

Scale Cylinder & Counter Series CE

CEP1/CEU5 Resolution: 0.01mm (accuracy ±0.02mm) External output function: RS-232C BCD Multipoint output: 5 points (20 points with bank switching) 31 points (binary output)

> High Precision Scale Cylinder/ Series CEP1 Multi Counter/Series CEU5 Upgraded Scale Cylinder/Series CE1

Achieve rationalizaties A scale cylinder with Measurement is possible

Measurement is possible throughout the full stroke range.

The home position can be → anywhere within the cylinder stroke.

When the counter is reset by pressing the cylinder rod to the reference plane, that point becomes the home position.

System Configuration

Series Guide

Se	ries	CE1

Series CEI													
Bore size				:	Stand	dard s	stroke	(mm)				Available
(mm)	25	50	75	100	125	150	175	200	250	300	400	500	stroke range
12													25 to 150
20		•											25 to 300
32													25 to 400
40													25 to 600
50													25 to 600
63													25 to 600

CEU1

Output transistor Power system supply voltage	PNP
100VAC	
24VDC	

CEU5

Count data output	RS-232	C+BCD	RS-232C				
Output transistor system supply voltage	NPN	PNP	NPN	PNP			
100 to 240VAC							
24VDC							

Series CEP1

Bore size	Standard stroke (mm						
(mm)	25	50	75	100			
12 equiv.							
20 equiv.							

Extension cableCable length (m)5101520

• •

Series CE

Applications

Measurement Principles

The amount of rod movement in the scale cylinder is detected using an MR element (magnetic resistance element) whose resistance value changes due to magnetic force. The detection unit containing this MR element is called the sensor head. An amplifying circuit and a dividing circuit are required to produce output which can be read by the counter, and these are attached to the cylinder case. The sensor head and amplifier section together are referred to as the sensor unit.

The scale cylinder is equipped with the capability of outputing the piston stroke movement as a pulse signal. The measurement principle is as shown in the drawing below.

- (1) A scale of magnetic layers and non-magnetic layers with a pitch of 0.8mm is cut into the piston rod.
- (2) With movement of the piston rod, a sin, cos 2-phase signal (Signal 1) is received by the magnetic resistance element. For this wave form, 1 pitch (0.8mm) becomes exactly 1 cycle.
- (3) This is amplified and divided into 1/8 parts. As a result, a 90° phase difference pulse signal of 0.1mm/pulse (Signal 2) is output.
- (4) By measuring this pulse signal with the counter, it is possible to detect the piston position with a resolution of 0.1mm.
- (5) In the case of the high precision scale cylinder, the sin, cos 2phase signal obtained in (2) is amplified and divided into 1/20 parts. As a result, a 90° phase difference pulse signal of 0.04mm/pulse (Signal 2) is output.
- (6) By multiplying this pulse signal by 4 with the counter, it is possible to detect the piston position with a resolution of 0.01mm.

A/B phase difference output

(90° phase difference output)

When movement is expressed by a single line of pulses, it is impossible to accurately identify the current position, because pulse waves appear in both upward and downward directions. Accordingly, in A/B phase difference output, two lines of pulses are provided, wherein one line detects the movement and the other distinguishes the direction.

4 times multiplication function

This function increases resolution 4 times by counting 4 for each cycle of pulses, instead of counting 1 for each cycle as is normally the case. In principle, this function counts each time there is a rise or fall in either of the A or B phase pulses.

Counting speed (kHz, kcps)

Counting speed indicates the number of pulses that can be counted per second. If the scale cylinder is operated at high speeds, pulse waves are output in shorter cycles. The counting speed of the counter must be higher than the pulse speed for the maximum piston speed when operating. Since the scale cylinder outputs one pulse for each 0.1mm of movement, 5,000 pulses will be output for each 500mm of movement. Therefore, a speed of 500mm/s is equivalent to 5kcps (kHz), but a counting speed 2 to 3 times greater is recommended for actual operation.

Accuracy

The accuracy is the difference between the dimensions based upon the signals of the scale cylinder and the absolute dimensions.

The maximum display error that will appear on the counter's digital display is equal to twice (\pm 1 count) the resolution when the home position is reset and when dimensions are measured.

High Precision Scale Cylinder Series CEP1 ø12, ø20

How to Order

<Options>

Non-rotating

Type

Extension cable	Extension cable CE1-R 05									
	Ca	able length		Cab	le suffix					
	05	5m		Nil	Extension cable					
	10	10m		С	Extension cable & connector					
	15	15m								
	20	20m								

Mounting bracket part numbers

Cylinder part no.	Foot	Front flange
CEP1□12	CEP1-L12	CEP1-F12
CEP1□20	CEP1-L20	CEP1-F20

Applicable auto switch types

		Indiantan	Wiring	Load v	voltage	Electrical e	ntry direction				Applicable	Maximum
Туре	Special function	Indicator light	(output)	DC	AC	Vertical	Lateral	0.5 (Nil)	3 (L)	5 (Z)		load current & load current range
ſ				24V or less	24V or less						Relay	50mA
itch		No	2 wire	48V or less	48V or less	A90V	A90	•	• •	-	PLC	40mA
Reed switch				100V or less	100V or less						IC circuit	20mA
ed		Yes	2 wire	24V	-	A93V	A93			_	Relay	5 to 40mA
Re		103	2 WIIC	-	100V	A33V	A33	-	• •		PLĆ	5 to 20mA
		Yes	3 wire	4 to 8V	-	A96V	A96	•	•	-	IC circuit	20mA
			3 wire (NPN)	10 to 28V	_	F9NV	F9N	•	•	-	Relay PLC	50mA
٩			3 wire (PNP)	10 to 28V	_	F9PV	F9P	•	•	_		
switc			2 wire	10 to 28V	_	F9BV	F9B	•	●	-	Relay PLC	5 to 30mA
Solid state switch	Diagnostic	Yes	3 wire (NPN)	10 to 28V	_	F9NWV	F9NW	•	•	0	Relay	50mA
Solid	indication (2 color indicator)		3 wire (PNP)	10 to 28V	_	F9PWV	F9PW	•	۲	0	PLC	30IIIA
			2 wire	10 to 28V	-	F9BWV	F9BW	•	•	0	Relay PLC	5 to 30mA
	Water resistant (2 color indicator)		2 wire	12V, 24V	-	-	F9BA	-	•	0	Relay PLC	5 to 30mA

* Lead wire length symbol 0.5m Nil (Example) F9B 5m Z (Example) F9BZ

3mL (Example) F9BL ∗ Solid state auto switches marked with a "O" are produced upon receipt of order.

* The standard cable length for F9BA is 3m.

High Precision Scale Cylinder Series CEP1

Cylinder Specifications

Action	Double acting single	rod (non-rotating piston)				
Fluid	Air					
Proof pressure	1.5MPa {1	5.3kgf/cm ² }				
Maximum operating pressure	1.0MPa {10.2kgf/cm ² }					
Minimum operating pressure	ø12	ø20				
minimum operating pressure	0.15MPa {1.5kgf/cm ² }	0.1MPa {1.0kgf/cm ² }				
Piston speed	50 to 3	00mm/s				
Ambient & fluid temperature	0°C to 60°C (without freezing)					
Lubrication	Non-lube					
Stroke length tolerance range	0 to +1.0					
Cushion	N	one				
Rod non-rotating accuracy	ø12	ø20				
Nou non-rotating accuracy	±2° ±3°					
Mounting	Direct mounting front tapped type (standard), Foot type, Front flange type					
Thread tolerance	JIS Class 2					

Symbol

Sensor Specifications

Cable	Ø7, 6-core twisted pair shielded wire (oil, heat & flame resistant) (connector made by TAJIMI ELECTRONICS CO., LTD., R04-J8M7.3)			
Transmission distance	23m (when using SMC cable and counter)			
Position detection system	Magnetic scale rod, sensor head <incremental type=""></incremental>			
Magnetic resistance	145 gauss			
Power supply	12 to 24VDC (±10%) (power supply ripple: 1% or less)			
Current consumption	50mA			
Resolution	0.01mm (with 4 times multiplication)			
Accuracy (20°C)	±0.02mm ^{Note 1)}			
Output type	Open collector (24VDC, 40mA)			
Output signal	A/B phase difference output			
Insulation resistance	500VDC, 50M Ω or more (between case and 12E)			
Vibration resistance	33.3Hz 6.8G 2 hrs. each in X, Y directions 4 hrs. in Z direction based upon JIS D1601			
Impact resistance	30G 3 times each in X, Y, Z directions			
Enclosure	IP-67 (IEC Standard) Note 2)			
Extension cable (optional)	CE1–R 5m, 10m, 15m, 20m (connector made by TAJIMI ELECTRONICS CO., LTD., R04-P8F7.3)			

Note 1) This includes the digital display error of the counter (CEU5). Moreover, the overall accuracy after mounting on equipment will vary depending on mounting conditions and the environment. Therefore, the customer should calibrate the equipment as a whole.

