A wide range of flow measurement is possible with 1 product. Flow ratio*2 100: 1
*2 Excludes the PF2M725 *3 Made to order (Produced upon receipt of order)

IO-Link Compatible

The flow rate value and the device status can be figured out easily via the process data.
PF2M7-L Series p. 4

Diagnosis	Over current error, Outside of rated flow range, Accumulated flow error, Internal product malfunction
Made to order	Compatible with argon (Ar) and carbon dioxide (CO2) mixed gas
p. 26	

Improved resistance to moisture and foreign matter p. 1.
The bypass construction reduces sensor accuracy deterioration and damage.

* There is no bypass construction for the 1 and 2 L ranges.

New

A 2 to 200 L/min flow range option has been added.

A rear ported type has been added.

A flow adjustment valve (0.05 to $5 \mathrm{~L} / \mathrm{min}$) has been added.

CAT.ES100-127C

Improved resistance to moisture and foreign matter
The bypass construction reduces the moist air or foreign matter in contact with the sensor, reducing sensor accuracy deterioration and damage.

* There is no bypass construction for the 1 and 2 L ranges.

Compact, Lightweight
Weight 27.3% lighter $(55 \mathrm{~g} \Rightarrow 40 \mathrm{~g})$
 orientation of the display can be rotated to make it easier to read.

Mounting variations

Bracket

DIN rail

The digital display allows for the visualization of the flow rate.
2-color display, Improved visibility

Select a model according to the fluid to be used.

Dry air,
Nitrogen
(N 2)

Argon
(Ar)

Recommended pneumatic circuit examples

* Recommended air quality class: JIS B 8392-1 1.1.2 to 1.6.2 (ISO 8753-1 1.1.2 to 1.6.2)

Analog free span function

The analog span point (5 V (10 V), 20 mA) can be changed within 10 to 105% of the rated flow rate with respect to the displayed value.

Selectable analog output function
1 to 5 V or 0 to 10 V can be selected.

Delay time setting

Can be set between 0 and 60 s
The delay time can be set according to the application.

Grease-free

Functions maxza

Output operation	Key-lock function
Forced output function	Reset to the default settings
Analog free span function	Delay time setting
Display color	Error display function
Display OFF mode	Setting of a security code
Selectable analog output function	Display mode
Reference condition	Zero cut-off function
Peak/Bottom value display	Accumulated value hold
Reversible display mode	Simple setting mode
Digital filter setting	Zero-clear function

Low current consumption: $35 \mathrm{~mA}^{* 1}$ or less

*1 PFM7: 55 mA or less

Power supply voltage:

12 to 24 V

* For the IO-Link device: 18 to 30 V

Select a digital flow switch to increase energy savings!

Flow control is necessary for promoting energy saving in any application.
Saving energy starts from numerical control of the flow consumption of equipment and lines and clarification of the purpose and effect.

Applications

Models compatible with argon (Ar) and carbon dioxide $\left(\mathrm{CO}_{2}\right)$ mixed gas are available.

* Please contact SMC for details.

For air blow

- For flow control of N_{2} gas to prevent lead frame oxidation
- N_{2} blow prevents the distortion of camera images

For N_{2} gas cylinder peripheral equipment

For leak testers

IO－Link Compatible PF2M7 $\square \square-\square-\mathrm{L} \square-\square \square$

Supports the IO－Link communication protocol

Configuration File（IODD File＊1）
Manufacturer ．Product part no．
Set value
＊1 IODD File：
ODD is an abbreviation of IO Device
Description．This file is necessary for setting
the device and connecting it to a master．Save the IODD file on the PC to be used to set the device prior to use．

Device settings can be set by the master．
－Threshold value
－Operation mode，etc．

IO－Link is an open communication interface technology between the sensor actuator and the l／O terminal that is an international standard：IEC61131－9．

IO－Link Compatible Device： Digital Flow Switch

Implement diagnostic bits in the process data．
The diagnostic bit in the cyclic process data makes it easy to find problems with the equipment．
It is possible to find problems with the equipment in real time using the cyclic（periodic）data and to monitor such problems in detail with the noncyclic（aperiodic）data．

Process Data

Process Data

Bit offset	Item	Note	
0	OUT1 output	$0:$ OFF $1:$ ON	
1	OUT2 output	$0:$ OFF 1：ON	
8	Diagnosis（flow rate）	$0:$ OFF $1:$ ON	
14	Fixed output	$0:$ OFF $1:$ ON	
15	Diagnosis（error）	$0:$ OFF $1:$ ON	
16 to 31	Measured flow rate value	Signed 16 bit	

Bit offset	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Item	Measured flow rate value（PD）															
Bit offset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Item	Error	Fixed	Reservation					Fow rate	Reservation						OUT2	OUT1
	Diagnosis	Output						Diagnosis							Switch output	

For the predictive maintenance of suction verification

The flow rate＂switch ON／OFF signals＂and ＂analog values＂are monitored to determine the suction status．The process and suction status can then be compared．

Operation and Display

Communication with master	IO－Link status indicator light	Status			Screen display＊2	Description
Yes	$V^{* 1}$			Operate	105	Normal communication status（readout of measured value）
				Start up	50，	At the start of communication
				Preoperate	H15．	
		IO－Link mode		Version does not match	$E 515$	The IO－Link version does not match that of the master． The master uses version 1．0．
No				Communication disconnection	$\frac{\text { GIL }}{5 L E}$	Normal communication was not received for 1 s or longer．
	OFF	SIO mode			5111	General switch output

