Compact Cylinder

Ø12, Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

Width shortened

Overall length

New An axial foot type and a flange type have been added. (Ø32 to Ø100)

Existing model ø20 (CDQS series)

lighter

Weight)

382 g **⇒** 204 g (Compared with the existing CDQ2 series, ø32, 10 mm stroke, flange mounting)

Max.

Existing model ø20

JCQ Series

JCQ ø20

Lightweight and compact

Author Man 22

■ Weight comparison using a single cylinder unit

(Compared with the existing model) [mm]

Bore size		CDQS/CDQ2			JCDQ
ø 12	Weight 43 g	25 25.5 + Stroke	33% weight red	29 g	23 23 + Stroke
ø 16	Weight 57 g	29 25.5 + Stroke	35% weight red	37 g	26.5 26 24 + Stroke
ø 20	Weight 106 g	36 34 + Stroke	42% weight red	61 g	32 27.5 + Stroke
ø 25	Weight 150 g	40 37.5 + Stroke	45% weight red	82 g	36 30 + Stroke
ø 32	Weight 202 g	49.5 40 + Stroke	33% weight red	135 g	43.5 41 32.5 + Stroke
ø 40	Weight 290 g	57 46.5 + Stroke	31% weight red	201 g	50.5 47 37.5 + Stroke
ø 50	Weight 455 g	71 64 48.5 + Stroke	27% weight red	332 g	63.5 57 42.5 + Stroke
ø 63	Weight 627 g	84 77 54 + Stroke	18% weight red	513 a	76.5 70 46.5 + Stroke
ø 80	Weight 1162 g	104 98 63.5 + Stroke	17% weight red	961 g	98 89 55 + Stroke
ø 100	Weight 1966 g	123.5 117 75 + Stroke	24% weight red	1490 g	118 109 62 + Stroke

Lightweight and compact

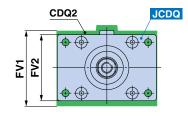
■ Weight comparison between cylinders with a bracket

Flange bracket

Weight: Max. 46% reduction

Weight comparison (When mounted on the cylinder, 10 mm stroke, rod flat

inge)	[g]
Reducti rate [%	
46	
44	
44	

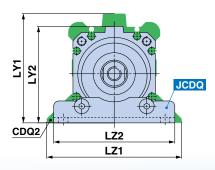

Bore size [mm]	CDQ2	JCDQ	Weight difference	Reduction rate [%]
ø 32	382	204	178	46
ø 40	504	281	223	44
ø 50	828	461	367	44
ø 63	1186	740	446	38
ø 80	2218	1384	834	38
ø 100	3331	2148	1183	36

Height: Max. 13% reduction

Dimension comparison (When mounted on the cylinder)

[mm]

Bore size	Height										
Bole Size	CDQ2: FV1	JCDQ: FV2	Reduction	Reduction rate [%]							
ø 32	48	42	6	13							
ø 40	54	48	6	11							
ø 50	67	60	7	10							
ø 63	80	70	10	13							
ø 80	99	90	9	9							
ø 100	117	110	7	6							


Foot bracket

Weight: Max. 27% reduction

Weight comparison (When mounted on the cylinder, 10 mm stroke)

[g]

Bore size [mm]	CDQ2	JCDQ	Weight difference	Reduction rate [%]
ø 32	322	236	86	27
ø 40	428	311	117	27
ø 50	674	513	161	24
ø 63	924	814	110	12
ø 80	1751	1547	204	12
ø 100	2934	2270	664	23

Width: Max. 12% reduction, Height: 14% reduction

Dimension comparison (When mounted on the cylinder)

[mm]

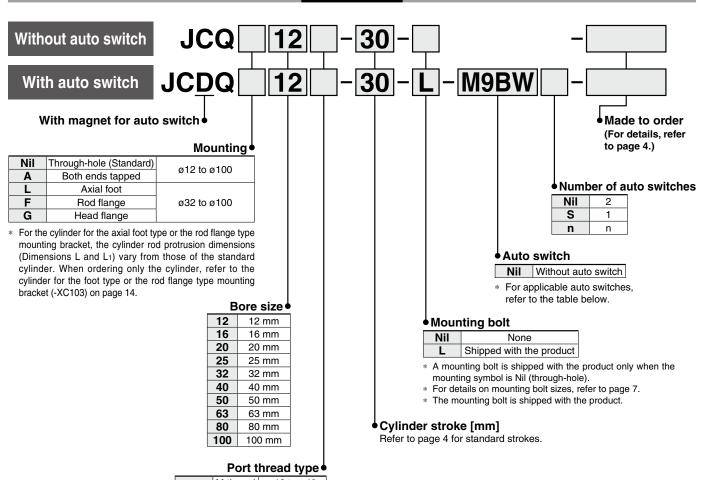
pc	[ministration companies (ministration)									
Dovo oi		Width		Height						
Bore Size	Bore size CDQ2: LZ1 JCDQ: LZ2		DQ: LZ2 Reduction Reduction rate [%		CDQ2: LY1	CDQ2: LY1 JCDQ: LY2		Reduction rate [%]		
ø 32	71	64	7	10	57	49	8	14		
ø 40	78	69	9	12	64	56	8	13		
ø 50	95	90	5	5	78	71	7	9		
ø 63	113	100	13	12	91.5	83.5	8	9		
ø 80	140	136	4	3	114	107.5	6.5	6		
ø 100	162	160	2	1	136	127.5	8.5	6		

CONTENTS

How to Order	р. 3
Specifications	р. 4
Dimensions	р. 8
Auto Switch Mounting	p. 12
Prior to Use: Auto Switch Connections and Examples	p. 13

	p. 14
t	p. 15
t Precautions	p. 16
ons	Back cover
	t ·····t Precautions ···

Compact Cylinder


Double Acting, Single Rod

JCQ Series

Ø12, Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

How to Order

Nil	M thread	ø12 to ø40
IIII	Rc	
TN	NPT	ø50 to ø100
TF	G	

Applicable Auto Switches/Refer to the Web Catalog for further information on auto switches.