Note 2) Except for the connector, the cylinder section is the equivalent of an SMC water resistant cylinder.

Standard Stroke

	Cylinder stroke (mm)						
Model	25	50	75	100			
CEP1B12	•	•	•	•			
CEP1B20	•	•	•	•			

Series CEP1

Weight Table (without Mounting Brackets / Connector)

				Unit: kg						
	Cylinder stroke (mm)									
Bore Size (mm)	25	50	75	100						
12	0.29	0.33	0.37	0.41						
20	0.62	0.68	0.74	0.80						

Rod End Nut Dimensions

					(mm)
Applicable bore size (mm)	d	н	В	С	D
12	M5 x 0.8	3	8	9.2	7.8
20	M8 x 1.25	5	13	15.0	12.5

Electrical Wiring

Output type

The output signal of the high precision scale cylinder is A/B phase difference output (open collector output) as shown in the figure below.

The relation between the movement distance and the signal output of the high precision scale cylinder is that for each 0.04mm of movement a one pulse signal is output to both output terminals A and B. In order to measure with a discrimination of 0.01mm, a counter with a 4 times multiplication function (CEU5) is required.

Proper Auto Switch Mounting Position

Refer to p.32 regarding dimensions for the proper auto switch mounting position (stroke end).

Input/Output

Material: Steel

The input/output of the scale cylinder is performed by a ø7 shielded twisted pair wire from the sensor section plus a connector.

Rear view

Output circuit of scale cylinder (brown, blue)

Signal table

Wire color	Signal name	Connector pin symbol			
White	A phase	A			
Yellow	B phase	В			
Brown, Blue	COM(0V)	C, D			
Red	12V, 24V (power supply)	E			
Black	0V (power supply)	F			
(Shield)					

Construction

ø**12**, ø**20**

Parts list

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Rod cover	Aluminum alloy	Hard chrome plated
3	Head cover	Aluminum alloy	Hard anodized
4	Piston A	Aluminum alloy	Hard anodized
5	Piston B	Aluminum alloy	Hard anodized
6	Piston rod	Carbon steel	Hard chrome plated
7	Tie-rod	Carbon steel	Chromed
8	Tie-rod nut	Carbon steel	Nickel plated
9	Seal ring	Aluminum alloy	White anodized
10	Centering location ring	Aluminum alloy	White anodized
11	Rod end pin	Stainless steel	Quenched
12	Sensor unit	_	With or without connector
13	Wear ring	Special resin	
14	Bushing	Lead-bronze casting	

Parts list

No.	Description	Material	Note
15	Magnet	Rare earth	
16	Cross recessed head machine screw	Chrome molybdenum steel	Nickel plated
17	Hexagon socket head cap screw	Stainless steel	
18	Hexagon nut	Carbon steel	Nickel plated
19	Spring washer	Steel wire	Nickel plated
20	Spring washer	Steel wire	Nickel plated
21	Rod end nut	Steel	
22	Sensor case gasket	NBR	
23	Piston seal	NBR	
24	Scraper	NBR	
25	Tube gasket	NBR	
26	Rod seal	NBR	
27	O-ring	NBR	
28	O-ring	NBR	

* Since there is a possibility of improper operation, contact SMC regarding the replacement of seals.

ø12/Dimensions

Direct mounting front tapped type

High Precision Scale Cylinder Series CEP1

Front flange type CEP1F12 - Stroke

ø20/Dimensions

Direct mounting front tapped type

CEP1B20 - Stroke

High Precision Scale Cylinder Series CEP1

Front flange type CEP1F20 - Stroke

Scale Cylinder **Series CE1** ø12, ø20, ø32, ø40, ø50, ø63

How to Order

Applicable auto switch types

						Loca	voltoge	Dail	ou un tim -:	Direct -	ountin ~	al oct	1 wire	long	h(m)																																		
	Special	Electrical	Indicator	Wiring		Load	voltage		ounting	Direct m	<u> </u>			<u> </u>	· · ·																																		
Туре	function	entry	light	(output)		DC	AC	ø12 t		,	40 only	0.5	3	5	None	Applicab	le load																																
		onay	iigin	(Output)		-		Vertical	Lateral	Vertical	Lateral	(INII)	(L)	(Z)	(N)																																		
				3 wire (NPN equiv.)	-	5V	-	-	A76H	A96V	A96	•	•	-	-	IC circuit	-																																
Reed switch		Grommet	Yes		-	-	200V	A72	A72H	-	-	•	٠	-	-																																		
¥İ.			100					A73	A73H	-	-	•	٠	٠	-	-																																	
ŝ	_					12V	100V	_	_	A93V	A93	•	٠	-	-		_ .																																
Sec.			No	2 wire	0.00	5V,12V	100V or less	A80	A80H	A90V	A90	•	٠	_	_	IC circuit	Relay PLC																																
Å		•	Yes	1	24V	12V	-	A73C	_	_	_	•	٠	•	•	_	FLO																																
		Connector	No	1		5V, 12V	24V or less	A80C	_	_	_	•	٠	٠	•	IC circuit																																	
	Diagnostic indication (2 color indicator)	Grommet	Yes			_	_	A79W	_	-	-	•	•	_	_	_																																	
				3 wire		3 wire (NPN)	5V, 12V		F7NV	F79	-	-	٠	٠	0	-	IC circuit																																
				(NPN)				12V		_	_	F9NV	F9N	•	٠	_	-	_	1																														
			3 wire	1	5V, 12V		F7PV	F7P	_	_	•	٠	0	-	IC circuit	1																																	
		(PNP)					_	_	F9PV	F9P	•	•	_	-		1																																	
_	_				 24V _			F7BV	J79	_	_	•	•	0	_																																		
switch				2 wire			241/	12V		_	_	F9BV	F9B	•	•	_	-	_																															
, Š		Connector	1					241/	241/	2411	241/	241/	241/	241/	241/	2411	2411	241/	241/	241/	241/	241/	241/	241/	241/	241/	241/	241/	241/	241/	241/	241/	241/	241/	241/	241				J79C	_	_		•	•	•	•		
es			1	3 wire																																		_	F7NWV	_	F9NWV	F9NW	•	•	0	-		Relay	
state			Yes	(NPN)					_	F79W	_	_	•	•	0	-		PLC																															
S N	Diagnostic indication			3 wire	1	5V, 12V		_	F7PW	_	_	•	•	0	_	IC circuit																																	
Solid	(2 color indicator)			(PNP)				_		F9PWV	F9PW	•	•	0	_																																		
Š		Grommet			1	121/		F7BWV		F9BWV	F9BW	•	•	0	-	l _																																	
	Water resistant (2 color indicator)	Grommer		2 wire	12	12V	12V			-	F7BA	-	F9BA	-	•	0	-																																
	With timer			3 wire (NPN)	1			-	F7NT	-	_	-	•	0	-		1																																
	Diagnostic indication (2 color indicator)			4 wire	1	5V, 12V	5V, 12V		-	F79F	-	-	•	•	0	_	IC circuit																																
	Latch type with diagnostic output (2 color indicator)			4 wire (NPN)		-		-	F7LF	-	-	•	•	0	-	-																																	

* Lead wire length symbol 0.5m Nil (Example) A80C 5m Z (Example) A80CZ

3m L (Example) A80CL None N (Example) A80CN * Solid state auto switches marked with a "O" are produced upon receipt of order.

* D-F7 \square WV types are not compatible with Z (5m) products.