[^0]Flow Switch Flow Rate Variations

Flow Switch Variations／Basic Performance Table

$\begin{aligned} & \mathscr{H} \\ & \text { B } \\ & \text { © } \\ & \hline \end{aligned}$	PFMV PFMV3		PFMB PFG300 \square Tnnf		PF2A	PF3A7 $\square \mathrm{H}(-L)$ PFG300 \square R2APA클 5
	IP40	IP40	IP40	IP65 ［Monitor unit IP40］	IP65	IP65 ［Monitor unit IP40］
	Dry air， N_{2}	Dry air， $\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{CO}_{2}$	Dry air， N_{2}	Dry air， N_{2}	Air， N_{2}	Air， N_{2}
잏 心 ©	Digital	Digital	Digital	Digital	Digital	Digital
	0 to 0.5 -0.5 to 0.5 0 to 1 -1 to 1 0 to 3 -3 to 3	0.01 to 1 0.02 to 2 0.05 to 5 0.1 to 10 0.3 to 25 0.5 to 50 1 to 100 2 to 200	 2 to 200 10 to 1000 20 to 2000 	5 to 500 10 to 1000 20 to 2000	$\begin{gathered} 1 \text { to } 10 \\ 5 \text { to } 50 \\ 10 \text { to } 100 \\ 20 \text { to } 200 \\ 50 \text { to } 500 \end{gathered}$	30 to 3000 10 to 1000 60 to 6000 20 to 2000 120 to 12000
	$\begin{gathered} 12 \text { to } 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	 PF2M7 12 to 24 VDC $\pm 10 \%$ PF2M7－L 18 to 30 VDC $\pm 10 \%$	$\begin{gathered} 12 \text { to } 24 \text { VDC } \\ \pm 10 \% \end{gathered}$		$\begin{gathered} 12 \text { to } 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	24 VDC PF3A7ロH $\pm 10 \%$ PF3A7ロH－L 18 to 30 VDC PF3A701H／ $\pm 10 \%$ $702 H-L$ 21.6 to 30 VDC PF3A8 21.6 to 30 VDC
	$\left.\left.\begin{array}{cc} \pm 2 \% \text { F.S. } \\ \left(15 \text { to } 35^{\circ} \mathrm{C}\right) & {\left[\begin{array}{c} \text { Monitor unit } \\ \pm 5 \% ~ F . S . ~ \end{array}\right.} \\ \left(0 \text { to } 50^{\circ} \mathrm{C}\right) \end{array}\right] \begin{array}{c} \left(0 \text { to } 50^{\circ} \mathrm{C}\right) \end{array}\right]$	$\pm 3 \%$ F．S．± 1 digit （ 15 to $35^{\circ} \mathrm{C}$ ） $\pm 5 \%$ F．S．± 1 digit （ 0 to $50^{\circ} \mathrm{C}$ ）	$\begin{gathered} \pm 2 \% \text { F.S. } \\ \left(15 \text { to } 35^{\circ} \mathrm{C}\right) \\ \pm 5 \% \text { F.S. } \\ \left(0 \text { to } 50^{\circ} \mathrm{C}\right) \end{gathered}\left[\begin{array}{c} \text { Monitor unit } \\ \pm 0.5 \% \text { F.S. } \\ \left(0 \text { to } 50^{\circ} \mathrm{C}\right) \end{array}\right]$	$\begin{gathered} \pm 2 \% \text { F.S. } \\ \left(15 \text { to } 35^{\circ} \mathrm{C}\right) \\ \pm 5 \% \text { F.S. } \\ \left(0 \text { to } 50^{\circ} \mathrm{C}\right) \end{gathered}\left[\begin{array}{c} \text { Monitor unit } \\ \pm 0.5 \% \text { F.S. } \\ \left(0 \text { to } 50^{\circ} \mathrm{C}\right) \end{array}\right]$	$\pm 3 \%$ F．S．（ 15 to $35^{\circ} \mathrm{C}$ ） $\pm 5 \%$ F．S．（ 0 to $50^{\circ} \mathrm{C}$ ）	$\begin{gathered} \pm 5 \% \text { F.S. } \\ \left(0 \text { to } 50^{\circ} \mathrm{C}\right) \end{gathered}\left[\begin{array}{c} \text { Monitor unit } \\ \pm 0.5 \% ~ F . S . \\ \left(0 \text { to } 50^{\circ} \mathrm{C}\right) \end{array}\right]$
	 $\pm 2 \%$ F．S． （Fluid：Dry air） $\left.\begin{array}{c}\text { Monitor unit } \\ \text { Analog output：} \\ \pm 0.1 \% ~ F . S \\ \text { Analog output：} \\ \pm 5 \% \\ \pm 0.3 \% \\ \hline 5 . S .\end{array}\right]$	$\pm 1 \%$ F．S．± 1 digit （Fluid：Dry air）	$\pm 1 \%$ F．S．$\left[\begin{array}{c}\text { Monitor unit } \\ \pm 0.1 \% \text { F．S．}\end{array}\right]$	$\pm 1 \%$ F．S．$\left[\begin{array}{c}\text { Monitor unit } \\ \text {（Fluid：Dry air）} \\ \pm 0.1 \% \text { F．S．}\end{array}\right]$	$\pm 1 \%$ F．S． （PF2A7 $\square 0$ ） $\pm 2 \%$ F．S． （PF2A7 $\square 1$ ）	$\pm 1 \%$ F．S．$\left[\begin{array}{c}\text { Monitor unit } \\ \pm 0.1 \% \text { F．S．}\end{array}\right]$
	Hysteresis mode：Variable Window comparator mode： Variable	Hysteresis mode：Variable Window comparator mode： Fixed（3 digits）	Hysteresis mode：Variable Window comparator mode： Variable			
$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\rightharpoonup}{3} \\ & 0 \end{aligned}$	NPN／PNP open collector Analog voltage output Analog current output	NPN／PNP open collector Accumulated pulse output Analog voltage output Analog current output IO－Link	NPN／PNP open collector Accumulated pulse output Analog voltage output Analog current output	NPN／PNP open collector Accumulated pulse output Analog voltage output Analog current output IO－Link	NPN／PNP open collector Accumulated pulse output	NPN／PNP open collector Accumulated pulse output Analog voltage output Analog current output IO－Link
$\begin{aligned} & \frac{त}{\omega} \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	［Monitor unit 2－color LCD display］	2－color LCD display	2－color 2 －color LED display LCD display ［Monitor unit 3－color LCD display］	3－color LCD display	LED display	3－color LCD display