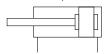
		F1	lig	Wiring	L	oad volta	age	Auto swit	ch model	Lea	d wir	e ler	ngth	[m]																		
Туре	Special function	Electrical entry	Indicator light	(Output)	D	С	AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	None (N)	Pre-wired connector	Applical	ble load															
				3-wire (NPN)		5 V,		M9NV	M9N	•	•	•	0	_	0	IC																
switch				3-wire (PNP)	12 V	12 V	12 V		M9PV	M9P	•	•	•	0	_	0	circuit															
		Grommet	Grommet	Grommet	Grommet	Grommet	Grommet	Grommet	Grommet	Grommet	Grommet	Grommet							2-wire		12 V		M9BV	M9B	•	•	•	0	_	0	_	
auto	Diagnostic indication													3-wire (NPN)		5 V,		M9NWV	M9NW	•	•	•	0	_	0	IC	Dalay					
	Diagnostic indication (2-color indicator)												Grommet	Grommet	Grommet	Yes	3-wire (PNP)	24 V	12 V	_	M9PWV	M9PW	•	•	•	0	_	0	circuit	Relay, PLC		
state	(2-color indicator)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	_	0	_	120															
o o	Water resistant	piotont									3-wire (NPN)		5 V,		M9NAV*1	M9NA*1	0	0	•	0	_	0	IC									
Solid	(2-color indicator)			3-wire (PNP)		12 V		M9PAV*1	M9PA*1	0	0	•	0	_	0	circuit																
0,	(2-color indicator)			2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	_	0	_																

^{*1} Water-resistant type auto switches can be mounted on the above models, but SMC cannot guarantee water resistance. Please contact SMC regarding water-resistant types with the above model numbers.

(Example)

0.5 m.....Nil (Example) M9NW * Lead wire length symbols: 1 m.....M (Example) M9NWM 3 m..... L M9NWL

* Solid state auto switches marked with a "O" are produced upon receipt of order.


^{*} For details on auto switches with pre-wired connectors, refer to the Web Catalog.

^{*} Auto switches are shipped together with the product but do not come assembled.

Symbol

Rubber bumper

Specifications

Bore size [mm]	12	12 16 20 25 32 40 50 63 80 100									
Action		Double acting, Single rod									
Fluid					Α	ir					
Proof pressure						МРа					
Max. operating pressure					0.7 N	IPa*2					
Min. operating pressure	0.07	MPa				0.05	MPa				
Ambient and fluid					5 to	60°C					
temperatures					5 10	00°C					
Lubrication				Not	required	d (Non-	lube)				
Piston speed*3		50 to	500 mr	n/s*2			50 to	300 mi	n/s* ²		
Cushion					Rubber	bumpe	r				
Allowable kinetic energy [J]	0.022	0.038	0.055	0.09	0.15	0.26	0.46	0.77	1.36	2.27	
Rod end thread	Female thread										
Stroke length tolerance		+1.3 mm*1									

- *1 Stroke length tolerance does not include the deflection of the bumper.
- *2 Max. operating pressure and piston speed are different from those of the existing model (CQ2 series).
- *3 Depending on the system configuration selected, the specified speed may not be satisfied.

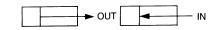
Standard Strokes

* When using with auto switches, refer to the Minimum Stroke for Auto Switch Mounting table on page 12.

Bore size [mm]	Standard stroke [mm]
12, 16	5, 10, 15, 20, 25, 30
20, 25, 32, 40	5, 10, 15, 20, 25, 30, 35, 40, 45, 50
50, 63, 80, 100	10, 15, 20, 25, 30, 35, 40, 45, 50

^{*} Intermediate strokes are available as a special order.

Mounting Brackets/Part Nos.


Mounting	Min. order		Bore size [mm]							
bracket	quantity	32	40	50	63	80	100	Contents		
Foot								1 foot bracket, 2		
bracket*1	2	JCQ-L032	JCQ-L040	JCQ-L050	JCQ-L063	JCQ-L080	JCQ-L100	hexagon socket		
bracker								head cap screws		
Florido								1 flange bracket,		
Flange bracket	1	JCQ-F032	JCQ-F040	JCQ-F050	JCQ-F063	JCQ-F080	JCQ-F100	4 hexagon socket		
Diacket								head cap screws		

^{*1} Order 2 pieces per cylinder.

Mounting Brackets/Material, Surface Treatment

Segment	Description	Material	Surface treatment	
Marriadian brankata	Foot bracket	Carbon steel	Zinc chromating	
Mounting brackets	Flange bracket	Carbon steel	Zinc chromating	

Theoretical Output

Bore size	Rod size	Operating	Piston area	Operating pressure [MPa]					
[mm]	[mm]	direction	[mm ²]	0.2	0.3	0.4	0.5	0.6	0.7
12	6	OUT	113	23	34	45	57	68	79
12	6	IN	85	17	25	34	42	51	59
16	6	OUT	201	40	60	80	101	121	141
10	0	IN	173	35	52	69	86	104	121
20	8	OUT	314	63	94	126	157	188	220
20	· °	IN	264	53	79	106	132	158	185
25	10	OUT	491	98	147	196	245	295	344
25		IN	412	82	124	165	206	247	289
32	12	OUT	804	161	241	322	402	483	563
32	12	IN	691	138	207	276	346	415	484
40	14	OUT	1257	251	377	503	628	754	880
40		IN	1103	221	331	441	551	662	772
50	18	OUT	1963	393	589	785	982	1178	1374
30	10	IN	1709	342	513	684	855	1025	1196
62	10	OUT	3117	623	935	1247	1559	1870	2182
03	63 18	IN	2863	573	859	1145	1431	1718	2004
80	22	OUT	5027	1005	1508	2011	2513	3016	3519
80	22	IN	4646	929	1394	1859	2323	2788	3252
100	26	OUT	7854	1571	2356	3142	3927	4712	5498
100	20	IN	7323	1465	2197	2929	3662	4394	5126

· Auto Switch Mounting

· Operating Range

switches.

Refer to page 12 for cylinders with auto

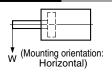
 Auto Switch Proper Mounting Position (detection at stroke end) and Mounting Height
 Minimum Stroke for Auto Switch Mounting

Allowable Kinetic Energy

Load Mass and Piston Speed [J] Bore size [mm] 32 40 50 63 Standard/ 0.022 0.038 0.055 0.15 0.26 0.46 0.77 Allowable kinetic energy: Ea

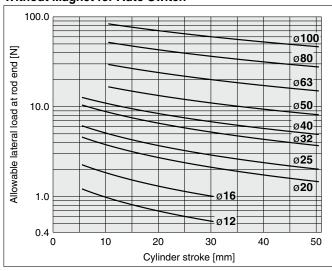
Kinetic energy E [J] =

m₁: Mass of cylinder moving parts kg m2: Load mass kg V: Piston speed m/s

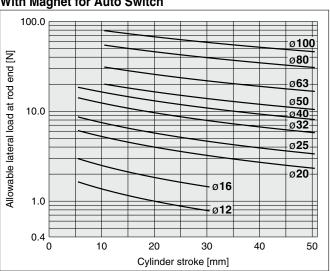

Mass of Cylinder Moving Parts: Without Magnet for Auto Switch

Bore size	Cylinder stroke [mm]											
[mm]	5	10	15	20	25	30	35	40	45	50		
12	5	6	7	8	9	10	_	_	_	_		
16	5	6	7	9	10	11	_	_	_	_		
20	9	11	13	15	17	19	21	23	25	27		
25	15	18	21	24	27	30	33	37	40	43		
32	27	32	36	41	45	50	54	59	63	67		
40	42	48	54	60	66	73	79	85	91	97		
50	_	91	101	111	121	131	141	151	161	171		
63	_	130	140	150	159	169	179	189	199	209		
80	_	240	255	270	285	300	315	329	344	359		
100	_	426	446	467	488	509	530	551	572	592		