* The standard cable length for F7BA, F9BA and F7NT is 3m. D-F7BAL, D-F9BAL, F7NTL

Cylinder Specifications

Fluid	Air								
Proof pressure		1.5MPa {15	.3kgf/cm ² }						
Maximum operating pressure	1.0MPa {10.2kgf/cm ² }								
	ø12		ø20 to ø63						
Minimum operating pressure	0.07MPa {0.71kg	/cm²}	0.05N	IPa {0.51kgf/cm ² }					
Piston speed		70 to 50	0mm/s						
Ambient & fluid temperature	0°C to 60°C (without freezing)								
Humidity	25 to 85% RH (without condensation)								
Lubrication	Non-lube								
Stroke length tolerance range	ø12, ø20:*	1.0 0	ø32,	, ø40, ø50, ø63: +1.6 0					
Air cushion	ø12, ø20, ø32	without	ø40, ø	ø50, ø63 with					
Thread tolerance		JIS Cla	ass 2						
Ded nen veteting ecourees	ø12	ø2	0	ø32, ø40, ø50, ø63					
Rod non-rotating accuracy	±2°	±1	0	±0.8°					
Mounting	Double end tapped (stand	dard), Foot ty	/pe, Flange	type, Double clevis type					
Auto switch	Re	ed type, So	lid state ty	ре					

Sensor Specifications

Cable	Ø7, 6-core twisted pair shielded wire (oil, heat & flame resistant cable) (Standard with connector made by TAJIMI ELECTRONICS CO., LTD., R04-J8M7.3)
Transmission distance	23m (when using SMC cable and counter)
Position detection system	Magnetic scale rod Sensor head <cable 3m="" 50cm,="" length=""> <non-rotating> <incremental type=""></incremental></non-rotating></cable>
Magnetic resistance	145 gauss
Power supply	12 to 24VDC (±10%) (power supply ripple: 1% or less)
Current consumption	40mA
Resolution	0.1mm/pulse
Accuracy	±0.2mm Note 1)
Output type	Open collector (24VDC, 40mA)
Output signal	A/B phase difference output
Insulation resistance	500VDC, 50M Ω or more (between case and 12E)
Vibration resistance	33.3Hz, 6.8G 2 hrs. each in X, Y directions 4 hrs. in Z direction based upon JIS D1601
Impact resistance	30G 3 times each in X, Y, Z directions
Enclosure	IP65 (IEC Standard) Note 2)
Extension cable (optional)	5m, 10m, 15m, 20m (Connector made by TAJIMI ELECTRONICS CO., LTD., R04-P8F7.3)

Note1) This includes the digital display error of the counter (CEU1). Note 2) The cylinder section does not have a water resistant enclosure.

Standard Strokes

Denseine	Stroke (mm)													
Bore size (mm)	25	50	75	100	125	150	175	200	250	300	400	500		
12	•	•	•	•	•	•	_	_	-	_	_	-		
20	•	•	•	•	•	•	•	•	-	_	_	-		
32	-	•	•	•	•	•	•	•	•	•	_	_		
40	-	_	-	•	•	•	•	•	•	•	•	•		
50	-	_	-	-	_	-	_	•	_	•	_	•		
63	-	-	_	-	_	_	_	•	-	•	_	•		

* Contact SMC regarding non-standard strokes.

When the bore size is 12mm and the stroke length is 100mm or more, particular care should be taken regarding an offset load on the rod.

Symbol

Bracket Part Nos.

Bore size (mm)	*Foot	Flange	Double clevis				
12	CQ-L012	CQ-F012	CQ-D012				
20	CQ-L020	CQ-F020	CQ-D020				
32	CQ-L032	CQ-F032	CQ-D032				
40	CQ-L040	CQ-F040	CQ-D040				
50	CQ-L050	CQ-F050	CQ-D050				
63	CQ-L063	CQ-F063	CQ-D063				

Note 1) When ordering foot type brackets, 2pcs. should be arranged for each cylinder.

Note 2) The following parts are included with each mounting bracket. Foot, Flange/Body mounting bolts

Double clevis/Clevis pin, C type snap ring for shaft, Body mounting bolts

Auto switch mounting bracket part nos.

Bore size (mm)	Mounting bracket no.	Note	Applicable switch
12 20	BQ-1	 Switch mounting screw (M3 x 0.5 x 8) Square nut 	D-A7, A8 D-A7⊟H, A80H D-A73C, A80C
32 40 50 63	BQ-2	 Switch mounting screw (M3 x 0.5 x 10) Switch spacer Switch mounting nut 	D-A79W D-F7⊡V D-F7, J7 D-J79C D-F7⊡WV D-F79W, J79W

Series CE1

Weight Table (without Mounting Bracket/Connector)

		Unit: kg (without brackets)											
Bore size	Cylinder stroke (mm)												
(mm)	25	50	75	100	125	150	175	200	250	300	400	500	
12	0.29	0.33	0.36	0.4	0.43	0.47	-	-	-	-	-	-	
20	0.51	0.58	0.65	0.72	0.79	0.86	0.93	1.0	_	-	-	_	
32	-	0.94	1.05	1.15	1.26	1.36	1.47	1.58	1.79	2.0	-	_	
40	-	-	-	1.7	1.83	1.95	2.08	2.2	2.45	2.7	3.2	3.7	
50	-	_	_	_	-	_	_	3.4	_	4.1	_	5.5	
63	-	_	-	_	-	_	_	4.2	_	5.0	_	6.6	

Proper Auto Switch Mounting Position

Refer to p.32 regarding dimensions for the proper auto switch mounting position (stroke end).

Rod End Nut Dimensions

(1pc. is included as standard.)

Materials: ø12, ø20 Steel ø32 to ø63 Rolled steel

Electrical Wiring

Output type

The output signal of the scale cylinder is A/B phase difference output (open collector output) as shown in the figure below.

The relation between the movement distance and the signal output of the scale cylinder is that for each 0.1mm of movement a one pulse signal is output to both output terminals A and B.

Furthermore, the maximum response speed of the sensor for the scale cylinder is at a maximum cylinder speed of 1500mm/s (15kcps).

Input/Output

The input/output of the scale cylinder is performed by a ø7 shielded twisted pair wire from the sensor section plus a connector.

Output circuit of scale cylinder (Brown, Blue)

Signal table

Wire color	Signal name	Connector pin symbol
White	A phase	A
Yellow	B phase	В
Brown, Blue	COM(0V)	C, D
Red	12V, 24V (power supply)	E
Black	0V (power supply)	F
(Shield)	Shield	G

Construction

ø**12**, ø**20**

ø**32**

ø40 to ø63

Parts list

No.	Description	Material	Note
1	Cylinder body	Aluminum alloy	
_		Brass	ø12, ø20
2	Rod cover	Aluminum alloy	ø32 to ø63
3	Head cover	Aluminum alloy	
		Magnetic material	ø12
4	Piston	Aluminum alloy	ø20 to ø63 (built-in magnet)
5	Piston rod	Stainless steel	
6	Rod cover disk	Aluminum alloy	
7	Sensor unit	—	
8	Sensor setting bracket	Stainless steel	
9	Sensor setting piece assembly	_	ø20 to ø63
10	Pin	Stainless steel	ø12 to ø32
11	Sensor guide	Lead-bronze casting	ø32 to ø63
12	Case setting nut	Carbon steel	ø32 to ø63
13	Cushion ring A	Rolled steel	ø40 to ø63
14	Cushion ring B	Rolled steel	ø40 to ø63
15	Cushion valve	—	ø40 to ø63
16	Piston nut	Rolled steel	ø40 to ø63
17	Port joint	Stainless steel	ø40 to ø63

Parts list

No.	Description	Material	Note
18	Wear ring	Resin	ø40 to ø63
19	Rod end nut	Steel	ø12, ø20
19	Kou enu nut	Rolled steel	ø32 to ø63
20	Sensor setting plate	Cold rolled special steel strip	
21	C type snap ring	Carbon steel	
22	Plastic magnet	—	
23	Cross recessed round head screw	Carbon steel wire	
24	Cross recessed countersunk head screw	Carbon steel wire	
25	Hexagon socket head cap screw	Chrome molybdenum steel	
26	Spring washer	Steel wire	
27	Case gasket	NBR	
28	Case screw gasket	NBR	
29	Piston seal	NBR	
30	Rod seal	NBR	
31	Gasket	NBR	
32	Cushion seal	NBR	
33	Piston gasket	NBR	
34	Port seal	NBR	
35	Joint seal	NBR	
36	Valve seal	NBR	
37	Valve retainer seal	NBR	

* Since there is a possibility of improper operation, contact SMC regarding the replacement of seals.

