

Fine Lock Cylinder Lock-up Cylinder

Locking style	Spring	Pneumatic	Spring/
	lock	lock	Pneumatic lock
Features	Unlocking Discharging the air causes the lock to operate.	Pressure locking The holding power can be varied according to the air pressure that is applied to the port.	Pressure locking The holding power can be varied according to the air pressure that is applied to the port. Outlocking Discharging the air causes the lock to operate.

Locks in both directions

The cylinder can be locked in either stroke direction.

CL

MLGC

CNA

CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

MY1

(The lock-up cylinder can be locked only in one direction.)

Maximum piston speed: 500mm/s

Able to operate at 50 to 500mm/s, if within the allowable kinetic energy range. (The lock-up cylinder can operate at 50 to 200mm/s.)

Made to Order

Refer to p.5.4-90 for Series CL Made to Order specifications.

Series CL Prior to Use

⚠Precautions

- Be sure to read before handling.
- The precautions on these pages are for the fine lock cylinder and lock-up cylinder.
- Refer to actuator common precautions on p.0-39 to 0-46 for general actuator precautions.

⚠ Warning

Design on Equipment Machine

- ① Prevent personnel from coming into direct contact with the driven object as well as the moving portion of a cylinder. If there is a risk of contact, provide safety measures such as a cover or a system that uses sensors that will activate an emergency stop before contact is made.
- 2 Use a balance circuit in which lurching of the piston is taken into consideration. If the lock is applied at a desired position of a stroke and compressed air is applied to only one side of the cylinder, the piston will lurch at a high speed the moment the lock is disengaged. In such a situation, there is a risk of injury to humans, or equipment damage. To prevent the piston from lurching, use a balance circuit such as the recommended pneumatic circuit (p.3.1-4). If an air-hydro fine lock cylinder is used, make sure to operate the lock portion through air pressure. Never use oil on the lock-up cylinder because the lock-up cylinder is a nonlube style. Failure to observe this could cause the lock to malfunction.

⚠ Warning

Selection

Notes for setting the maximum load in the locked state.

When a cylinder is in a no-load and locked state, the holding force (maximum static load) is the lock's ability to hold a static load that does not involve vibrations or shocks. To ensure braking force, the maximum load must be set as described below.

- ① For constant static loads, such as for drop prevention:
 - Fine lock series (CLJ2, CLM2, CLG1, CLA series)

35% or less of the holding force (maximum static load)

Note: For applications such as drop prevention, consider situations in which the air source is shut off, and make selections based on the holding force of the spring locked state. Do not use the pneumatic lock for drop prevention purposes.

 Lock-up series (Series CL1)
 50% or less of the holding force (maximum static load)

- When kinetic energy acts upon the cylinder, such as when effecting an intermediate stop:
 - There are constraints in terms of the allowable kinetic energy that can be applied to the cylinder in a locked state. Therefore, refer to the allowable kinetic energy of the respective series. Furthermore, during locking, the mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the kinetic energy. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the amount of the load that can be sustained.
 - Fine lock series (Series CLJ1, CLM2, CLG1, CLA)

Max. load at horizontal mounting: 70% or less of the holding force (max. static load) for spring lock

Max. load at vertical mounting: 35% or less of the holding force (max. static load) for spring lock

• Lock-up series (Series CL1)

Max. load at horizontal mounting: 50% or less of the holding force (max. static load)

Max. load at vertical mounting: 25% or less of the holding force (max. static load)

- ③ In a locked state, do not apply impacts, strong vibrations or rotational forces. Do not apply a impacts, strong vibrations or rotational forces from external sources, because this could damage or shorten the life of the lock unit.
- 4 The locking of the fine lock cylinder is directional. Although the fine lock cylinder can be locked in both directions, be aware that its holding force is smaller in one of the directions. CLJ2/CLM2/CLG1... Holding force at piston rod extended side decreases approx. 15%.
 - CLA... Holding force at piston rod retracted side decreases approx. 15%.
- The locking of the lock-up cylinder is unidirectional.

Because the locking direction of the lock-up cylinder is unidirectional, select the locking direction in accordance with the particular operating conditions. It is also possible to manufacture a bidirectional lock-up cylinder. For details, refer to "Made to Order" on p.5.4-90. Due to the nature of its construction, a lock-up cylinder has a play of approximately 0.5mm to 1mm in the axial direction. Therefore, if an external stopper is used to stop the piston rod and the lock is engaged, the piston rod will shift in the amount of its axial play.