[^1]
CONTENTS

2-Color Display Digital Flow Switch PF2M7(-L) Series

How to Order p. 9
Specifications p. 11
Set Point Range and Rated Flow Range p. 13
Flow/Analog Output p. 13
Pressure Loss (Reference Data): Without Flow Adjustment Valve p. 14
Flow Rate Characteristics (Reference Data) p. 14
Flow Rate Characteristics at Negative Pressure (Reference Data) p. 15
Internal Circuits and Wiring Examples p. 16
Construction: Parts in Contact with Fluid p. 18
Dimensions p. 19
Made to Order p. 26
Function Details p. 27
Safety Instructions Back cover

2-Color Display Digital Flow Switch PF2M7 Series

*3 1 to 5 V or 0 to 10 V can be selected by pressing the button. The default setting is 1 to 5 V .

(7) Option 2

Nil	R	S
Without bracket		Bracket (For the type with a flow adjustment valve) * Interchangeable with the existing PFM series
	T	V
Panel mount adapter (For the type without a flow adjustment valve)		Panel mount adapter (For the type with a flow adjustment valve)
		ZS-33-2JS Panel mount adapter S Panel mount Mounting bracket

[^2]
(5) Option 1

Nil	W
Lead wire with connector (2 m)	Lead wire with connector (2 m)
Connector cover (Silicone rubber)	

(6) Unit specification

M	SI unit only*4
Nil	Unit selection function*5

*4 Fixed unit: Instantaneous flow: L/min Accumulated flow: L
*5 This product is for overseas use only. (The SI unit type is provided for use in Japan in accordance with the New Measurement Act.) The unit can be changed.

*2 Made to order (Produced upon receipt of order)
8 Calibration
certificate

Nil	None
A	Yes

*6 Made to order The certificate is in both English and Japanese. Accumulated flow: $\mathrm{L} \Leftrightarrow \mathrm{ft}^{3}$

DIN Rail Mounting Bracket (To Be Ordered Separately)

2-Color Display Digital Flow Switch PF2M7-L Series

PF2MMT10		- 66	
Integrated display			
Rated flow range			
01	0.01 to $1 \mathrm{~L} / \mathrm{min}$	25	0.2 to $25 \mathrm{~L} / \mathrm{min}$
02	0.02 to $2 \mathrm{~L} / \mathrm{min}$	50	0.5 to $50 \mathrm{~L} / \mathrm{min}$
05	0.05 to $5 \mathrm{~L} / \mathrm{min}$	11	1 to $100 \mathrm{~L} / \mathrm{min}$
10	0.1 to $10 \mathrm{~L} / \mathrm{min}$	21	2 to $200 \mathrm{~L} / \mathrm{min}$

\section*{2 Flow adjustment valve/Piping entry direction
 | Symbol | $\left\|\begin{array}{c}\text { Flow adiusiment } \\ \text { valve }\end{array}\right\|$ | Piping entry direction | Rated flow range | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 1 | 2 | 5 | 10 | 25 | 50 | 100 | 200 |
| Nil | None | Straight | \bigcirc | \bigcirc | \bigcirc | \bigcirc | - | - | - | |
| S | Yes | Straight | - | - | \bigcirc | \bigcirc | | - | - | |
| L | None | Rear ported | - | \bigcirc | - | - | | - | \bigcirc | |
| W | Yes | Rear port | | | | | | | | |

* 1 and 2 L min type products are not available with a flow adjustment valve.

(3) Port size

*1 Made to order (Produced upon receipt of order)

Output specification

Symbol	OUT1	OUT2
L	IO-Link/ NPN/PNP	-
L2	IO-Link/ NPN/PNP	NPN/PNP/External input
L3	IO-Link/ NPN/PNP	Analog 1 to $5 \mathrm{~V} \Leftrightarrow$ Analog 0 to $10 \mathrm{~V}^{* 3}$
L4	IO-Link/ NPN/PNP	Analog 4 to 20 mA

*3 1 to 5 V or 0 to 10 V can be selected by pressing the button. The default setting is 1 to 5 V .

6) Unit specification

\mathbf{M}	SI unit only*4
$\mathbf{N i l}$	Unit selection function*5

*4 Fixed unit: Instantaneous flow: L/min Accumulated flow: L
*5 This product is for overseas use only. (The SI unit type is provided for use in Japan in accordance with the New Measurement Act.) The unit can be changed. Instantaneous flow: $\mathrm{L} / \mathrm{min} \Leftrightarrow \mathrm{cfm}$ Accumulated flow: $\mathrm{L} \Leftrightarrow \mathrm{ft}^{3}$

Nil	R	S
Without bracket	Bracket (For the type without a flow adjustment valve) ZS-33-M * Interchangeable with the existing PFM series	Bracket (For the type with a flow adjustment valve) * Interchangeable with the existing PFM series
	T	V
Panel mount adapter (For the type without a flow adjustment valve)		Panel mount adapter (For the type with a flow adjustment valve)
ZS-33	3-2J $\begin{gathered}\text { Panel mount } \\ \text { adapter }\end{gathered}$	ZS-33-2JS Panel mount adapter S
	nel mount dapter B	Panel mount adapter B

[^3]
(5) Option 1

*6 Made to order The certificate is in both English and Japanese.
DIN Rail Mounting Bracket (To Be Ordered Separately)
Refer to page 9.