Series CE1

\emptyset **12,** \emptyset **20**/Dimensions

Stroke

Double end tapped CE1B Bore size

														(mm)
Bore size (mm)	St	andard stroke	Α	В	С	D	E	G	н	I	I	K	L	М
12	25, 50	, 75, 100, 125, 150	94	69	15	6	25	42.5	M5 x	0.8	16	5.2	25	15.5
20	25, 50, 75,	100, 125, 150, 175, 200	106	78	15.5	10	36	53.5	M8 x	1.25	10	8	28	25.5
Bore size (mm)	N	0	I I	P	Q	R	* T	V	Y					
12	-	M4 x 0.7	M5 :	x 0.8	47	7	53.5	22	7					
20	5.5	M6 x 1	M5 :	x 0.8	50	15	62.5	36	5					

* Refer to page 11 regarding the rod end nut which is included. * Dimensions for auto switch model D-F79W.

(mm)

Bore size	Foot type						Front	Front flange type, Rear flange type Rear flange type				Double clevis type													
(mm)	Α	LA	LB	LD	LE	LH	LL	LS	LX	LY	LZ	FD	FL	F۷	FX	FΖ	Α	Α	CD	CL	CU	CW	СХ	CZ	RR
12	106.5	4.5	8	4.5	29.5	17	2	85	34	52	44	4.5	5.5	25	45	55	99.5	114	5	108	7	14	5	10	6
20	121	5.8	9.2	6.6	42	24	3.2	96.4	48	66.5	62	6.6	8	39	48	60	114	133	8	124	12	18	8	16	9

Series CE1

Ø32, Ø40, Ø50, Ø63/Dimensions

Double end tapped CE1B Bore size Stroke

(mm)

Bore size (mm)	Sta	Indard stro	oke	Α	В	С	D	E	F	G		н	I	J	К
32	50, 75, 100, 1	50, 75, 100, 125, 150, 175, 200, 250, 300		131	90	27	16	45	49.5	64	M14	x 1.5	14	4.5	14
40	100, 125, 150	100, 125, 150, 175, 200, 250, 300, 400, 500		177	136	27	16	52	57	71.5	M14	x 1.5	24	5	14
50	20	00, 300, 50	00	193	144	32	20	64	71	85.5	M18	x 1.5	22.5	7	18
63	20	00, 300, 50	00	194	145	32	20	77	84	98.5	M18	x 1.5	21	7	18
Bore size (mm)	L	M	N		0		P	Q	* T	X	Z				
32	41	34	5.5	M	5 x 1	Rc(F	PT) 1/8	56	57.5	30	14	-			
40	41	40	5.5	M	5 x 1	Rc(F	PT) 1/8	62	64.5	30	14				
50	49	50	6.6	M	3 x 1.25	Rc(F	PT) 1/4	61.5	76.5	35	19	-			
63	49	60	9	M10) x 1.5	Rc(F	PT) 1/4	64	89.5	35	19				

* Refer to page 11 regarding the rod end nut which is included. * Dimensions for auto switch model D-F79W.

14 89.5

9 16.2 * Dimensions for auto switch model D-F79W.

84.5 177.4 109.5

219.2

Series CEU Series CE Counter / Extension Cable

Multi Counter

How to Order

Connection Method

Counter Series CEU5

Multi Counter/Specifications

Model	CEU5	CEU5-D	CEU5P	CEU5P-D	CEU5B	CEU5B-D	CEU5PB	CEU5PB-D				
Туре				Multi	counter							
Mounting			Surf	ace mounting (D	DIN rail or screw s	top)						
Operating system		Adding - subtracting type										
Operation modes		Operating mode, Data setting mode, Function setting mode										
Reset system				External re	eset terminal							
Display system				LCD (with	back light)							
Number of digits				6 d	ligits							
Memory holding {storage medium}		{	Setting value (alv E²ROM (warning	vays held), Cour display after writ	nt value (hold/nor ting approx. 800,0	n-hold switching 100 times: E2FU), IL)}					
Input signal type			Count input, C	Control signal inp	out (reset, hold, ba	ank selection)						
Count input				No-voltage	e pulse input							
Pulse signal system			90° phase differ	rence input Note 1)	/ UP·DOWN sepa	arate input Note 2)						
Counting speed				100kH	z Note 1)							
Control signal input				Voltage input (1	2VDC or 24VDC)							
Sensor power supply				12VDC ±1	10%, 60mA							
Output signal type	Pr	eset output, Cyl	inder stop output		Preset o	utput, Cylinder s	stop output, BCD	output				
Preset output configuration		Compare/Hold/One-shot (100ms point to point)										
Output system		Separate 5 point output/Binary code output										
Output delay time					r normal output)							
Communication system			1	RS-	232C		T					
Output transistor mode	NPN oper MAX. 30VI		PNP oper MAX. 30V		NPN oper MAX. 30VDC		PNP oper MAX. 30VDC	n collector , 50mA ^{Note 2)}				
Power supply voltage	100 to 240VAC (±10%)	24VDC (±10%)	100 to 240VAC (±10%)	24VDC (±10%)	100 to 240VAC (±10%)	24VDC (±10%)	100 to 240VAC (±10%)	24VDC (±10%)				
Power consumption	20VA or less	10W or less	20VA or less	10W or less	20VA or less	10W or less	20VA or less	10W or less				
Withstand voltage					line: 1500VAC fo nal ground: 500VA							
Insulation resistance			Betwee	en case and AC	line: 500VDC, 50	$M\Omega$ or more						
Ambient temperature				0 to 50°C (wi	thout freezing)							
Ambient humidity			35	5 to 85%RH (wit	hout condensation	n)						
Noise resistance	Square wa	ave noise from a	noise simulator (pulse duration 1	μ s) between pow	er supply termir	nals ±2000V, I/O li	ne ±600V				
Vibration resistance	Endurance 10 to 55Hz; amplitude 0.75mm; X, Y, Z for 2 hours each											
Impact resistance	Endurance 10G; X, Y, Z directions, 3 times each											
Veight 350g or less												
Note 1) 90° phase differen	ice input											
A phase I		_	Multi Cour	stor/Dimo	nciona							
B phase J												
A	BCD					*						

C t Counting input pulse duration A: B: C: D: 2.5µsec or more required t :10µsec or more required 1 $-=\frac{1}{10 \times 10^{-6}}=100000$ Hz Counting speed f = t (Approx:100kHz) Note 2) UP / DOWN input Input wave form conditions: At a maximum of 100kHz, the UP/DOWN wave form should be as shown below. UP +12V pulse ±10% DOWN +12V pulse ±10% 5µsec

5µsec

5µsec

Series CEU1

■ 3 Point Preset Counter ALARDINE . How to Order CEU1 \oplus ¢ . 121/ Counter drive power supply COUNTER:CE RG **BB** 80 to 120VAC Nil 8888.8 DAT D 24VDC ∕© SMC SF AC100V OUT1 Output mode selection $\otimes \otimes \otimes$ \oplus \oplus Nil NPN open collector output Ρ PNP open collector output

Connection Method

<u>3 Point Preset Counter/Specifications</u>

Model	CEU1	CEU1P	CEU1-D	CEU1P-D						
Туре	3 point preset counter									
Mounting	Surface mounting (DIN rail or screw stop)									
Operating system	Adding - subtracting type									
Operation modes		Operating mode,	Data setting mode							
Reset system		External re	set terminal							
Display system		LCD (with	back light)							
Number of digits		5 digit display (–9	9999.9 to 9999.9)							
Memory holding {storage medium}	Preset data (always h	eld) {E ² ROM (warning o	lisplay after writing appro	ox. 65,000 times: /드스)}						
Input signal type		Count input,	Reset input							
Count input		No-voltage	pulse input							
Pulse signal system		90° phase dif	ference input							
Counting speed		201	Hz							
Reset input	R.S. and CC	OM terminals are shor	ed for 10ms or more	(pulse input)						
Sensor power supply		12VDC ± 1	0%, 60mA							
Output signal type		Preset	output							
Preset output configuration	C	ompare/Hold/One-sh	ot (100ms Fixed pulse	e)						
Output delay time		5ms c	or less							
Output transistor mode	NPN open collector MAX 30VDC, 50mA	PNP open collector MAX 30VDC, 50mA	NPN open collector MAX 30VDC, 50mA	PNP open collector MAX 30VDC, 50mA						
Power supply voltage	100VAC	(±10%)	24VDC	(±10%)						
Power consumption	10VA	or less	5W o	r less						
Withstand voltage		veen case and AC line veen case and signal								
Insulation resistance	Betv	veen case and AC line	e: 500VDC, 50MΩ or r	more						
Ambient temperature		0 to 50°C (wit	hout freezing)							
Ambient humidity	35 to 85%RH (without condensation)									
Noise resistance		ave noise from a noise en power supply termi								
Vibration resistance	Endurance	10 to 55Hz; amplitude	0.75mm; X, Y, Z for 2	hours each						
Impact resistance	Er	durance 10G; X, Y, Z	directions, 3 times ea	ich						
Weight		250g (or less							

3 Point Preset Counter/Dimensions

Series CEU

Extension Cable

How to Order

Operating Condition of each Output Mode

One-shot output

Hold output

Compare output

Series CEU

CEU5 Operation

• RS-232C communication speed unit (bps)

Keys and functions

Кеу	Function
MODE	Changes the mode. In any given condition, it shifts to the next mode. Does not write data.
SEL.	Shifts the cursor to the next item. Does not write data.
SET	Writes displayed data into the memory when setting.
RIGHT	Shifts the cursor to the right when setting numerical values.
LEFT	Shifts the cursor to the left when setting numerical values.
UP	Changes the contents of a setting. Increases the value when setting numerical values.
DOWN	Changes the contents of a setting. Decreases the value when setting numerical values.