- ®To effect an intermediate stop, take the cylinder's stopping precision and overrun amount into consideration. Because the lock is applied by mechanical means, the piston will not stop immediately in response to a stopping signal, but only after a time lag. This lag determines the amount of the overrun of the piston stroke. Thus, the range of the maximum and minimum amounts of the overrun is the stopping precision.
 - Place the limit switch before the desired stopping position, only in the amount of the overrun.
 - A limit switch requires a detection length (dog length) that is equivalent to the amount of overrun + a
 - SMC's auto switches have an operation range of 8 to 14mm, depending on the switch. If the overrun exceeds this range, self holding of the contact point must be effected on the switch load side.
 - *The series and their stopping accuracy are as follows: CLJ series (p.3.1-10), CLM2 series (p.3.1-18), CLG1 (p.3.1-27), CLA series (p.3.1-35), and CL1 series (p.3.1-50).
- To improve stopping accuracy, use DC-based control circuitry and a solenoid valve with an excellent response, and locate the solenoid valve as close as possible to the cylinder.
- ® Be aware that the stopping accuracy is influenced by changes in the piston speed.

The variance in the stopping position increases if the piston speed changes, such as due to load fluctuations during the reciprocal movement of the piston. Therefore, take measures to ensure a constant piston speed immediately preceding the stopping position. Furthermore, the variances in the stopping position increases when the piston is effecting a cushioning stroke or during acceleration after starting its movement

⚠ Warning

Mounting

- ①To attach a load to the end of the rod, make sure that the lock is in the disengaged state.
- If this is performed with the lock engaged, a load that exceeds the allowable rotational force or holding force would be applied to the piston rod, which could damage the locking mechanism. The fine lock and CL1 series ø40 to ø100 cylinders have a built-in manual unlocking mechanism. Therefore, they can be maintained in the unlocked state without supplying air. For CL1 series with ø125 to ø160 cylinders, simply connect piping to the lock-up port, and supply air pressure of 0.2MPa or more to disengage the lock in order to attach a load.

⚠ Caution

- ①Do not apply an unbalanced load to the piston rod.
 - Pay particular attention to aligning the center of gravity of the load with the axial center of the cylinder. If there is a large amount of deviation, the piston rod could become unevenly worn or damaged due to the inertial moment that is created when the piston rod is stopped by the lock.

X (Load center of gravity and cylinder axis center are not matched.)

(Load center of gravity and cylinder axis center are matched.)

Note) Can be used if all of the generated moment is absorbed by an effective guide.

Adjustment

- ① Place it in the locked position. (Excluding the CL1 series ø125 to ø160.)
 - The locks are manually disengaged at the time the cylinders are shipped from the factory. Therefore, make sure to change them to the locked state before using the cylinders. For procedures to effect the change, refer to p.3.1-5 for the fine lock series, and p.3.1-52 for the lock-up cylinders. Be aware that the lock will not operate properly if the change is not performed correctly.
 - Adjust the cylinder's air balance. In the state in which a load is attached to the cylinder, disengage the lock and adjust the air pressure at the rod side and the head side of the cylinder to obtain a load balance. By maintaining a proper air balance, the piston rod can be prevented from lurching when the lock is disengaged.
- ②Adjust the mounting position of detections such as those of the auto switches. To effect an intermediate stop, adjust the mounting position of the auto switch detection by taking the amount of overrun into consideration in relation to the desired stopping position.

CL

MLGC

CNA

СВ

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

....

Series CL **Prior to Use**

Pneumatic Circuit

⚠ Warning

① To stop the piston by engaging the lock, make sure to use a pneumatic circuit that applies a balanced pressure to both ends of the piston.

To prevent the piston from lurching after it has been stopped with the lock, during restarting or when disengaging manually, provide a circuit that applies a balanced pressure to both ends of the piston to cancel out the force that is generated by the load in the direction of the operation of the piston.

2 Using 50% or more of the effective area of the cylinder actuating solenoid valve as a guide, use a solenoid valve with a large effective area for the unlocking

The greater the effective area, the shorter will be the length of time the lock takes to engage (shortening the overrun amount), thus improving the stopping precision.

3 Place the unlocking solenoid close to the cylinder so that it will not be located farther than the cylinder actuating solenoid valve.

The closer the valve is located to the cylinder (the shorter the pipe length), the shorter will be the overrun amount, thus improving the stopping precision.

4 Provide 0.5 seconds or more between the time the lock is engaged (to effect an intermediate stop of the cylinder) until the lock is disengaged.