Specifications
For flow switch precautions and specific product precautions, refer to the Operation Manual on the SMC website.

*1 Refer to the "Recommended pneumatic circuit examples" on page 2.
*2 When using the accumulated value hold function, use the operating conditions to calculate the product life, and do not exceed it. The maximum access limit of the memory device is 3.7 million times. If the product is operated 24 hours per day, the product life will be as follows:

- 5 min interval: life is calculated as $5 \mathrm{~min} \times 3.7$ million $=18.5$ million $\mathrm{min}=35$ years - 2 min interval: life is calculated as $2 \mathrm{~min} \times 3.7$ million $=7.4$ million $\mathrm{min}=14$ years
*3 Negative pressure indicates the pressure value on the IN side (inlet side).
*4 When multiple products are installed closely, the upper limit of the power supply voltage is 24 VDC.
*5 The accuracy value is based on dry air as a fluid. For other fluids, it is a reference value.
*6 Value when the digital filter is set at 0.05 s
*7 The time from when the instantaneous flow reaches the set value to when the switch output operates can be set.
*8 If the flow fluctuates around the set value, the hysteresis must be set to a value more than the fluctuating width. Otherwise, chattering will occur.
*9 When using a product with an analog output
*10 When selecting 0 to 10 V , refer to the analog output graph for the allowable load current.
*11 Standard condition (STD): $20\left[{ }^{\circ} \mathrm{C}\right], 101.3$ [kPa] (Absolute pressure), 65 [\% RH] (The flow rate given in the specifications is the value under standard conditions.)
Normal condition (NOR): $0\left[{ }^{\circ} \mathrm{C}\right], 101.3[\mathrm{kPa}$ (Absolute pressure), 0 [\% RH]
*12 Setting is only possible for models with the unit selection function.
*13 Power value is displayed for accumulated flow. The first 4 digits of the measurement value are always displayed.
*14 The time for the digital filter can be set to the sensor input. The response time indicates when the set value is 90% in relation to the step input.
*15 Check the precautions for One-touch fitting before use. When the piping condition is changed, for example due to piping on the back of the product, use a general purpose fitting (KQ $\square \mathrm{L}$ series). Some piping conditions may have negative effects on the flow accuracy.
* Products with tiny scratches, marks, or display color or brightness variations which do not affect the performance of the product are verified as conforming products.

Communication Specifications (IO-Link mode)

PF2M7(-L) Series

Set Point Range and Rated Flow Range

Set the flow rate within the rated flow range.
The set point range is the range of flow rate that can be set in the switch.
The rated flow range is the range that satisfies the switch specifications (accuracy, linearity, etc.).
It is possible to set a value outside of the rated flow range if it is within the set point range, however, the satisfaction of specifications can not be guaranteed. The flow range if using CO_{2} is given in brackets.

Flow/Analog Output

	A	B		C
		$\begin{aligned} & \text { PF2M701/02/05 } \\ & \text { /10/50/11/21(-L) } \end{aligned}$	PF2M725 (-L)	
Voltage output (1 to 5 V)	1 V	1.04 V	1.05 V	5 V
Current output (4 to 20 mA)	4 mA	4.16 mA	4.19 mA	20 mA
	E	F		G
		$\begin{aligned} & \text { PF2M701/02/05 } \\ & \text { /10/50/11/21(-L) } \end{aligned}$	PF2M725 (-L)	
Voltage output (0 to 10 V)*1	0 V	0.10 V	0.12 V	10 V

*1 The analog output current from the connected equipment should be $20 \mu \mathrm{~A}$ or less when selecting 0 to 10 V .
When $20 \mu \mathrm{~A}$ or more current flows, it is possible that the accuracy is not satisfied at less than or equal to 0.5 V .

* D or H fluctuates depending on the setting of the zero cut-off function.
When the zero cut-off function is set to " 0 ," the flow rate display value starts from $0 \mathrm{~L} / \mathrm{min}$., but in conditions other than horizontal installation and supply pressure of 0.35 MPa , the output may not be $0 \mathrm{~L} / \mathrm{min}$.

Pressure Loss (Reference Data): Without Flow Adjustment Valve

PF2M705(-L)

$5 \mathrm{~L} / \mathrm{min}$

PF2M725(-L)
$25 \mathrm{~L} / \mathrm{min}$

PF2M711(-L)
$100 \mathrm{~L} / \mathrm{min}$

PF2M702 (-L) $2 \mathrm{~L} /$ min

PF2M710(-L)
$10 \mathrm{~L} / \mathrm{min}$

PF2M750 (-L) $50 \mathrm{~L} / \mathrm{min}$

PF2M721(-L) $200 \mathrm{~L} / \mathrm{min}$

Flow Rate Characteristics (Reference Data)

PF2M7(-L) Series

Flow Rate Characteristics at Negative Pressure (Reference Data)

When the PF2M series is used with negative pressure (-70 to 0 kPa), the measurable range (warranty range of the specifications including pressure characteristics) varies depending on the flow range.
Select the flow range referring to the graph below.