In the explanations of the operating method, references to "direction keys" indicate the 4 keys RIGHT, LEFT, UP and DOWN.

CEU5 Operation

③ Explanation of settings in the function mode

If the UP/DOWN keys are pressed when an item name is flashing, it shifts to another setting item. When the SEL key is pressed, the cursor shifts and it is possible to change the content of the setting for the item which is being displayed.

- Settings can be made from 00 to 99.
- Store the setting with the SET key.

Series CEU

CEU1 Operation

Keys and functions

Key	Function
MODE	Switches between the count mode and the setting mode.
SHIFT	Switches digits for preset data input and allowable value input. Shifts the flashing cursor to the left each time it is pressed.
SEL	In the setting mode, this switches the output terminal number which is to be set. Switches in the order OUT1 \rightarrow OUT2 \rightarrow OUT3 each time it is pressed.
DATA	In the setting mode, this changes numerical values, or codes and symbols. Numerical values increase by 1 each time it is pressed. For positive and negative codes, a minus sign turns on or off.
SET	Registers the setting contents in the setting mode. Press this key to perform registration after making setting changes. The setting will not be registered if the screen is changed by pressing the [MODE] or [SEL] keys without pressing the [SET] key.

The counter mode changes in the order shown below each time the [MODE] key is pressed.

• Output terminals 1 through 3 can be set separately.

 In the model CEU1, the allowable value is a ± value. (Only the model CEU5 is equipped with a function to set different values for the upper and lower limits.)

BCD Output

This is a system which expresses one digit of a decimal number with a 4 digit binary number.

The count value is expressed by the ON/OFF state of each BCD output terminal. In the case of 6 digits, 24 terminals are required.

The relation between decimal numbers and BCD codes is shown in the table below.

Decimal No.	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Ex.) 1294.53 is expressed as follows. 0001 0010 1001 0100 0101 0011

RS-232C

This is the interface standard for the serial transmission method, which is standard equipment on a personal computer.

Prescale Function

This function allows free setting of how many millimeters will indicate one pulse.

Binary Output

31 point preset output is possible without bank switching, by means of binary system output from a 5 point output terminal. Cylinder stop output is used as the readout release signal.

The coincident preset number is expressed as a 5 digit binary number.

Bank Function

5 points of preset output are possible simultaneously, however, a maximum of 20 types of work discrimination, etc. can be performed by using the 5 points of preset values as one of a maximum of four quadrats, and switching its use during operation.

For example, when bank 2 is selected, presets 6 through 10 are valid and when the count value coincides with the setting value of 6 through 10, the respective output terminals ① through (5) are turned ON.

Bank switching correspondence table

Input terminal Bank No.	BANK 2	BANK 1
1	OFF	OFF
2	OFF	ON
3	ON	OFF
4	ON	ON

Glossary (CEU5 Functions)

Display Offset Function

Normally the count value returns to "0" after resetting, but with this function, the initial value can be set to any desired value.

Hold Function

When "hold" is input, the counter holds the current count value in memory. Next, when the count value is read into a PLC which uses serial or BCD output, etc., the count value that was held can be read in, even if there is a time lag.

Setting of Preset Value Tolerances

In the current model CEU1, the preset value tolerances could only be set as \pm , but now it has become possible to set an upper and lower limit of + \bigcirc mm and $- \triangle$ mm.

By including preset tolerance setting, superior performance is exhibited in parts inspections, etc. In a work piece to be measured, there are tolerances which assure a good product. For example, in the case of $10^{+0.05}_{-0.02}$, the CEU5 allows these tolerances to be input as they stand. If the work piece is within tolerances the OK signal is sent.

On the other hand, in ordinary counters, No.1 is set to 9.98 and No.2 is set to 10.06, and if No.1 is ON and No.2 is OFF, an acceptance decision is made. 2 points of output are used in order to check whether or not the product is within dimension tolerances. In this example, one preset of the CEU5 performs the same function as two presets of an ordinary counter.

OK/NG signal is output by the counter. Labor savings can be realized in parts inspections.

Count Value Protection

In the past, the count value returned to "0" when the power supply was cut off, but this function holds the previous value even after a power failure. This function can be switched between active and inactive settings.

Cylinder Stop Output

When work piece discrimination is performed using a preset counter, it has been common to estimate the amount of time from the cylinder's start of operation until it touches the work piece and stops, using a timer to read the output after a fixed amount of time.

Since cylinder stop output is now output when there is no cylinder movement for a fixed amount of time, timing of preset output and external output, etc. is simplified.

Series CE Auto Switch Common Specifications

▲ Specific Product Precautions

Be sure to read before handling.

Refer to pages 39 through 41 for auto switch precautions.

Auto Switch Common Specifications

Туре	Reed switch	Solid state switch	
Leakage current	None	3 wire: 10µA or less 2 wire: 1mA or less	
Operating time	1.2ms	1ms or less Note 3)	
Impact resistance	300m/s² {30.6G}	1000m/s² {102G}	
Insulation resistance	$50 \text{M}\Omega$ or more with a 500VDC megohmmeter (between lead wire & case)		
Withstand voltage	1500VAC for 1 min. ^{Note 1)} (between lead wire & case)	1000VAC for 1 min. (between lead wire & case)	
Ambient temperature	-10 to 60°C		
Enclosure	IEC529 standard IP67, JISC0920 watertight construction Note 2)		

Note 1) Electrical entry: Connector type (A73C, A80C, C73C, C80C) and D-9, 9□A , A9, A9□V are 1000VAC for 1 min. (between lead wire and case)

Note 2) Terminal conduit type (D-A3, A3□A, A3□C, G39, G39A, G39C, K39A, K39C) and DIN terminal type (D-A44, A44A, A44C) are IEC529 standard IP63, JISC0920 raintight construction.

Note 3) Excluding solid state switches with timer (D-M5□TL, G5NTL, F7NTL, F5NTL) and ferromagnetic resistant 2 color indicator type solid state switch (D-P5DWL). D-J51 is 5ms or less.

Lead Wire Length

Lead wire length designation (example)

Lead wire length
 <u>Nil</u>
 0.5m
 L
 3m
 Z
 5m
 5m

None

Note) Applies only to D–
C type connector switches.

Note 1) Lead wire length Z: Auto switches applicable for 5m

Reed switch: D-B53/B54, D-C73(C)/C80C, D-A73(C)(H)/A80C

NNote

D-A53/A54, D-Z73, D-90/97/90A/93A

Solid state switch: All models are produced upon receipt of order (standard procedure). However, this does not include D-F9, $F9\Box V$ and $F7\Box WV$.

Note 2) A lead wire length of 3m is standard for solid state switches with timer and water resistant 2 color indicator type solid state switches. (0.5m is not available.)

Note 3) Lead wire lengths of 3m and 5m are standard for ferromagnetic resistant 2 color indicator type solid state switches. (0.5m is not available.)

Part Nos. of lead wires with connectors (applicable only for connector type)

(
Туре	Lead wire length	
D-LC05	0.5m	
D-LC30	3m	
D-LC50	5m	

Contact Protection Box

D-A7 and D-A8 type switches do not have built-in contact protection circuits. A contact protection box should be used in cases such as when there is an induction load, when lead wires are 5m or longer, and with 100V or 200VAC.