Mass of Cylinder Moving Parts:


With Magnet for Auto Switch [gi										
Cylinder stroke [mm]										
5	10	15	20	25	30	35	40	45	50	
6	7	8	9	10	11	_	_	_	_	
7	8	9	10	11	12	_	_	_	_	
16	17	19	21	23	25	27	29	31	33	
25	28	31	34	37	40	43	46	49	53	
43	48	52	57	61	66	70	75	79	83	
69	75	81	87	93	99	105	111	117	123	
_	127	137	147	157	167	177	187	197	207	
_	180	190	200	210	220	230	240	250	260	
_	329	344	359	374	389	404	419	433	448	
_	545	565	586	607	628	649	670	690	711	
	6 7 16 25 43	6 7 7 8 16 17 25 28 43 48 69 75 — 127 — 180 — 329	6 7 8 7 8 9 16 17 19 25 28 31 43 48 52 69 75 81 — 127 137 — 180 190 — 329 344	5 10 15 20 6 7 8 9 7 8 9 10 16 17 19 21 25 28 31 34 43 48 52 57 69 75 81 87 — 127 137 147 — 180 190 200 — 329 344 359	5 10 15 20 25 6 7 8 9 10 7 8 9 10 11 16 17 19 21 23 25 28 31 34 37 43 48 52 57 61 69 75 81 87 93 — 127 137 147 157 — 180 190 200 210 — 329 344 359 374	5 10 15 20 25 30 6 7 8 9 10 11 7 8 9 10 11 12 16 17 19 21 23 25 25 28 31 34 37 40 43 48 52 57 61 66 69 75 81 87 93 99 — 127 137 147 157 167 — 180 190 200 210 220 — 329 344 359 374 389	5 10 15 20 25 30 35 6 7 8 9 10 11 — 7 8 9 10 11 12 — 16 17 19 21 23 25 27 25 28 31 34 37 40 43 43 48 52 57 61 66 70 69 75 81 87 93 99 105 — 127 137 147 157 167 177 — 180 190 200 210 220 230 — 329 344 359 374 389 404	5 10 15 20 25 30 35 40 6 7 8 9 10 11 — — 7 8 9 10 11 12 — — 16 17 19 21 23 25 27 29 25 28 31 34 37 40 43 46 43 48 52 57 61 66 70 75 69 75 81 87 93 99 105 111 — 127 137 147 157 167 177 187 — 180 190 200 210 220 230 240 — 329 344 359 374 389 404 419	5 10 15 20 25 30 35 40 45 6 7 8 9 10 11 — — — 7 8 9 10 11 12 — — — 16 17 19 21 23 25 27 29 31 25 28 31 34 37 40 43 46 49 43 48 52 57 61 66 70 75 79 69 75 81 87 93 99 105 111 117 — 127 137 147 157 167 177 187 197 — 180 190 200 210 220 230 240 250 — 329 344 359 374 389 404 419 433	

Allowable Lateral Load at Rod End



Without Magnet for Auto Switch

[g]

With Magnet for Auto Switch

Compact Cylinder Double Acting, Single Rod JCQ Series

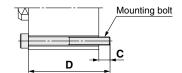
Weight

Without	Without Magnet for Auto Switch [gi										
Bore size	Cylinder stroke [mm]										
[mm]	5	10	15	20	25	30	35	40	45	50	
12	21	25	30	35	39	44	_	_	_	_	
16	28	33	38	43	49	54	_	_	_	_	
20	40	47	55	62	69	77	84	91	99	106	
25	55	64	73	83	92	101	110	119	128	138	
32	94	108	121	135	148	162	175	189	202	215	
40	145	161	177	194	210	226	243	259	275	292	
50	_	284	309	334	359	384	410	435	460	485	
63	_	452	483	514	545	576	606	637	668	699	
80	_	850	899	948	997	1046	1095	1144	1193	1242	
100	_	1348	1407	1465	1524	1582	1641	1700	1758	1817	

							[g]
Bore si	32	40	50	63	80	100	
Additional weight for mounting	Axial foot	51	55	90	150	293	390
	Rod flange	69	80	129	227	423	658
bracket	Head flange	65	74	119	217	408	637

With Mag	ith Magnet for Auto Switch										
Bore size	Cylinder stroke [mm]										
[mm]	5	10	15	20	25	30	35	40	45	50	
12	25	29	34	38	43	48	_	_	_	_	
16	32	37	43	48	53	58	_	_	_	_	
20	53	61	68	75	83	90	98	105	112	120	
25	73	82	91	100	109	119	128	137	146	155	
32	122	135	149	162	176	189	203	216	230	243	
40	184	201	217	233	250	266	282	299	315	331	
50	_	332	357	383	408	433	458	483	508	533	
63	_	513	544	575	606	637	667	698	729	760	
80	_	961	1010	1059	1109	1158	1207	1256	1305	1354	
100	_	1490	1549	1608	1666	1725	1783	1842	1901	1959	

 $433 + (90 \times 2) = 613 \text{ g}$



Mounting Bolt for JCQ

Mounting method: Through-hole type mounting bolts are available. Refer to the following for ordering procedures. Order the actual number of bolts that will be used.

Example) CQ-M3 x 25L 4 pcs.

Material: Chromium molybdenum steel Surface treatment: Zinc chromating

Without Magnet for Auto Switch

Without Magnet for Auto Switch										
Cylinder model	С	D	Mounting bolt part no.							
JCQ12-5		25	CQ-M3 x 25L							
-10	1	30	x 30L							
-15	1	35	x 35L							
-20	4	40	x 40L							
-25		45	x 45L							
-30	1	50	x 50L							
JCQ16-5		30	CQ-M3 x 30L							
-10	1	35	x 35L							
-15		40	x 40L							
-20	8	45	x 45L							
-25		50	x 50L							
-30		55	x 55L							
JCQ20-5		30	CQ-M3 x 30L							
-10		35	x 35L							
-15		40	x 40L							
-20		45	x 45L							
-25	7.5	50	x 50L							
-30] 7.5	55	x 55L							
-35		60	x 60L							
-40		65	x 65L							
-45		70	x 70L							
-50		75	x 75L							
JCQ25-5		30	CQ-M3 x 30L							
-10		35	x 35L							
15]	40	x 40L							
-20		45	x 45L							
-25	6	50	x 50L							
-30	ь	55	x 55L							
35		60	x 60L							
-40		65	x 65L							
45		70	x 70L							
-50		75	x 75L							