Internal Circuits and Wiring Examples

Max．applied voltage： 28 V ，Max．load current： 80 mA ， Internal voltage drop： 1 V or less

NPN＋Analog output type
 PF2M7 $\square \square-\square$－C／D $\square-\square \square \square$

Max．applied voltage： 28 V ，Max．load current： 80 mA ， Internal voltage drop： 1 V or less
C：Analog output： 1 to 5 V or 0 to 10 V can be selected．
Output impedance： $1 \mathrm{k} \Omega$
D：Analog output： 4 to 20 mA
Load impedance： 50 to 600Ω

PNP＋PNP output type PF2M7 $\square \square-\square-$ B $\square-\square \square \square$

Max．load current： 80 mA ，Internal voltage drop： 1.5 V or less

PNP＋Analog output type
 PF2M7 $\square \square-\square-E / F \square-\square \square \square$

Max．load current： 80 mA ，Internal voltage drop： 1.5 V or less
E：Analog output： 1 to 5 V or 0 to 10 V can be selected．
Output impedance： $1 \mathrm{k} \Omega$
F：Analog output： 4 to 20 mA
Load impedance： 50 to 600Ω

Accumulated pulse output wiring examples

NPN＋NPN output type
PF2M7 $\square \square-\square-$ A $\square-\square \square \square$
NPN＋Analog output type
PF2M7 $\square \square-\square$－C $\square-\square \square \square$
PF2M7 $\square \square-\square-D \square-\square \square$

PNP＋PNP output type PF2M7 $\square \square-\square-$－$\square-\square \square \square$

PNP＋Analog output type PF2M7ロロ－ロ－Eロ－ロロロ PF2M7 $\square \square-\square-\mathrm{F} \square-\square \square \square$

PF2M7(-L) Series

Internal Circuits and Wiring Examples

PF2M7 $\square \square-\square$-L $\square-\square \square \square$
 NPN output type

Max. applied voltage: 30 V , Max. load current: 80 mA , Internal voltage drop: 1.5 V or less

PF2M7 $\square \square-\square$-L2 $\square-\square \square \square$

NPN 2 output type

Max. applied voltage: 30 V , Max. load current: 80 mA , Internal voltage drop: 1.5 V or less

NPN + External input type

Max. applied voltage: 30 V , Max. load current: 80 mA , Internal voltage drop: 1.5 V or less

PF2M7 $\square \square-\square-L 3 / 4 \square-\square \square \square$

L3: NPN + Analog voltage output type
 L4: NPN + Analog current output type

Max. applied voltage: 30 V , Max. load current: 80 mA , Internal voltage drop: 1.5 V or less
L3: Analog output: 1 to 5 V or 0 to 10 V can be selected. Output impedance: $1 \mathrm{k} \Omega$
L4: Analog output: 4 to 20 mA Load impedance: 50 to 600Ω

PNP output type

Max. load current: 80 mA , Internal voltage drop: 1.5 V or less

PNP 2 output type

Max. load current: 80 mA , Internal voltage drop: 1.5 V or less

PNP + External input type

Max. load current: 80 mA , Internal voltage drop: 1.5 V or less

L3: PNP + Analog voltage output type
L4: PNP + Analog current output type

Max. load current: 80 mA , Internal voltage drop: 1.5 V or less
L3: Analog output: 1 to 5 V or 0 to 10 V can be selected. Output impedance: $1 \mathrm{k} \Omega$
L4: Analog output: 4 to 20 mA
Load impedance: 50 to 600Ω

When used as an IO-Link device

Construction: Parts in Contact with Fluid
PF2M701/702/705/710/725/750/711(-L)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	PPS	
$\mathbf{2}$	Fitting for piping	Brass	Electroless nickel plating
$\mathbf{3}$	O-ring	FKM	
$\mathbf{4}$	Flow rectifier	Stainless steel 304	
$\mathbf{5}$	Seal	FKM	
$\mathbf{6}$	Flow rectifier	Stainless steel 304	
$\mathbf{7}$	Sensor chip	Silicon	
$\mathbf{8}$	Body B	PPS	
9	Printed circuit board	GE4F	
$\mathbf{1 0}$	O-ring	FKM	Fluoro coating
$\mathbf{1 1}$	Flow adjustment valve body	PBT	
$\mathbf{1 2}$	Body	Brass	Electroless nickel plating
$\mathbf{1 3}$	Needle	Brass	Electroless nickel plating
14	O-ring	FKM	Fluoro coating
$\mathbf{1 5}$	O-ring	FKM	Fluoro coating

PF2M7(-L) Series

Dimensions

PF2M7 $\square-C 4 / C 6 / C 8 / N 7(-L)$

Model	A	P
[mm]		
PF2M701/702/705/710 -C4(-L)	59.1	$ø 2.8$ depth 8.4
PF2M701/702/705/710/ 725/750-C6(-L)	59.9	$ø 2.8$ depth 8.4
PF2M725/750-N7(-L)	67.5	$\varnothing 2.8$ depth 8.4
PF2M711/721-C8(-L)	68	$ø 2.8$ depth 6.2
PF2M711/721-N7(-L)	64.6	$\varnothing 2.8$ depth 6.2

PF2M7 \square L-C4/C6/C8/N7(-L)

x One-touch fitting
Applicable tubing O.D.: ø4, ø6, ø8, ø1/4"

[mm]

	Model		A
C	P		
PF2M701/702/705/710L -C4(-L)	84.4	7.6	$ø 2.8$ depth 8.4
PF2M701/702/705/710/ 725/750L-C6(-L)	84.4	8	$ø 2.8$ depth 8.4
PF2M725/750L-N7(-L)	84.4	11.8	$\varnothing 2.8$ depth 8.4
PF2M711/721L-C8(-L)	88	12	$ø 2.8$ depth 6.2
PF2M711/721L-N7(-L)	88	10.3	$ø 2.8$ depth 6.2

Dimensions

PF2M7 $\square-\square \mathbf{1 / 2 (- L) ~}$

	[mm]		
Model	A	B	P
PF2M701/702/705/710/ 725/750-01(-L)	66	14	$ø 2.8$ depth 8.4
PF2M701/702/705/710/ 725/750-N1(-L)	68	14	$\varnothing 2.8$ depth 8.4
PF2M701/702/705/710/ 725/750-F1(-L)	70	14	$\varnothing 2.8$ depth 8.4
PF2M711/721-02(-L)	70	17	$\varnothing 2.8$ depth 6.2
PF2M711/721-N2(-L)	70	17	$\varnothing 2.8$ depth 6.2
PF2M711/721-F2(-L)	78	21	$\varnothing 2.8$ depth 6.2