Part No.	Operating voltage	Lead wire length			
CD-P11	100V, 200VAC	Switch connection side: 0.5m			
CD-P12	24VDC	Load connection side: 0.5m			

 \ast Since D-A8 switches have no particular voltage designation below 100VAC, type selection should be based upon the operating voltage.

Contact protection box internal circuits

Lead wire colors inside [] are those prior to conformity with IEC standards.

Switch Hysteresis

Proper Auto Switch Mounting Positions (Stroke End)

Proper auto switch mounting positions (Series CE1)

Auto autobalo ana dal	O. mark and	Bore size (mm)						
Auto switch model	Symbol	12	20	32	40	50	63	
D-A7, A8	Α	40.5	47	55	79	82	85.5	
D-A7, A0	В	4	13	17	39	44	41.5	
D-A7□H, A80H, A73C, A80C,	Α	41	47.5	55.5	79.5	82.5	86	
D-F7⊡, J79, F7⊡V, J79C	В	4.5	13.5	17.5	39.5	44.5	42	
D 4 7014/	Α	38	44.5	52.5	76.5	79.5	83	
D-A79W	В	2	10.5	14.5	36.5	41.5	39	
D-F7BA, F7⊡W, F7⊡F,	Α	45	51.5	59.5	83.5	86.5	90	
J79W	В	8.5	17.5	21.5	43.5	48.5	46	
D-F7⊡WV	Α	41.5	48	56	80	83	86.5	
	В	5	14	18	40	45	42.5	
D-A9	Α	39.5	46	54	78	81	40.5	
D-A9	В	3	12	16	38	43	81.5	
DETNE	Α	46	52.5	60.5	84.5	87.5	91	
D-F7NT	В	9.5	18.5	22.5	44.5	49.5	47	
	Α	43.5	50	58	82	85	88.5	
D-F9	В	7	16	20	42	47	44.5	
	Α	42.5	49	57	81	84	87.5	
D-F9□W□	В	6	15	19	41	46	43.5	

Proper auto switch mounting positions (Series CEP1) (mm)

		Bore size (mm)		
Auto switch model	Symbol	12	20	
D-A90, A93, A96	Α	75.2	82	
D-A90, A93, A90	В	7.9	12	
D-A90V, A93V, A96V	Α	75.2	82	
D-A90V, A93V, A96V	В	7.9	12	
D-F9N, F9P, F9B	Α	79.2	86	
D-F9N, F9F, F9B	В	11.9	16	
D-F9NV. F9PV. F9BV	Α	78.2	85	
D-F9NV, F9FV, F9BV	В	10.9	15	
D-F9NW, F9PW, F9BW	Α	79.2	86	
D-F91100, F9F00, F9B00	В	11.9	16	
D-F9NWV, F9PWV, F9BWV	Α	78.2	85	
D-F9INWV, F9PWV, F9BWV	В	10.9	15	
D-F9BA	Α	79.2	86	
	В	11.9	16	

(mm)

Series CE Auto Switch Connections and Examples

Basic Wiring

Examples of Connection to PLC (Sequence Controller)

Specification for sink input

Specification for source input

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Connection Examples for AND (Series) and OR (Parallel)

2 wire with 2 switch AND connection

When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up if both of the switches are in the ON state.

x 2 pcs.

(Performed with switches only) Brown [Red] Switch 1 Black Bluek [Black]

AND connection for NPN output

The indicator lights will light up when both switches are turned ON.

2 wire with 2 switch OR connection

Load voltage at OFF = $\begin{array}{c} leakage \\ current \end{array}$ x 2 pcs. x impedance

Leakage current from switch is 1mA

= 6V

Example: Load impedance is 3kΩ

= 1mA x 2 pcs. x 3kΩ

<Solid state> When two switches are connected in parallel, malfunction may occur because the load voltage will increase when in the OFF state.

Switch 1

Switch 2

<Reed switch>

OR connection for NPN output

Brown

[Red]

Black [White

Brow [Red]

Bl

[Black]

Blue

[Black]

Because there is no current leakage, the load voltage will not increase when turned OFF, but due to the number of switches in the ON state, the indicator lights will sometimes get dark or not light up, because of dispersion and reduction of the current flowing to the switches.

Load

Black [White]

$= 24V - 4V \times 2 \text{ pcs.}$ = 16VExample: Power supply is 24VDC

Voltage decline in switch is 4V

Load voltage at ON = Power supply - Residual voltage

Series CE Related Products

Scale Cylinder with Brake/CE2 Controller/CEU2

ø40, ø50, ø63, ø80, ø100

A cylinder capable of highly reproducible positioning (stopping accuracy of \pm 0.5mm) has been created by adding a brake mechanism to a scale cylinder which can measure stroke length.

Rodless Scale Cylinder with Brake/ML2B

A cylinder capable of highly reproducible positioning (stopping accuracy of ±0.5mm) has been achieved by adding a brake mechanism and stroke sensor to a mechanically jointed rodless cylinder.

and <u>Stopping position</u> Target position Brake point Brake mechanism Measurement function Prediction control and learning function Resolution: 0.1 First oper **Employs a combination spring** (accurancy±0.2mm) ionina Measurement is performed by a scale plate and a built-in detection head. and air pressure locking system Overrun predicted from cylinder size d and load facto When there is a drop in air pressure or air compression is stopped, the slider is held by a spring lock. Brake poir Stopping po Relation of scale cylinder displacement to output pulse The brake mechanism keeps a Brake point is revised each time with respect to the previous positioning erro load from being applied to the Cylinder movement direction reciprocity ◆ · ◆ · 0.5 0.6 0.7 01 0.2 0.3 0.4 cvlinder section 0.0 The slider can be stopped without harming cylinder performance, because a load is not applied to the cylinder section. This is achieved by a structure in which the spring force acts directly on the brake shoe, pressing the brake plate on the right and left. Counter value o 2 3 3 2 1 1 Can lock in both directions Locking is possible on either of the cylinder's reciprocating strokes. 0 \square

Highly flexible port variations Concentrated port type (air drive)

Maintenance

The brake mechanism can be disassembled and replaced as a unit. In addition, manual release is possible.

Stroke adjustment unit combines a shock absorber and stopper bolt The stroke is adjustable.

The shock absorber is a non-adjustable energy absorbing part.

A mechanism to prevent the entrance of dust A special lip shaped side scraper is

installed on the bottom of the moving element to prevent the entrance of dust.

Auto switches have a space saving design which allows them to be contained inside the main body

Excellent mountability & space savings

35

Series CE Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of **"Caution"**, **"Warning" or "Danger"**. To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

Note 1) ISO 4414: Pneumatic fluid power – Recommendations for the application of equipment to transmission and control systems.

Note 2) JIS B 8370: Pneumatic system axiom.

3.An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

Series CE Actuator Precautions 1

Be sure to read before handling.

Precautions on design

A Warning

1. There is a possibility of dangerous sudden action by air cylinders if sliding parts of machinery are twisted due to external forces, etc.

In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed to avoid such dangers.

2. A protective cover is recommended to minimize the risk of personal injury.

If a stationary object and moving parts of a cylinder are in close proximity, personal injury may occur. Design the structure to avoid contact with the human body.

3. Securely tighten all stationary parts and connected parts so that they will not become loose.

When a cylinder operates with high frequency or a cylinder is installed where there is a lot of vibration, ensure that all parts remain secure.

4. A deceleration circuit or shock absorber, etc., may be required.

When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning, or install an external shock absorber to relieve the impact. In this case, the rigidity of the machinery should also be examined.

5. Consider a possible drop in operating pressure due to a power outage, etc.

When a cylinder is used in a clamping mechanism, there is a danger of work dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and human injury. Suspension mechanisms and lifting devices also require consideration for drop prevention.

6. Consider a possible loss of power source.

Measures should be taken to protect against human injury and equipment damage in the event that there is a loss of power to equipment controlled by air pressure, electricity or hydraulics, etc.

7. Design circuitry to prevent sudden lurching of driven objects.

When a cylinder is driven by an exhaust center type directional control valve or when starting up after residual pressure is exhausted from the circuit, etc., the piston and its driven object will lurch at high speed if pressure is applied to one side of the cylinder because of the absence of air pressure inside the cylinder. Therefore, equipment should be selected and circuits designed to prevent sudden lurching, because there is a danger of human injury and/or damage to equipment when this occurs.

8. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.