Cylinder model	С	D	Mounting bolt part no.
JCQ32-5		35	CQ-M4 x 35L
-10		40	x 40L
-15		45	x 45L
-20	9	50	x 50L
-25		55	x 55L
-30]	60	x 60L
-35		65	x 65L
-40		70	x 70L
-45		75	x 75L
-50		80	x 80L
JCQ40-5		40	CQ-M4 x 40L
-10		45	x 45L
15		50	x 50L
-20		55	x 55L
25	10	60	x 60L
-30] 10	65	x 65L
35		70	x 70L
-40		75	x 75L
-45		80	x 80L
-50		85	x 85L
JCQ50-10		50	CQ-M5 x 50L
-15]	55	x 55L
-20		60	x 60L
-25		65	x 65L
30	11	70	x 70L
-35		75	x 75L
40		80	x 80L
-45		85	x 85L
-50		90	x 90L

Cylinder model	C	D	Mounting bolt part no.
JCQ63-10		55	CQ-M5 x 55L
-15		60	x 60L
-20		65	x 65L
-25	1 1	70	x 70L
-30	11.5	75	x 75L
-35		80	x 80L
-40		85	x 85L
-45		90	x 90L
-50	1 1	95	x 95L
JCQ80-10		65	CQ-M8 x 65L
15		70	x 70L
-20		75	x 75L
-25		80	x 80L
-30	15	85	x 85L
35		90	x 90L
-40		95	x 95L
45		100	x 100L
-50		105	x 105L
JCQ100-10		70	CQ-M8 x 70L
-15		75	x 75L
-20		80	x 80L
-25		85	x 85L
30	14	90	x 90L
-35		95	x 95L
40		100	x 100L
-45		105	x 105L
50		110	x 110L

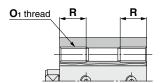
With Magnet for Auto Switch

Cylinder model	С	D	Mounting bolt part no.
JCDQ12-5		30	CQ-M3 x 30L
-10		35	x 35L
-15	5.5	40	x 40L
-20	3.5	45	x 45L
-25		50	x 50L
-30		55	x 55L
JCDQ16-5		35	CQ-M3 x 35L
-10		40	x 40L
-15	9.5	45	x 45L
-20	9.5	50	x 50L
-25		55	x 55L
-30		60	x 60L
JCDQ20-5		35	CQ-M3 x 35L
-10		40	x 40L
-15		45	x 45L
-20		50	x 50L
-25	6	55	x 55L
-30		60	x 60L
-35		65	x 65L
-40		70	x 70L
-45		75	x 75L
-50		80	x 80L
JCDQ25-5		35	CQ-M3 x 35L
-10		40	x 40L
-15		45	x 45L
-20		50	x 50L
-25	4.5	55	x 55L
-30	4.5	60	x 60L
-35		65	x 65L
-40		70	x 70L
-45		75	x 75L
-50		80	x 80L

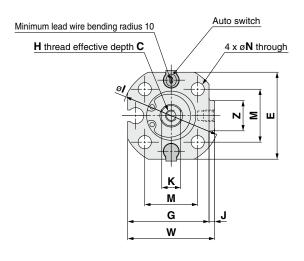
Cylinder model	С	D	Mounting bolt part no.
JCDQ32-5		40	CQ-M4 x 40L
-10	ł	45	x 45L
-15	ł	50	x 50L
-20	ŀ	55	x 55L
-25	-	60	x 60L
-30	7.5	65	x 65L
-35	-	70	x 70L
-40	ł	75	x 75L
-45		80	x 80L
-50	ł	85	x 85L
JCDQ40-5		45	CQ-M4 x 45L
-10	-	50	x 50L
-10	ł	55	x 55L
-20		60	x 60L
-25	ł	65	x 65L
-30	8.5	70	x 70L
-35		75	x 75L
-40	ł	80	x 80L
-45		85	x 85L
-50	ł	90	x 90L
JCDQ50-10		55	CQ-M5 x 55L
-15	ł	60	x 60L
-20	1	65	x 65L
-25	1	70	x 70L
-30	10.5	75	x 75L
-35	1	80	x 80L
-40	1	85	x 85L
-45	1	90	x 90L
-50	1	95	x 95L
			X 00L

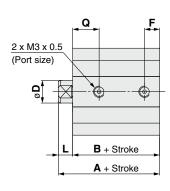
Cylinder model	С	D	Mounting bolt part no.
JCDQ63-10		60	CQ-M5 x 60L
-15		65	x 65L
-20		70	x 70L
-25		75	x 75L
-30	11.5	80	x 80L
-35		85	x 85L
-40		90	x 90L
-45		95	x 95L
-50		100	x 100L
JCDQ80-10		70	CQ-M8 x 70L
-15		75	x 75L
-20		80	x 80L
-25		85	x 85L
-30	14	90	x 90L
-35		95	x 95L
-40		100	x 100L
45		105	x 105L
-50		110	x 110L
JCDQ100-10		75	CQ-M8 x 75L
-15		80	x 80L
-20]	85	x 85L
-25	[90	x 90L
30	13	95	x 95L
-35]	100	x 100L
-40		105	x 105L
-45]	110	x 110L
50		115	x 115L

Bore Size

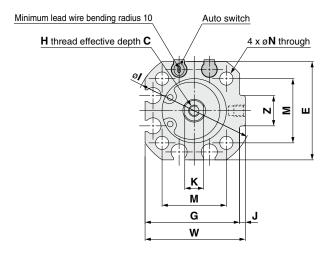

ø12, ø16

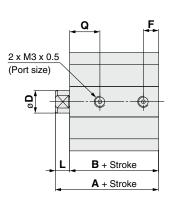
Standard (Through-hole): JCQ, JCDQ


ø**12**



Both ends tapped: JCQA, JCDQA

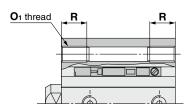



Both End	s Tapped	[mm]
Bore size	O ₁	R
12	M4 x 0.7	7
16	M4 x 0.7	7

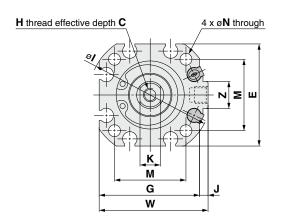
ø16

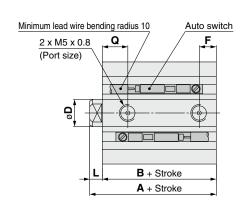
																				[mm]
Bore size		Without magnet	I IUI AUIU SWIIUII	With magnet f	for auto switch	С	D	F	F	G	Н	1	J	к	L	М	N	O	w	7
20.0 0.20	ou out runge	Α	В	A	В				•	_	••	•	•	ļ .,						
12	5 to 30	19.5	16	23	19.5	6	6	23	4	21.5	M3 x 0.5	26	1.5	5	3.5	14	3.5	7	23	8
16	5 to 30	20.5	17	24	20.5	6	6	26	4	25	M3 x 0.5	31	1.5	5	3.5	17	3.5	8	26.5	8