PF2M $\square \mathrm{L}-\square \mathbf{1 / 2 (- L)}$

[mm]

Model	A	C	B	P
PF2M701/702/705/710/ 725/750L-01(-L)	84.4	11	14	$\varnothing 2.8$ depth 8.4
PF2M701/702/705/710/ 725/750L-N1(-L)	84.4	12	14	$\varnothing 2.8$ depth 8.4
PF2M701/702/705/710/ 725/750L-F1(-L)	84.4	13	14	$ø 2.8$ depth 8.4
PF2M711/721L-02(-L)	88	13	17	$\varnothing 2.8$ depth 6.2
PF2M711/721L-N2(-L)	88	13	17	$\varnothing 2.8$ depth 6.2
PF2M711/721L-F2(-L)	88	17	21	$\varnothing 2.8$ depth 6.2

PF2M7(-L) Series

Dimensions

PF2M7 \square S-C4/C6/C8/N7(-L)

Applicable tubing O.D.: ø4, ø6, ø8, ø1/4"

		[mm]	
Model	A	P	\mathbf{Q}
PF2M705/710S-C4(-L)	87.1	$\varnothing 2.8$ depth 8.4	$\varnothing 2.5$ depth 6
PF2M705/710/725/750S -C6(-L)	87.9	$\varnothing 2.8$ depth 8.4	$\varnothing 2.5$ depth 6
PF2M725/750S-N7(-L)	95.5	$\varnothing 2.8$ depth 8.4	$\varnothing 2.5$ depth 6
PF2M711/721S-C8(-L)	96	$\varnothing 2.8$ depth 6.2	$\varnothing 2.5$ depth 5
PF2M711/721S-N7(-L)	92.6	$\varnothing 2.8$ depth 6.2	$\varnothing 2.5$ depth 5

PF2M7 \square W-C4/C6/C8/N7(-L)

Dimensions

PF2M7 \square S- \square 1/2(-L)

Model	A	B	P	Q
PF2M705/710/725/750S -01(-L)	94	14	ø2.8 depth 8.4	ø2.5 depth 6
PF2M705/710/725/750S -N1(-L)	96	14	ø2.8 depth 8.4	ø2.5 depth 6
PF2M705/710/725/750S -F1(-L)	98	14	ø2.8 depth 8.4	ø2.5 depth 6
PF2M711/721S-02(-L)	98	17	ø2.8 depth 6.2	ø2.5 depth 5
PF2M711/721S-N2(-L)	98	17	ø2.8 depth 6.2	$\varnothing 2.5$ depth 5
PF2M711/721S-F2(-L)	106	21	ø2.8 depth 6.2	ø2.5 depth 5

PF2M7 \square W- $\square 1 / 2(-L)$

[mm]					
Model	A	C	B	D	P
PF2M705/710/725/750W -01(-L)	86.2	11	14	18.2	$\varnothing 2.8$ depth 8.4
PF2M705/710/725/750W -N1(-L)	86.2	12	14	18.2	ø2.8 depth 8.4
PF2M705/710/725/750W -F1(-L)	86.2	13	14	18.2	$\varnothing 2.8$ depth 8.4
PF2M711/721W-02(-L)	88	13	17	20	$\varnothing 2.8$ depth 6.2
PF2M711/721W-N2(-L)	88	13	17	20	$\varnothing 2.8$ depth 6.2
PF2M711/721W-F2(-L)	88	17	21	20	$\varnothing 2.8$ depth 6.2

mm]

PF2M7(-L) Series

Dimensions

PF2M701/702/705/710/725/750/711/721(-L)
Panel mounting/Without flow adjustment valve/Straight With bracket/Without flow adjustment valve

Panel mount adapter/Without flow adjustment valve

Panel Fitting Dimensions

Panel thickness 1 to 3.2 mm

*1 This is the minimum value when the rear ported type is selected for the piping entry direction. For the straight type, please design the layout with consideration to the piping material and tubing length. If a bend (R) is used, limit it to R3 or less.

Dimensions

PF2M705/710/725/750/711/721(-L)
Panel mounting/With flow adjustment valve/Straight

With bracket/With flow adjustment valve

Panel mount adapter/With flow adjustment valve

Panel Fitting Dimensions

Panel thickness 1 to 3.2 mm

*1 This is the minimum value when the rear ported type is selected for the piping entry direction. For the straight type, please design the layout with consideration to the piping material and tubing length. If a bend (R) is used, limit it to R3 or less.

PF2M7(-L) Series

Dimensions

PF2M701/702/705/710/725/750/711/721(-L)

DIN rail mounting bracket

ZS-33-R \square

DIN rail

AXT100-DR- \square

* For \square, enter a number from the No. line in the table below.

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5

Lead wire with connector

ZS-33-D

Cable Specifications

Conductor	Nominal cross section	AWG 26
	Outside diameter	Approx. 0.50 mm
Insulator	Outside diameter	Approx. 1.00 mm
	Color	Brown, White, Black, Blue
Sheath	Material	Oil-resistant PVC
Finished outside diameter	$\varnothing 3.5$	

* For wiring, refer to the Operation Manual from the SMC website Documents/Download --> Instruction Manuals.

PF2M7-L Series © IO-Link Compatible Products
 Made to Order

Please contact SMC for detailed specifications, delivery times, and prices.

Compatible with Argon (Ar) and Carbon Dioxide (CO_{2}) Mixed Gas

The argon-carbon dioxide gas ratio ($\mathrm{Ar}: \mathrm{CO}_{2}$) can be selected using the push-buttons from among the following: 92:8,90:10, $80: 20,70: 30$, $60: 40,40: 60$, and $30: 70$. The dimensions are the same as those of the standard model.