9. Consider the action when operation is restarted after an emergency stop or abnormal stop.

Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder has to be reset at the starting position, install manual safety equipment.

Selection

A Warning

1. Check the specifications.

The products advertised in this catalog are designed according to use in industrial compressed air systems. If the products are used in conditions where pressure, temperature, etc., are out of specification, damage and/or malfunction may be caused. Do not use in these conditions.

Consult SMC if you use a fluid other than compressed air.

2. Intermediate stops.

When intermediate stopping of a cylinder piston is performed with a 3 position closed center type directional control valve, it is difficult to achieve stopping positions as accurate and minute as with hydraulic pressure, due to the compressibility of air.

Furthermore, since valves and cylinders, etc. are not guaranteed for zero air leakage, it may not be possible to hold a stopped position for an extended period of time. Contact SMC in case it is necessary to hold a stopped position for an extended period.

▲ Caution

1. Use a speed controller to adjust the cylinder drive speed, gradually increasing from a low speed to the desired speed setting.

Mounting

▲ Caution

- 1. Do not apply strong impact or large moment, etc. when mounting a work piece. An external force greater than the allowable moment can cause rattling in the guide unit and increased sliding resistance, etc.
- 2. Do not use in applications subject to the effect of a large external force or impact force, etc.

This can cause failure.

3. Do not use until you verify that the equipment can operate properly.

After mounting, repair or modification, etc., connect the air supply and electric power, and then confirm proper mounting by means of appropriate function and leak inspections.

4. Instruction manual.

The product should be mounted and operated after thoroughly reading the manual and understanding its contents.

Keep the instruction manual where it can be referred to as needed.

Piping

▲ Caution

1. Preparation before piping.

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove cutting chips, cutting oil and other debris from inside the pipe. Series CE Actuator Precautions 2 Be sure to read before handling.

Lubrication

▲ Caution

1. Lubrication of non-lube type cylinder.

The cylinder is lubricated at the factory and can be used without any further lubrication.

However, in the event that it will be lubricated, use turbine oil class 1 (with no additives) ISO VG32.

Stopping lubrication later may lead to malfunction due to the loss of the original lubricant. Therefore, lubrication must be continued once it has been started.

Air Supply

▲ Warning

1. Use clean air.

If compressed air includes chemicals, synthetic oils containing organic solvents, salt or corrosive gases, etc., it can cause damage or malfunction.

▲ Caution

1. Install air filters.

Install air filters at the upstream side of valves. The filtration degree should be $5\mu m$ or less.

2. Install an air dryer, after cooler, etc.

Air that includes much condensate causes malfunction of valves and other pneumatic equipment. To prevent this, install an air dryer, after cooler, etc.

3. Use the product within the specified range of fluid and ambient temperature.

Take measures to prevent freezing, since moisture in circuits will be frozen under -5°C, and this may cause damage to seals and lead to malfunction.

Refer to the "Air Cleaning Equipment" catalog for details on compressed air quality.

Operating Environment

A Warning

1. Do not use in environments where there is a danger of corrosion.

Refer to the construction drawings regarding cylinder materials.

- 2. In dirty areas, such as dusty locations or where water, oil, etc. splash on the equipment, take suitable measures to protect the entire actuator.
- 3. When using auto switches, do not operate in an environment with strong magnetic fields.

▲ Caution

1. Do not use in an environment where fluids such as cutting oil will come into direct contact with the actuator.

Operation in environments where fluids such as cutting oil, coolant or oil mist come into contact with the actuator body can cause rattling, increased sliding resistance and air leaks, etc.

Operating Environment

▲ Caution

2. Do not operate in an environment where particulate matter, dust, cutting chips or spatter, etc. come into direct contact with the actuator.

This can cause rattling, increased sliding resistance and air leaks, etc. $% \label{eq:cause}$

Contact SMC regarding applications in this kind of environment.

3. Provide shading in locations which receive direct sunlight.

4. Block off any nearby heat sources.

When heat sources are present in the vicinity, it is possible for radiated heat to raise the product's temperature beyond its operating temperature range. In this case, a cover, etc. should be provided. to block the heat.

5. Do not operate in locations where vibration or impact occur.

Since this can cause damage or malfunction, etc., contact SMC regarding applications in this kind of environment.

6. Do not allow items influenced by magnetism near the actuator.

Since magnets are built into the cylinder, items such as magnetic disks, magnetic cards or magnetic tapes should not be allowed nearby, as data may be destroyed.

Maintenance

A Warning

1. Maintenance should be done according to the procedure indicated in the operating manual.

If handled improperly, malfunction and damage of machinery or equipment may occur.

2. Machine maintenance, and supply and exhaust of compressed air.

When machinery is serviced, first check measures to prevent dropping of driven objects and run-away of equipment, etc. Then cut off the supply pressure and electric power, and exhaust all compressed air from the system.

When machinery is restarted, check that operation is normal with actuators in the proper positions.

▲ Caution

1. Drain flushing.

Remove condensate from air filters regularly. (Refer to specifications.)

Series CE Auto Switch Precautions 1 Be sure to read before handling.

Design & Selection

A Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications for current load, voltage, temperature or impact.

2. Take precautions when multiple cylinders are used close together.

When multiple auto switch cylinders are used in close proximity, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40mm.

3. Pay attention to the length of time that a switch is ON at an intermediate stroke position.

When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

 $V(mm/s) = \frac{Auto switch operating range (mm)}{Time load applied (ms)} \times 1000$

4. Wiring should be kept as short as possible. <Reed switch>

As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)

- 1) For an auto switch without a contact protection circuit, use a contact protection box when the wire length is 5m or longer.
- 2) Even if an auto switch has a built-in contact protection circuit, when the wiring is more than 30m long, it is not able to adequately absorb the rush current and its life may be reduced. It is again necessary to connect a contact protection box in order to extend its life. Please contact SMC in this case.

<Solid state switch>

3) Although wire length should not affect switch function, use a wire 100m or shorter.

Take precautions for the internal voltage drop of the switch. <Reed switch>

- 1) Switches with an indicator light (Except D-A76H, A96, A96V)
- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diode. (Refer to internal voltage drop in the auto switch specifications.)

[The voltage drop will be "n" times larger when "n" auto switches are connected.]

Even though an auto switch operates normally, the load may not operate.

🗥 Warning

 In the same way, when operating under a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Supply _ Internal voltage _ Minimum operating voltage drop of switch _ Voltage of load

 If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator lamp (Model D-A80, A80H, A90, A90V).

<Solid state switch>

3) Generally, the internal voltage drop will be greater with a 2 wire solid state auto switch than with a reed switch. Take the same precautions as in 1).

Also, note that a 12VDC relay is not applicable.

6. Pay attention to leakage current.

<Solid state switch>

With a 2 wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

Operating current of load (OFF condition) > Leakage current

If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3 wire switch if this specification will not be satisfied.

Moreover, leakage current flow to the load will be "n" times larger when "n" auto switches are connected in parallel.

7. Do not use a load that generates surge voltage.

<Reed switch>

If driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or use a contact protection box.

<Solid state switch>

Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.

8. Cautions for use in an interlock circuit.

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.

9. Ensure sufficient clearance for maintenance activities.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections. Series CE Auto Switch Precautions 2

Be sure to read before handling.

Mounting & Adjustment

A Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts (300m/s² or more for reed switches and 1000m/s² or more for solid state switches) while handling.

Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.

2. Do not carry a cylinder by the auto switch lead wires.

Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.

3. Mount switches using the proper fastening torque.

When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position.

4. Mount a switch at the center of the operating range.

Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON).

(The mounting position shown in a catalog indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.

Wiring

A Warning

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from applying bending stress or stretching force to the lead wires.

2. Be sure to connect the load before power is applied.

<2 wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

4. Do not wire with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits, including auto switches, may malfunction due to noise from these other lines.

5. Do not allow short circuit of loads. <Reed switch>

If the power is turned ON with a load in a short-circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

Wiring

\land Warning

<Solid state switch>

Model D-F9 \square (V), F9 \square W(V) and all models of PNP output type switches do not have built-in short circuit prevention circuits. If loads are short circuited, the switches will be instantly damaged. Take special care to avoid reverse wiring with the brown (red) power supply line and the black (white) output line on 3 wire type switches.

6. Avoid incorrect wiring.

<Reed switch>

A 24VDC switch with indicator light has polarity. The brown lead wire or terminal No. 1 is (+), and the blue lead wire or terminal No. 2 is (–).