Bore Size

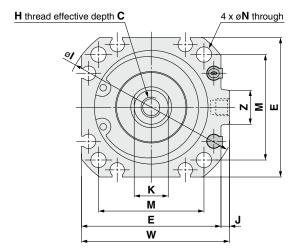

ø20 to ø40

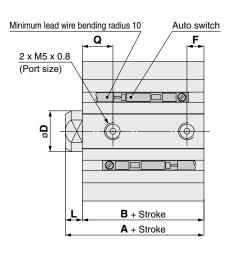
Standard (Through-hole): JCQ, JCDQ


ø**20**



Both ends tapped: JCQA, JCDQA

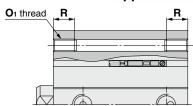



Both Ends Tapped [mi										
Bore size	O ₁	R								
20	M4 x 0.7	7								
25	M4 x 0.7	7								
32	M5 x 0.8	8								
40	M5 x 0.8	8								

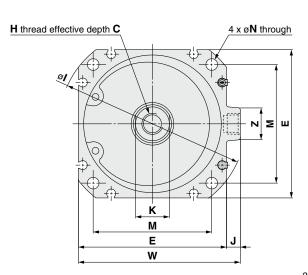
ø25 to ø40

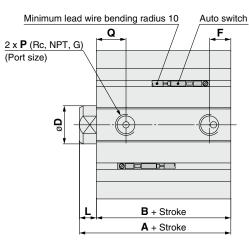
																				[mm]
Doro oizo	Stroke range	Without magne	t for auto switch	With magnet	for auto switch		_	_	_		ш			v		м	N		w	7
bore size	Stroke range	Α	В	Α	В		D		「	G	"	'	J		-	IVI	N	Q	**	
20	5 to 50	21	17.5	27.5	24	8	8	30	5	29.5	M4 x 0.7	36	2.5	6	3.5	21	3.5	7.5	32	8
25	5 to 50	23.5	19	30	25.5	7	10	33.5	5	_	M5 x 0.8	40	2.5	8	4.5	24	3.5	8	36	8
32	5 to 50	26	21	32.5	27.5	12	12	41	5	_	M6 x 1.0	51	2.5	10	5	31	4.5	9	43.5	10
40	5 to 50	31	25	37.5	31.5	13	14	47	6	_	M8 x 1.25	60	3.5	12	6	37	4.5	11	50.5	10

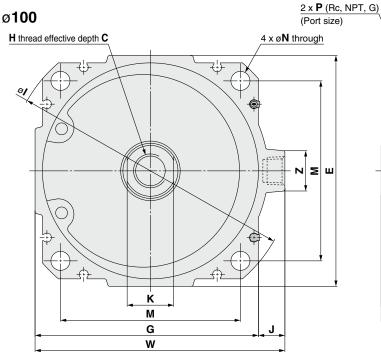
Bore Size

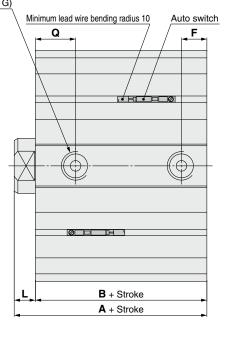

ø50 to ø100

Standard (Through-hole): JCQ, JCDQ

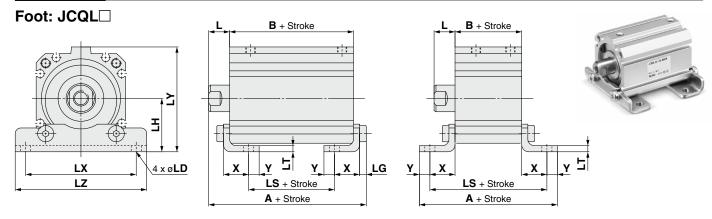

ø50 to ø80




Both ends tapped: JCQA, JCDQA



Both End	Both Ends Tapped									
Bore size	O ₁	R								
50	M6 x 1.0	10								
63	M6 x 1.0	10								
80	M10 x 1.5	18								
100	M10 x 1.5	18								

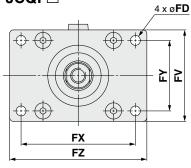


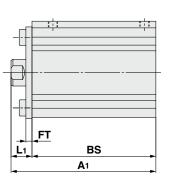
																					[mm]
Poro sizo	Ctroke renge	Without magne	t for auto switch	With magnet	for auto switch	_	_	_	_	_	ш			v		М	N	В	_	W	7
bore size	Stroke range	Α	В	Α	В	C	D	_ =		G	П	•	J		-	IVI	IN	P	Q	VV	
50	10 to 50	37	29	42.5	34.5	15	18	57	9	_	M10 x 1.5	74	6.5	16	8	46	5.5	1/8	13	63.5	15
63	10 to 50	41.5	33.5	46.5	38.5	15	18	70	10	_	M10 x 1.5	88	6.5	16	8	56	5.5	1/8	14	76.5	15
80	10 to 50	49	40	55	46	21	22	89	12	_	M14 x 2.0	113	9	19	9	70	9	1/4	14	98	19
100	10 to 50	56	46	62	52	21	26	109	12	105.5	M16 x 2.0	134	12.5	22	10	85	9	1/4	19	118	19

* For the cylinder for the foot type or the rod flange type mounting bracket, the cylinder rod protrusion dimensions (Dimensions L and L1) vary from those of the standard cylinder.

Dimensions

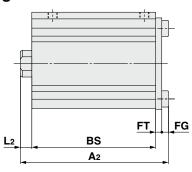
When ordering only the cylinder ⇒ Refer to the cylinder for the foot type or the rod flange type mounting bracket (-XC103) on page 14.