If the length of time the piston is stopped by engaging the lock is short, the piston rod (and the load) could lurch at a speed that is higher than the speed controlled by the speed controller.

5 During restarting, control the signal for switching the unlocking solenoid to be output before or at the same time as the signal for the cylinder actuating solenoid valve is output.

If the signal is delayed, the piston rod (and the load) could lurch at a speed that is higher than the speed controlled by the speed controller

6 Basic circuit

1. [Horizontal]

	SOL.A	SOL.B	SOL.C	Action	
	ON	ON	OFF	Forward	
	OFF	OFF	OFF	Locked stop	0.5s or more
ï	ON	OFF	OFF	Unlocked	0.55 of filore
	ON	ON	OFF	Forward	→ 0 to 0.58
	ON	OFF	ON	Backward	
	OFF	OFF	OFF	Locked stop	
	ON	OFF	OFF	Unlocked	0.5s or more
	ON	OFF	ON	Backward	0 to 0.5s

2. [Vertical]

⚠ Caution

1) The 3 position pressure center solenoid valve and regulator with check valve can be interchanged with two 3-port, N.O. valves and a relieving style regulator.

[Example]

1. [Horizontal]

2. [Vertical]

[Load in direction of rod retraction] [Load in direction of rod extension]

How to Manually Disengage the Lock and Change from the Unlocked to the Locked State

The lock is manually disengaged at the time the cylinder is shipped from the factory. Because the lock will not operate in this state, make sure to change it to the locked state before operation, after having adjusted the axial center for installation.

How to Change from the Unlocked State to the Locked State

(a) CLJ2, CLM2, CLG1

- 1 Loose locking nut.
- ② Turn the wrench flats section of the manual unlocking cam to the LOCK position that is marked on the cam guide.
- 3 While keeping the wrench flats section in place, tighten the lock put

Note) The manual unlocking cam will rotate approximately 180°. Do not rotate the wrench flats section excessively.

Locked condition

Manually lock released

Cam guide "LOCK" and "FREE" are marked on the cam guide

(b) CLA

- Loosen the two hexagon socket bolts and remove the pin guide.
- ② As viewed from the end of the rod, the pin is tilted 15° to the right of the center.
- 3 Supply air pressure of 0.3MPa or more to the lock release port.
- 4 Using a wooden or plastic rod, such as the handle of a wooden mallet, push the pin and rotate it 30°.

Note) Never rotate the pin by striking it because this could bend or damage the pin. Be very careful when pushing the pin, as the surface is slippery.

(§) Inside the pin guide, there is a slotted hole that is slightly larger than the pin. Align the pin with the slotted hole and secure them to the cover, using the hexagon socket bolts that were removed in step (1). The protruding portion of the pin guide will then align with the LOCK mark on the nameplate that is attached to the cover surface.

Manually Disengaging the Lock

The lock of a fine lock series cylinder can be disengaged manually through the procedure described below. However, make sure to disengage the lock pneumatically before operating the cylinder.

Note) Manual disengagement of the lock could create a greater cylinder sliding resistance than pneumatic disengagement of the lock.

(a) CLJ2, CLM2, CLG1

- 1 Loose locking nut.
- ② Supply air pressure of 0.3MPa or more to the lock release port.
- 3 Turn the wrench flats section of the manual unlocking cam unti it stops at the FREE position that is marked on the cam guide.
- While keeping the wrench flats section in place, tighten the lock nut.

(b) CLA

- ① Loosen the two hexagon socket bolts and remove the pin guide.
- ② As viewed from the end of the rod, the pin is tilted 15° to the left of the center.
- 3 Supply air pressure of 0.3MPa or more to the lock release port
- ④ Using a wooden or plastic rod, such as the handle of a wooden mallet, rotate the pin 30° without scratching it.

CL

MLGC

CNA

СВ

CV/MVG

CXW

CXS

CXT

MX

MVII

MXU

MXS

MXQ

MXF

MXW MXP

MG

MGP

MGQ

MGG

MGC MGF

CY1

Series CL Prior to Use

Construction/Applicable Series: CLJ2, CLM2, CLG1

Spring lock style

Spring lock (exhaust lock)

The spring force that is applied to the tapered brake piston becomes amplified through the wedge effect. This force becomes further amplified to the power of AB/AC through the mechanical advantage of a lever and acts on the brake shoe, which in turn, applies a large force to tighten and lock the piston rod. To disengage the lock, air pressure is supplied through the lock release port, thus disengaging the brake spring force.