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.

Also note that a current greater than that specified will damage a light emitting diode and it will no longer operate.

Applicable models: D-A73, A73H, D-A93, A93V

 Note however, that in the case of 2 color indicator type auto switches (D-A79W), if the wiring is reversed, the the switch will be in a normally ON condition.

<Solid state switch>

- If connections are reversed on a 2 wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
- 2) If connections are reversed (power supply line + and power supply line –) on a 3 wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue (black) wire and the power supply line (–) is connected to the black (white) wire, the switch will be damaged.

* Lead wire color changes

Lead wire colors of SMC switches and related products have been changed in order to meet NECA (Nippon Electric Control Equipment Industries Association) Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided.

Special care should be taken regarding wire polarity during the time that the old colors still coexist with the new colors.

2 wire			3 wire			
	Old	New		Old	New	
Output (+)	Red	Brown	Power supply	Red	Brown	
Output (-)	Black	Blue	GND	Black	Blue	
			Output	White	Black	

Solid state switch with latch

Solid state switch

				type diagnostic output			
		Old	New		Old	New	
	Power supply	Red	Brown	Power supply	Red	Brown	
	GND	Black	Blue	GND	Black	Blue	
	Output	White	Black	Output	White	Black	
	Diagnostic Output	Yellow	Orange	Latch type diagnostic Output	Yellow	Orange	

Series CE Auto Switch Precautions 3 Be sure to read before handling.

Operating Environment

A Warning

1. Never use in an atmosphere of explosive gases.

The structure of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.

2. Do not use in an area where a magnetic field is generated.

Auto switches will malfunction or magnets inside cylinders will become demagnetized. (Consult SMC regarding the availability of a magnetic field resistant auto switch.)

3. Do not use in an environment where the auto switch will be continually exposed to water.

Although switches, except for a few models, satisfy IEC standard IP67 construction (JIS C 0920: watertight construction), do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.

4. Do not use in an environment with oil or chemicals.

Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.

5. Do not use in an environment with temperature cycles.

Consult SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected.

6. Do not use in an environment where there is excessive impact.

<Reed switch>

When excessive impact (300m/s2 or more) is applied to a reed switch during operation, the contact point will malfunction and generate or cut off a signal momentarily (1ms or less). Consult SMC regarding the need to use a solid state switch depending upon the environment.

7. Do not use in an area where surges are generated.

<Solid state switch>

When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around cylinders with solid state auto switches, this may cause deterioration or damage to the switch. Avoid sources of surge generation and disorganized lines.

8. Avoid accumulation of iron powder or close contact with magnetic substances.

When a large amount of ferrous powder such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause the auto switch to malfunction due to a loss of the magnetic force inside the cylinder.

Maintenance

A Warning

- 1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
 - 1) Secure and tighten switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.

2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.

3) Confirm the lighting of the green light on the 2 color indicator type switch.

Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

Other

A Warning

1. Consult SMC concerning water resistance, elasticity of lead wires, and usage at welding sites, etc.

Be sure to read before handling. Refer to pages 36 through 41 for safety precautions, actuator precautions and auto switch precautions.

Mounting

▲ Caution

1. When screwing a nut or fitting, etc. onto the threaded section at the end of the piston rod, return the piston rod to its fully retracted position, and grasp the exposed portion of the rod across two parallel sides with a wrench. In the case of the high precision scale cylinder, there are no parallel sides. Secure the work piece with a double nut.

Note) Do not apply rotational torque to the piston rod.

- 2. The load on the piston rod should normally be applied in an axial direction.
 - In case a load is applied that is not in the axial direction of the cylinder, the load itself should be controlled with a guide.
 - When mounting the cylinder, it should be carefully aligned.
- Applications which apply rotational torque to the piston rod should be avoided.
- Be careful to avoid scratches or dents, etc. on the sliding sections of the piston rod.

Sensor Unit

▲ Caution

- 1. The sensor unit is adjusted to the proper position at the time of shipment. Therefore, the sensor unit should not be removed from the body under any circumstances.
- 2. The cylinder should be protected from contact with liquids such as coolants or coolant water. (CE1)
- 3. The sensor cable should not be pulled with a strong force.
- Since the scale cylinder sensor uses a magnetic system, malfunction may occur if there is a strong magnetic field near the sensor.

The cylinder can be used in an external magnetic field of 145 gauss or less.

This is equivalent to a magnetic field from a welding unit using a welding current of about 15,000 amperes, at a radius of approximately 18cm. When operating in a magnetic field greater than this, the sensor unit should be shielded with a magnetic material.

Switches or relays, etc. should not be installed in the power supply line (12 to 24VDC).

Effects of Noise

▲ Caution

When the scale cylinder is used near a motor, welding machine or other source of noise generation, there is a possibility of miscounting. In this case, noise should be suppressed as much as possible and the following countermeasures should be taken.

- 1. Connect the shield wire to FG (frame ground).
- 2. The maximum transmission distance for the scale cylinder is 23m, but since the output signal is a pulse output, the sensor cable should be wired separately from other power lines.

* When using SMC extension cable and counter.

Noise Countermeasures for the Scale Cylinder

Methods of dealing with noise are given below.

- 1. Connect only the shield wire to FG (frame ground).
- 2. Use a power source separate from large motors and AC type valves, etc.
- 3. Run the scale cylinder's cable away from other power lines.
- 4. Install a noise filter in the 100VAC power line, and install a varistor in the DC power supply of the sensor cable.

<Counting speed of counter>

When the speed of the scale cylinder is greater than the counting speed of the counter, the counter will miscount.

For the CE1 (when measuring to 0.1mm), a counter should be used with a counting speed of 10kHz (kcps) or more, and for the CEP1 (when measuring to 0.01mm) using 4 times input, a counter should be used with a counting speed of 50kHz (kcps) or more.

<Malfunction due to lurching and bounding>

When lurching or bounding occurs at the beginning or end of strokes, or due to other causes, the cylinder speed momentarily increases, and there is a possibility of exceeding the counting speed of the counter or the response speed of the sensor, thereby causing a miscount.

The product should be used under conditions such that lurching and bounding will not occur.

The instruction manuals should be read before using the Series CEP1 high precision scale cylinder, CEU5 multi counter, Series CE1 scale cylinder and CEU1 3 point preset counter.

SMC'S GLOBAL MANUFACTURING, DISTRIBUTION AND SERVICE NETWORK

EUROPE

AUSTRIA SMC Pneumatik GmbH. CZECH SMC Czech s.r.o. FRANCE SMC Pneumatique SA GERMANY SMC Pneumatik GmbH HUNGARY SMC Hungary Kft. IRELAND SMC Pneumatics (Ireland) Ltd. **ITALY/ROMANIA** SMC Italia S.p.A. NETHERLANDS SMC Controls BV. SLOVAKIA SMC Slovakia s.r.o. SLOVENIA SMC Slovenia d.o.c. SPAIN/PORTUGAL

SMC Espana, S.A. SWEDEN SMC Pneumatics Sweden AB SWITZERLAND

SMC Pneumatik AG. UK SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA SMC (China) Co., Ltd. HONG KONG SMC Pneumatics (Hong kong) Ltd. INDIA SMC Pneumatics (India) Pvt. Ltd. MALAYSIA SMC Pneumatics (S.E.A.) Sdn. Bhd. PHILIPPINES SMC Pneumatics (Philippines), Inc. SINGAPORE SMC Pneumatics (S.E.A.) Pte. Ltd. SOUTH KOREA SMC Pneumatics Korea Co., Ltd. TAIWAN SMC Pneumatics (Taiwan) Co., Ltd. THAILAND SMC Thailand Ltd.

NORTH AMERICA

CANADA SMC Pneumatics (Canada) Ltd. MEXICO SMC Corporation (Mexico) S.A. de C.V. USA SMC Pneumatics Inc.

SOUTH AMERICA

ARGENTINA SMC Argentina S.A. BOLIVIA SMC Pneumatics Bolivia S.R.L. CHILE SMC Pneumatics (Chile) S.A. VENEZUELA SMC Neumatica Venezuela S.A.

OCEANIA

AUSTRALIA SMC Pneumatics (Australia) Pty. Ltd. NEW ZEALAND SMC Pneumatics (N.Z.) Ltd.

SMC CORPORATION

1-16-4 Shimbashi, Minato-ku, Tokyo 105 JAPAN Tel: 03-3502-2740 Fax: 03-3508-2480