For "How to Order," refer to page 10.

Model	Gas ratio		Rated flow range	Display/Set point range	Max. analog output	
	Ar	CO_{2}			Voltage (Vmax)	Current (Imax)
PF2M701	92\%	8\%	0.01 to $1 \mathrm{~L} / \mathrm{min}$	-0.05 to $1.05 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	90\%	10\%				
	80\%	20\%				
	70\%	30\%				
	60\%	40\%				
	40\%	60\%	0.01 to $0.6 \mathrm{~L} / \mathrm{min}$	-0.03 to $0.63 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	30\%	70\%				
PF2M702	92\%	8\%	0.02 to $2 \mathrm{~L} / \mathrm{min}$	-0.1 to $2.1 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	90\%	10\%				
	80\%	20\%				
	70\%	30\%				
	60\%	40\%				
	40\%	60\%	0.02 to $1.2 \mathrm{~L} / \mathrm{min}$	-0.06 to $1.26 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	30\%	70\%				
PF2M705	92\%	8\%	0.05 to $5 \mathrm{~L} / \mathrm{min}$	-0.25 to $5.25 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	90\%	10\%				
	80\%	20\%				
	70\%	30\%				
	60\%	40\%				
	40\%	60\%	0.05 to $3 \mathrm{~L} / \mathrm{min}$	-0.15 to $3.15 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	30\%	70\%				
PF2M710	92\%	8\%	0.1 to $10 \mathrm{~L} / \mathrm{min}$	-0.5 to $10.5 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	90\%	10\%				
	80\%	20\%				
	70\%	30\%				
	60\%	40\%				
	40\%	60\%	0.1 to $6 \mathrm{~L} / \mathrm{min}$	-0.3 to $6.3 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	30\%	70\%				
PF2M725	92\%	8\%	0.3 to $25 \mathrm{~L} / \mathrm{min}$	-1.3 to 26.3 L/min	5 V	20 mA
	90\%	10\%				
	80\%	20\%				
	70\%	30\%				
	60\%	40\%				
	40\%	60\%	0.3 to $15 \mathrm{~L} / \mathrm{min}$	-0.8 to $15.8 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	30\%	70\%				
PF2M750	92\%	8\%	0.5 to $50 \mathrm{~L} / \mathrm{min}$	-2.5 to $52.5 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	90\%	10\%				
	80\%	20\%				
	70\%	30\%				
	60\%	40\%				
	40\%	60\%	0.5 to $30 \mathrm{~L} / \mathrm{min}$	-1.5 to $31.5 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	30\%	70\%				
PF2M711	92\%	8\%	1 to $100 \mathrm{~L} / \mathrm{min}$	-5 to $105 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	90\%	10\%				
	80\%	20\%				
	70\%	30\%				
	60\%	40\%				
	40\%	60\%	1 to $60 \mathrm{~L} / \mathrm{min}$	-3 to $63 \mathrm{~L} / \mathrm{min}$	5 V	20 mA
	30\%	70\%				

[^4]For the setting of functions and operation methods, refer to the "Operation Manual" on the SMC website Documents/Download --> Instruction Manuals.

© Output operation

The output operation can be selected from the following:
Output corresponding to instantaneous flow (Hysteresis mode,
Window comparator mode)

- Hysteresis mode is the mode where the switch output will turn ON when the flow is greater than the set value, and will turn OFF when the flow falls below the set value by the amount of hysteresis or more.
Window comparator mode is the mode where an operating mode in which the switch output is turned on and off depending on whether the flow is inside or outside the range of two set values.
Output corresponding to accumulated flow (Accumulated output mode, Accumulated pulse output mode)
- In accumulated output mode, the switch output will start at the set accumulated flow rate value.
Accumulated pulse output is a pulse signal which is output every time a predefined accumulated flow has passed.
Others (Error output, Switch output OFF)
- The error output function outputs the switch output when an error is displayed.
- The switch output off function turns off the switch output.
* Default setting: Hysteresis mode, Normal output

Simple setting mode

Only the set values for instantaneous flow and accumulated flow can be changed. The output mode, output type, display color, and accumulated pulse output cannot be changed.

Display color

The display color can be selected for each output status. The selection of the display color provides visual identification of abnormal values.

Green for ON, Red for OFF Red for ON, Green for OFF Red all the time Green all the time

Reference condition

The display unit can be selected from standard condition or normal condition.
Standard condition: Flow rate converted to a volume at $20^{\circ} \mathrm{C}, 101.3 \mathrm{kPa}$ (absolute pressure), and $65 \% \mathrm{RH}$ Normal condition: Flow rate converted to a volume at $0^{\circ} \mathrm{C}, 101.3 \mathrm{kPa}$ (absolute pressure), and $0 \% \mathrm{RH}$

Delay time setting

The time from when the instantaneous flow reaches the set value to when the switch output operates can be set. Setting the delay time can prevent the switch output from chattering.
The total switching time is the switch operation time and the set delay time. (Default setting: 0 s)

0 to 0.10 s (Increments of 0.01 s$)$
0.1 to 1.0 s (Increments of 0.1 s)
1 to 10 s (Increments of 1 s)
20 s
30 s
40 s
50 s
60 s

Digital filter setting

The time for the digital filter can be set to the sensor input. Setting the digital filter can reduce chattering of the switch output and flickering of the analog output and the display.
The response time indicates when the set value is 90% in relation to the step input.
 (Default setting: 1 s)

Selectable analog output function

1 to 5 V or 0 to 10 V can be selected for the analog voltage output type. (Default setting: 1 to 5 V)

Forced output function

The output is forced ON/OFF when starting the system or during maintenance. This enables the confirmation of wiring and prevents system errors due to unexpected output.
For the analog output type: When ON, the output will be 5 V (or 10 V when 0 to 10 V is selected) or 20 mA , and when OFF, 1 V (or 0 V when 0 to 10 V is selected) or 4 mA .

