etc.

Abstract

\triangle Caution We develop, design, and manufacture our products to be used for automatic control equipment, and provide them for peaceful use in manufacturing industries. Use in non-manufacturing industries is not covered. Products we manufacture and sell cannot be used for the purpose of transactions or certification specified in the Measurement Act. The new Measurement Act prohibits use of any unit other than SI units in Japan.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements",
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first.*2)
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

Revision History		
Edition B * Compatible motor manufacturers have been added.	Edition D * LEF:An option without grease applied to the seal band part has been added.	Edition E * A large slider type (LET-X11 series)
* LEF: The motor parallel type has been added.	Auto switches and mounting brackets have been added.	has been added.
* LEY63: The motor top mounting and motor	Positioning pin holes (Body bottom 2 locations) have been added.	* A high precision type slide table
parallel types have been added.	* LEJ: Normally closed solid state auto switches have been added.	(LESYH series) has been added.
* The number of pages has been increased from 88 to 108. TW	* LEY/LEYG: Intermediate strokes have been added to the LEY63.	* The number of pages has been
Edition C * A compatible motor manufacturer has been added. UO	Normally closed solid state auto switches have been added.	increased from 128 to 224.

[^0]: ＊1 Dimensions after mounting a ring spacer（Refer to page 24．）
 ＊2 Shaft type：D－cut shaft

[^1]: *1 Shaft type: D-cut shaft

[^2]: *1 Dimensions after mounting a ring spacer

[^3]: *1 Dimensions after mounting a ring spacer

[^4]: *1 For screw sizes, refer to the hub mounting dimensions.

[^5]: *1 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following actuator body "Dimensions" pages.

 * When the LEF $\square 25 \mathrm{NM} 1 \square-\square$ is purchased, it is not possible to change to other mounting types.

[^6]: 1 Dimensions after mounting a ring spacer

[^7]: ＊These graphs show the cycle time for each acceleration／deceleration．
 ＊These graphs show the cycle time for each stroke at the maximum speed．

[^8]: * This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table. (Table clearance is included.)

[^9]: *1 For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor.
 *2 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following "Dimensions" pages.

[^10]: *1 For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor.
 *2 The compatible motors and mounting types are typical examples. Select the mounting type after referring to the "Motor Mounting, Applicable Motor Dimensions" tables on the following "Dimensions" pages.

[^11]: * For some motors, the connector may protrude from the motor body. Be sure to check for interference with the mounting surface before selecting a motor.

[^12]: * The units in the table are as follows: TT $\square \pm 10 \%$ [N•m], PP [mm], and PD [mm]

[^13]: *1 The coupling is the one for the $400 \mathrm{~W} / 750 \mathrm{~W}$ specification.
 *2 The LET-MF80-NGC15 cannot be selected.
 *3 There are 2 types of reducer flange and coupling available according to the shape of the reducer.

[^14]: * Each value is the value when a reducer is built into the product.

[^15]: ＊1 Equivalent lead which includes the screw lead 5 and the pulley ratio $4: 7 * 2$ Value when a reducer（reduction ratio $1 / 3$ ）is built into the product＊3 Value when a reducer（reduction ratio $1 / 5$ ）is built into the product

[^16]: * When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

[^17]: *1 Shaft type: D-cut shaft

[^18]: * The foot bracket (option "L") is only for the in-line type.

[^19]: * The limit of vertical load mass varies depending on "lead" and "speed." Check the "Speed-Vertical Work Load Graph" on page 171.

[^20]: © Caution

 ## Handling Precautions

 ＊When used as a stopper，select a model with a stroke of 30 mm or less．
 ＊LEYG■L（ball bushing bearing）cannot be used as a stopper．
 ＊Workpiece collision in series with guide rod cannot be permitted（Fig．a）．
 ＊The body should not be mounted on the end．It must be mounted on the top or bottom（Fig．b）．

[^21]: * When using the force control or speed control, set the maximum value to be no more than 90% of the rated torque.

[^22]: *1 Motor mounting position: In-line only *2 Motor mounting position: Parallel only

[^23]: * The ED measurement is when the unit is at the retracted stroke end position.

[^24]: * The ED measurement is when the unit is at the retracted stroke end position

[^25]: * The parts marked with a are component parts. The parts marked with a \triangle should be prepared by the customer as necessary.
 * Component parts come with mounting screws.
 * The motor mounting screws should be provided by the customer.

[^26]: *1 Shaft type: D-cut shaft

[^27]: *1 Shaft type: D-cut shaft

[^28]: * When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm .