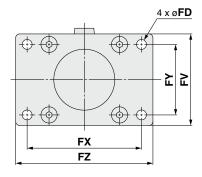

15 mm stroke or larger


5 or 10 mm strokes

		Wit	hout au	uto swi	tch			W	ith aut	switc	h											
Bore size	5 s	t or 10	st	15	st or la	rger	5 s	t or 10	st	15 :	st or la	rger	L	LD	LG	LH	LT	LX	LY	LZ	X	Υ
	Α	В	LS	Α	В	LS	Α	В	LS	Α	В	LS										
32	57	21	44.4	37.7	21	4	63.5	27.5	50.9	44.2	27.5	10.5	10	5.5	3.5	26	3.2	52	49	64	11.7	6.3
40	60.4	25	49.4	42.7	25	7	66.9	31.5	55.9	49.2	31.5	13.5	11	5.5	3.5	29	3.2	58	56	69	12.2	5.5
50	71	29	57.4	49.2	29	7	76.5	34.5	62.9	54.7	34.5	12.5	13	6.5	4	36	3.2	75	71	90	14.2	6.8
63	79.5	33.5	64.5	55	33.5	11.5	84.5	38.5	69.5	60	38.5	16.5	13	6.5	4	42	4.5	86	84	100	15.5	7.5
80	97	40	77	64.5	40	12	103	46	83	70.5	46	18	14	9	6	54	4.5	114	107.5	136	18.5	10
100	110	46	87	71.5	46	14	116	52	93	77.5	52	20	15	11	6	64	4.5	138	127.5	160	20.5	11.5

^{*} Min. applicable stroke: ø32 and ø40…5 mm stroke, ø50 to ø100…10 mm stroke

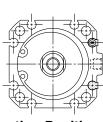


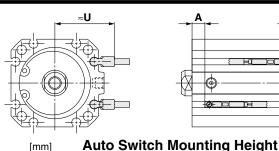


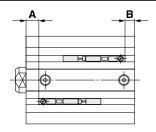
Head flange: JCQG□

BS indicates the overall length of the cylinder tube to be used.

Poro cizo	Rod f	lange		Head flange		FD	FT	FV	FX	EV	FZ
Bore size	A 1	L ₁	A 2	L2	FG	ן דט	F1	ΓV	ΓΛ.	FY	
32	BS + 10	10	BS + 11.7	(5)	3.5	5.5	3.2	42	54	31	65
40	BS + 11	11	BS + 12.7	(6)	3.5	5.5	3.2	48	60	37	72
50	BS + 13	13	BS + 15.2	(8)	4	6.5	3.2	60	74	46	89
63	BS + 13	13	BS + 16.5	(8)	4	6.5	4.5	70	85	55	100
80	BS + 14	14	BS + 19.5	(9)	6	9	4.5	90	108	70	127
100	BS + 15	15	BS + 21	(10)	6	11	5	110	133	87	154


 $[\]ast\,$ The dimensions in () are the same as those of the standard type.


Auto Switch Mounting


Auto Switch Proper Mounting Position (Detection at stroke end) and Mounting Height

[mm]

D-M9□ D-M9□W D-M9□A D-M9□V D-M9 WV D-M9□AV

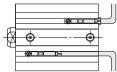
Auto switch model	D-M9 D-M9 D-M9 D-M9 D-M9	□V □W □WV
Para sina	D-M9	□AV
Bore size	A	В
12	5	2.5
16	5.5	3
20	6	6
25	6	7.5
32	8	8
40	11	9
50	11.5	11
63	13.5	13.5
80	16.5	18
100	19.5	21

	<u> </u>
Auto switch model	D-M9□V
Bore size	U
12	19.5
16	21
20	23
25	24.5
32	28.5

31.5

36.5

52.5


43

59

Minimum Stroke for Auto Switch Mounting

				[mm]
Number of auto switches	D-M9□V	D-M9□WV D-M9□AV	D-M9 □	D-M9□W D-M9□A
1	5	10	15 (5)	15 (10)
2	5	15	15 (5)	15

^{*} The dimension stated in () shows the minimum stroke for the auto switch mounting when the auto switch does not project from the end surface of the cylinder body and hinder the lead wire bending space. (Refer to the figure below.) The auto switch needs to be ordered separately.

100 **Operating Range**

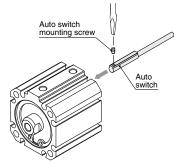
40

50

63

80

										[mm]	
Auto switch		Bore size									
model	12	16	20	25	32	40	50	63	80	100	
D-M9□(V) D-M9□W(V) D-M9□A(V)*1	3	3	4.5	4.5	4	4.5	5.5	6	6	6.5	


st 1 Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately ±30% dispersion) and may change substantially depending on the ambient environment.

Auto Switch Mounting

Applicable auto switch	D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV								
Bore size [mm]	ø12 ø16 ø20 to ø100								
Surfaces with auto switch mounting slot									

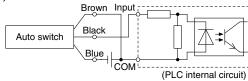
* Auto switch mounting bracket and auto switch are enclosed with the cylinder for shipment. For an environment that needs the water resistant auto switch, select the D-M9□A(V) type.

Mounting of auto switch

· When tightening the auto switch mounting screw, use a watchmakers' screwdriver with a handle 5 to 6 mm in diameter.

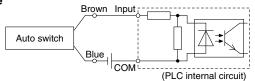
Tightening Torque for Auto Switch Mounting Screw [N-m]

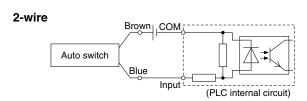
·9······· 9 · • · · · · · · · · · · · ·	item meaniting earth [it m]
Auto switch model	Tightening torque
D-M9□(V) D-M9□W(V)	0.05 to 0.15
D-M9□A(V)	


[mm]

Prior to Use Auto Switch Connections and Examples

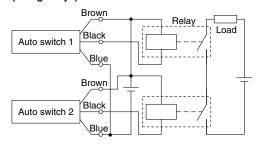
Sink Input Specifications


Source Input Specifications

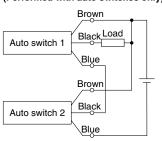

3-wire, NPN

3-wire, PNP Black Auto switch Blue COM (PLC internal circuit)

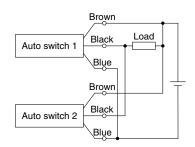
2-wire

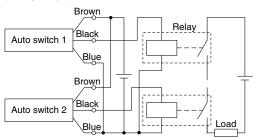


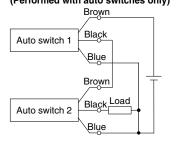
Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

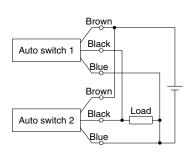

Examples of AND (Series) and OR (Parallel) Connections

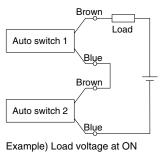
When using solid state auto switches, ensure the application is set up so the signals for the first 50 ms are invalid. Depending on the operating environment, the product may not operate properly.


3-wire AND connection for NPN output (Using relays)


(Performed with auto switches only)


3-wire OR connection for NPN output


3-wire AND connection for PNP output (Using relays)


(Performed with auto switches only)

3-wire OR connection for PNP output

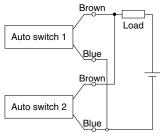
2-wire AND connection

Power supply voltage: 24 VDC

Internal voltage drop: 4 V

When two auto switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state.

The indicator lights will light up when both of the auto switches are in the ON state. Auto switches with a load voltage less than 20 V cannot be used. Please contact SMC if using AND connection for a heat-resistant solid state auto switch or a trimmer switch.


Load voltage at ON = Power supply voltage -

Internal voltage drop x 2 pcs.

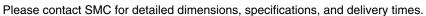
= 24 V - 4 V x 2 pcs.

= 16 V

2-wire OR connection

(Solid state) When two auto switches are connected in parallel, malfunction may occur because the load voltage will increase when in the OFF state. (Reed) Because there is no current leakage, the load voltage will not increase when turned OFF However, depending on the number of auto switches in the ON state, the indicator lights may sometimes grow dim or not light up, due to the dispersion and reduction of the current flowing to the auto switches.

Example) Load voltage at OFF Leakage current: 1 mA


Load impedance: $3 \text{ k}\Omega$

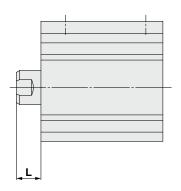
Load voltage at OFF = Leakage current x 2 pcs. x Load impedance

= 1 mA x 2 pcs. x 3 k Ω

JCQ Series Made to Order

1 Cylinder for the Foot Type or the Rod Flange Type Mounting Bracket

-XC103


For cylinders with a foot type or a rod flange type mounting bracket (The rod end length is 5 mm longer than that of the standard model.)

How to Order

Cylinder for the foot type or the rod flange type mounting bracket

Dimensions

Bore size	L
32	10
40	11
50	13
63	13
80	14
100	15

Dimensions other than those above are the same as those of the standard model.

Related Product

Specialized for JCQ ø12, ø16

(Color: Orange)

[mm]

Speed Controller with One-touch Fitting

Elbow Type for M3 AS12□1F-M3-□A-X790

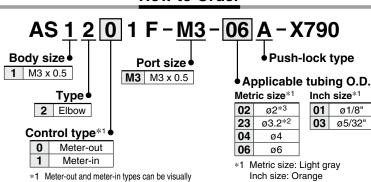
Refer to Specific Product Precautions 2 on page 17 before use.

Metric size (Color: Light gray)

Specifications

Fluid	Air				
Proof pressure	1.5 MPa				
Max. operating pressure	1 MPa				
Min. operating pressure	0.1 MPa				
Ambient and fluid temperatures	-5 to 60°C (No freezing)				
Applicable tubing material	Nylon, Soft nylon, Polyurethane*1, FEP, PFA				

^{*1} Use caution at the max. operating pressure when using soft nylon or polyurethane tubing. (Refer to the Web Catalog for details.)

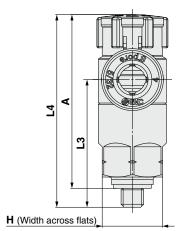

Flow Rate and Sonic Conductance

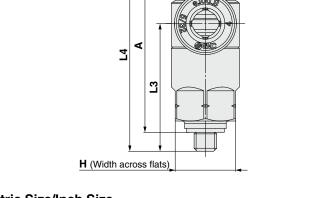
Model	Model		
Tubing O.D.	Metric size	ø2, ø3.2, ø4, ø6	
C values: Sonic conductance dm³/(s·bar)	Free flow	0.07	
	Controlled flow	0.07	
h values Critical pressure ratio	Free flow	0.3	
b values: Critical pressure ratio	Controlled flow	0.2	

^{*} C and b values are for controlled flow with the needle fully open and free flow with the needle fully closed.

How to Order

Needle Valve/Flow Rate Characteristics




- identified by the color of the knob. Meter-out: Gray
- Meter-in: Light blue

- Inch size*1 **01** ø1/8" **03** ø5/32"
- *1 Metric size: Light gray
- *2 Use ø1/8" tubing.
- *3 Only polyurethane tubing is applicable for ø2.

AS1201F-M3-□ Inlet pressure: 0.5 MPa 45 rate [L/min (ANR)] 40 35 30 25 20 15 10 2 2.5 3 3.5 4 4.5 5 Number of needle rotations

Dimensions

øD3 Applicable tubing O.D. ød ق М L2

Metric Size/Inch Size

														[]														
Model	al	т	н	D1	D3	1.4	1.0	L3	L4	*1	A:	k2	М	Weight														
Wodel	u	•	п	וט	D3	L1	L2	L3	Unlocked	Locked	Unlocked	Locked	IVI	[g]														
AS12□1F-M3-02A-X790	2	M3 x 0.5	M3 x 0.5	M3 x 0.5										5.8		15.8 20.	20.3						11.9					
AS12□1F-M3-23A-X790	3.2						7.2		17.2	21.7	16.9	16.9				5												
AS12□1F-M3-04A-X790	4					M3 x 0.5		8.2	9.4	17.2	21.7		26.5	25.4	23.5	22.4												
AS12□1F-M3-06A-X790	6																1VIS X U.S	WIS X 0.5	0	10.4	9.4	18.6	23.1	16.5	20.5	25.4	23.3	22.4
AS12□1F-M3-01A-X790	1/8"			7.2		17.2	21.7	16.9																				
AS12□1F-M3-03A-X790	5/32"			8.2		17.2	21.7	10.9						5														

^{*1} Reference dimensions

^{*2} Reference dimensions of threads after installation

JCQ Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For actuator and auto switch precautions, refer to "Handling Precautions for SMC Products" and the "Operation Manual" on SMC website.

Mounting

⚠ Caution

Compact cylinders are designed to reduce the size of mechanical equipment and promote space saving. Thus, if they are used in the same manner as conventional cylinders, such as tie-rod cylinders, they may experience reduced performance. Pay sufficient attention to the operating conditions when using.

1. Allowable lateral load

The lateral load that can be applied to the piston rod end is limited. If a cylinder is used with a lateral load over the limit, air leakage due to abnormal friction on the seals, the galling of cylinder tubes and pistons, or abnormal friction on the bearing part may result. The lateral load applied to the piston rod must be within the allowable range indicated in this catalog. When the load exceeds the limit, install a guide or change the bore size to suit the load in order to make the load within the allowable range.

2. Workpiece connection

When a workpiece is mounted on the piston rod end, connect them by aligning the center of the piston rod with the center of the workpiece. If they are off-center, lateral load is generated and the phenomena mentioned in (1) may occur. In order to prevent the application of an off-center load, the use of a floating joint or a simple joint is recommended.

3. Tighten the mounting bracket within the recommended tightening torque range. When mounting the bracket, tighten the mounting bolt within the recommended tightening torque range shown in the table below.

Bore size [mm]	Tightening torque [N·m]
32, 40	3.0 to 5.1
50, 63	9.0 to 12.0
80, 100	25.0 to 44.9

4. Simultaneous use of multiple cylinders

It is difficult to control the speed of pneumatic cylinders. The following conditions cause speed change: change in the supply pressure, load, temperature, or lubrication, differences in cylinder capabilities, the deterioration of various parts over time, etc. A speed controller can be used to control the speed of multiple cylinders simultaneously for a short period of time, but depending on the conditions, it may not work as desired. If multiple cylinders cannot operate simultaneously, unreasonable force will be applied to the piston rod because the cylinder positions may not be the same. This may cause abnormal friction on the seals and bearings and the galling of cylinder tubes and pistons. Do not use in applications where only the speed is adjusted to operate several cylinders simultaneously. If this is inevitable, use a high-rigidity guide for the load so that the cylinder is not damaged even when the output of each cylinder is slightly different.