* Also, an increase or decrease of the flow will not change the ON/OFF status of the output while the forced output function is activated.

Accumulated value hold

The accumulated value will be stored even if the power supply is turned OFF. The accumulated value is memorized every 2 or 5 minutes during measurement and continues from the last memorized value when the power supply is turned ON again.
The max. writable limit of the memory device is 3.7 million times, which should be taken into consideration.

Peak/Bottom value display

The max. (min.) flow rate is detected and updated from when the power supply is turned ON. In peak (bottom) value display mode, this max. (min.) flow rate is displayed.

Display OFF mode

This function will turn the display OFF. In this mode, "_ _ _" will flash on the main screen. If any button is pressed during this mode, the display reverts to normal for 30 seconds to allow the flow, etc., to be quickly checked.

Setting of a security code

The user can select whether a security code must be entered to release the key lock. At the time of shipment from the factory, it is set such that a security code is not required.

Key-lock function

Prevents operation errors such as accidentally changing setting values

Reset to the default settings

The product can be returned to its factory default settings.

Reversible display mode

When the switch is used upside down, the orientation of the display can be rotated to make it easier to read by using the reversible display function.

Zero cut-off function

When the flow is close to $0 \mathrm{~L} / \mathrm{min}$, the product will round the value down and zero will be displayed. A flow value may be displayed even when the flow rate is $0 \mathrm{~L} / \mathrm{min}$ due to high pressure or depending on the installation. The zero cut-off function will force the display to zero.

Zero-clear function

The measured flow rate indication can be adjusted to zero.
The adjustment range is $\pm 5 \%$ F.S. of the initial factory setting.

Analog free span function

This function allows a flow that generates an output of 5 V (or 10 V when 0 to 10 V is selected) or 20 mA to be changed. The value can be changed between 10% of the max. value of the rated flow and the max. value of the display range.

Error display function

When an error or abnormality arises, the location and contents are displayed.

Display	Error name	Description	Action
Er i	OUT1 over current error	The switch output (OUT1) load current of 80 mA or more flows.	the
Er ?	OUT2 over current error	The switch output (OUT2) load current of 80 mA or more flows.	over current. Then turn the power ON again.
HTH	Instantaneous flow error	The flow has exceeded the upper limit of the flow display range.	Decrease the flow rate.
LLL		The flow has exceeded the lower limit of the flow display range.	Change the flow to the correct direction.
\qquad	Accumulated flow error*1	The accumulated flow has exceeded the accumulated flow range. (For accumulated increment) (The decimal point position varies depending on the flow range or measurement unit setting.)	Reset the accumulated flow. (Press the SET and DOWN buttons simultaneously for 1 s or longer.)
		The accumulated flow has reached the set accumulated flow value. (For accumulated decrement) (The decimal point position varies depending on the flow range or measurement unit setting.)	
[r]	Outside of zero-clear range	During zero-clear operation, the flow rate of $\pm 5 \%$ F.S. or more is applied. (The mode is returned to measurement mode after 1 s .)	Retry the zero-clear operation without applying fluid.
[r]	System error	An internal data error has occurred.	Turn the power OFF and turn it ON again.
Er 4			
Er 5			
Er 7			
Er 0			
Er 14			
Er 10			
[r4il			
[r 15	Version does not match*2	The IO-Link version does not match that of the master. The master uses version 1.0.	Ensure that the master IO-Link version matches the device version.

*1 A decimal point will be displayed depending on the flow range or measurement unit setting.
*2 Only for the IO-Link compatible products

* If the error cannot be solved after the instructions above are performed, please contact SMC for investigation.
-Unit display function
The unit displayed on the screen differs depending on the unit setting in measurement mode.

Standard condition (STD)	Instantaneous flow unit L/min	Accumulated flow unit L
[STD] turns on.	[L] and [/min] turn on.	[L] turns on. At the upper right of the display, the index $\left[\times 10^{3}\right]$ or [$\left.\times 10^{6}\right]$ will turn on based on the accumulated flow.
Normal condition (nor)	Instantaneous flow unit CFM	Accumulated flow unit ft ${ }^{3}$
[STD] turns off.	[L] turns off and [/min] turns on.	[L] turns off. At the upper right of the display, the index $\left[\times 10^{3}\right]$ or [$\left.\times 10^{6}\right]$ will turn on based on the accumulated flow.

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
Warning:
Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
\triangle Danger:
Danger indicates a hazard with a high level of risk which,

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements"
Read and accept them before using the product

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

\triangle Caution

SMC products are not intended for use as instruments for legal metrology.
Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

Revision History

Edition B * The PF2M701, 702, and 705 have been added.

* A female thread type has been added
* The IO-Link compatible PF2M7-L series has been added.
* Internal circuits and wiring examples have been revised.
* A made-to-order option (Compatible with argon (Ar) and carbon dioxide (CO_{2}) mixed gas) has been added.
* Number of pages has been increased from 20 to 28.
* A flow adjustment valve (0.05 to $5 \mathrm{~L} / \mathrm{min}$) has been added.
* A 2 to $200 \mathrm{~L} / \mathrm{min}$ flow range option has been added
* A rear ported type has been added.
* Number of pages has been increased from 28 to 32.

[^0]: ＊1 In IO－Link mode，the IO－Link indicator is ON or flashing
 ＊2＂LoC＂is displayed when the data storage lock is enabled．（Except for when the version does not match or when in SIO mode） The display color can be set to red or green．

[^1]: ＊The monitor unit values are for the PFG300 and PFMV3

[^2]: * Options are shipped together with the product but do not come assembled.

[^3]: * Options are shipped together with the product but do not come assembled.

[^4]: * When changing the max. analog output, use the analog free span function on page 28.