Depending on the system configuration selected, the specified speed may not be satisfied.

JCQ Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to the back cover for safety instructions. For actuator and auto switch precautions, refer to "Handling Precautions for SMC Products" and the "Operation Manual" on SMC website.

Mounting Fittings and Speed Controllers (for Ø12 to Ø32)

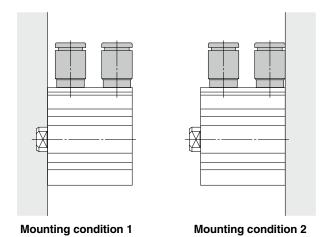
⚠ Caution

Use the series models listed below when connecting speed controllers and fittings directly to cylinders.

1. After tightening the fitting by hand, use a wrench to tighten the fitting an additional approximately 1/4 turn for a port size of M3 x 0.5 or 1/6 turn for a port size of M5 x 0.8. For elbow type fittings, tighten an additional 1/2 turn for a port size of M3 x 0.5 or 1/3 turn for a port size of M5 x 0.8 if gaskets are mounted in two places. If screws are tightened excessively, air leakage may result due to broken threads or a deformed gasket. If screws are tightened insufficiently, looseness and accompanying air leakage are likely to occur.

<One-touch Fittings>

With Magnet for Auto Switch


Bore	12	16	20	25	32	
Po	M3 x	¢ 0.5	M5 x 0.8			
Stro	ke [mm]	5 or larger				
Male .	KQ2S04-M3G	•	•	_	_	
connector	KQ2S04-M5□	_	_	•	•	•
(with hexagon socket head)	KQ2S06-M5□	_	_	•	•	•
NA-1-	KQ2H04-M3G	0	0	_	_	_
Male connector	KQ2H04-M5□	_	_	•	•	•
Connector	KQ2H06-M5□	_	_	0	0	0
	KQ2L04-M3G	•	•	_	_	_
Male elbow	KQ2L04-M5□	_	_	•	•	•
GIDOM	KQ2L06-M5□	_	_	•	•	•

- •: Applicable to mounting conditions 1 and 2
- O: Applicable to mounting condition 1

Without Magnet for Auto Switch

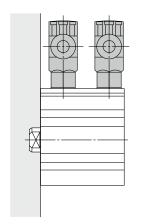
Bore size [mm]		12	16	20		25		32	
F	ort size	M3 x 0.5		M5 x 0.8					
Str	oke [mm]	5 or larger	5 or larger	5	10 or larger	5	10 or larger	5 or larger	
Male	KQ2S04-M3G	•	•	_	_	_	_	_	
connector (with hexagon	KQ2S04-M5□	_	_	•	•	•	•	•	
socket head)	KQ2S06-M5□	_	_	•	•	•	•	•	
	KQ2H04-M3G	0	0	_	_	_	_	_	
Male connector	KQ2H04-M5□	_	_	•	•	•	•	•	
COMMECTOR	KQ2H06-M5□	_		_	0	_	0	0	
NA-1-	KQ2L04-M3G	•	•	_	_	_	_	_	
Male elbow	KQ2L04-M5□	_	_	•	•	•	•	•	
GIDOM	KQ2L06-M5□	_	_	•	•	•	•	•	

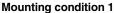
- Applicable to mounting conditions 1 and 2
- O: Applicable to mounting condition 1

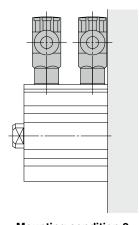
* The above figures show the mounting conditions with the KQ2S Onetouch fittings.

<Speed Controllers>

With Magnet for Auto Switch


Bore size [mm]		12	16	20	25	32
Port size		M3 x 0.5		M5 x 0.8		
		5 or larger				
Elbow type	AS12□1F-M3-04	•	•	_	_	_
	AS12□1F-M3-□A-X790	0	0	_	_	_
	AS12□1F-M5E-04A	_	_	•	•	•
	AS12□1F-M5E-06A	_	_	•	•	•
Universal type	AS13□1F-M3-04	•	•	_	_	_
	AS13□1F-M5E-04A	_	_	•	•	•
	AS13□1F-M5E-06A	_	_	•	•	•


- •: Applicable to mounting conditions 1 and 2
- O: Applicable to mounting condition 1


Without Magnet for Auto Switch

Bore size [mm]		12	16	20	25	32
Port size		M3 x 0.5		M5 x 0.8		
Stroke [mm]		5 or larger				
Elbow type	AS12□1F-M3-04	•	•	_	_	_
	AS12□1F-M3-□A-X790	0	0	_	_	_
	AS12□1F-M5E-04A	_	_	•	•	•
	AS12□1F-M5E-06A	_	_	•	•	•
Universal type	AS13□1F-M3-04	•	•	_	_	_
	AS13□1F-M5E-04A	_	_	•	•	•
	AS13□1F-M5E-06A	_	_	•	•	•

- ●: Applicable to mounting conditions 1 and 2
- O: Applicable to mounting condition 1

Mounting condition 2

* The above figures show the mounting conditions with the AS12□1F-M5E-□A elbow type speed controllers.

⚠ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution: Caution indicates a hazard with a low level of risk which, If not avoided, could result in minor or moderate injury.

★ Warning: Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.

⚠ Danger: Danger if not avoided, will result in death or serious injury. **Danger** indicates a hazard with a high level of risk which, *1) ISO 4414: Pneumatic fluid power - General rules relating to systems.

ISO 4413: Hydraulic fluid power – General rules relating to systems. IEC 60204-1: Safety of machinery - Electrical equipment of machines.

(Part 1: General requirements)

ISO 10218-1: Manipulating industrial robots - Safety.

⚠Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.

Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

- 3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
- 4. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
 - 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
 - 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

⚠ Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries.

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.

If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ **Compliance Requirements**

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".

Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first.*2) Also, the product may have specified durability, running distance or
 - replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
 - 2) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.

Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- 2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

⚠ Caution

SMC products are not intended for use as instruments for legal metrology.

Measurement instruments that SMC manufactures or sells have not been qualified by type approval tests relevant to the metrology (measurement) laws of each country. Therefore, SMC products cannot be used for business or certification ordained by the metrology (measurement) laws of each country.

Revision History

Edition B * Bore sizes ø40, ø50, and ø63 have been added.

TR

Edition C * Both ends tapped mounting has been added.

* Bore sizes ø80 and ø100 have been added. * Port thread types NPT and G have been added.

UR

Edition D * An axial foot type and a flange type have been added to mounting brackets

* Number of pages has been increased from 16 to 20.

ZΤ