Pneumatic lock style

Lock released condition

Locked condition

Brake piston is operated by air pressure.

Lock system concurrently using spring and air pressure

Lock released condition

Lock released condition

Brake piston is operated by air pressure and spring force

Construction/Applicable Series: CLA

Spring lock style

Spring lock (exhaust lock)

The spring force that is applied to the tapered brake piston becomes amplified through the wedge effect. This force becomes further amplified to the power of AB/AC through the mechanical advantage of a lever and acts on the brake shoe, which in turn, applies a large force to tighten and lock the piston rod. To disengage the lock, air pressure is supplied through the lock release port, thus disengaging the brake spring force.

Pneumatic lock style

Brake piston is operated by air pressure.

Lock system concurrently using spring and air pressure

Brake piston is operated by air pressure and spring force.

CL

MLGC

CNA

CB CV/MVG

CXW

CXS

CXT

MX

MXU

MXS MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

Fine Lock Cylinder/Double Acting Single Rod

Series CLJ2

How to Order

Applicable Auto Switches/Refer to p.5.3-2 for further information on auto switch.

			tor			Load v	oltage		Lead w	vire le	ngth	(m)*	A 1: - -		
Style	Special function	Electrical entry	Indicator	Wiring (Output)		DC	AC	Auto switch model	0.5 (—)	3 (L)	5 (Z)	None (N)		icable ad	
ے			Yes	3 wire (NPN equiv.)	_	5V		C76	•	•	_	-	IC	_	
Reed switch		Grommet	100			12V	100V	C73	•			-	_		
S S			No	2 wire	24V	5V, 12V	100V or less	C80	•		_	_	IC	Relay,	
æ		0	Yes	Zwiie	241	12V		C73C					_	PLC	
		Connector	No			5V, 12V	24V or less	C80C	•				IC		
		Grommet		3 wire (NPN) 3 wire (PNP)		51/ 401/		H7A1	•	•	0	_	IC		
_					5V, 12V		H7A2			0	-	10			
후						12V		H7B	•	•	0	-			
Š		Connector		2 wire		120		H7C	•	•		•			
state switch			Vac	3 wire (NPN)	24V	241/ 51/ 401/		H7NW	•	•	0	$\left[-\right]$	IC	Relay,	
sta	Diagnostic indication (2 color, With timer)	16	100	3 wire (PNP)	24V 5V, 12V		H7PW	•	•	0	_	.0	PLC		
<u></u>	` ' '	Grommet		0	1	40)/		H7BW	•	•	0	-			
Solid	Water resistant (2 color)	0.0		∠ wire	2 wire		12V		Н7ВА	_		0	_		
	With diagnostic output (2 color)			3 wire (NPN)		5V, 12V		H7NF	•		0	_	IC		
	Latching with diagnostic output (2 color)			4 wire (NPN)				H7LF	•		0		_		
*Lead	*Lead wire length symbol 0.5m······ (Example) C73C 5m····· Z (Example) C73CZ														
	3mL					C73	BCL None	e N		C7	3CN	٧			

^{*}Solid state switches marked with a "O" are manufactured upon receipt of order.

Fine Lock Cylinder/Double Acting Single Rod Series CLJ2

Provided with a compact locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Locks in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Maximum piston speed: 500mm/s

It can be used at 50 to 500mm/s provided that it is within the allowable kinetic energy range.

Specifications

Bore size (mm)	16
Action	Double acting single rod
Style	Both of non-lube style and lube style
Lock operation	Spring lock (Exhaust lock) Pneumatic (Pressurized lock) Spring and pneumatic lock
Fluid	Air
Proof pressure	1.05MPa
Max. operating pressure	0.7MPa
Min. operating pressure	0.08MPa
Ambient and fluid temperature	Without auto switch: -10°C to + 70°C (No freezing) With auto switch: -10°C to + 60°C
Piston speed	50 to 500mm/s*
Cushion	Rubber bumper
Thread tolerance	JIS class 2
Stroke tolerance	+1.0 0
Mounting	Basic, Axial foot, Front flange, Double clevis

*Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked. To lock the piston in the stationary state for the purpose of drop prevention, the piston can be locked up to a maximum speed of 750mm/s.

Fine Lock Specifications

L	ock operation	Spring lock (Exhaust lock)	Spring/ pneumatic lock	Pneumatic lock (Pressurized lock		
Flu	uid					
Ma	x. operating pressure					
Loc	ck release pressure	0.3MPa	or more	0.1MPa or more		
Lo	ck start pressure	0.25MPa	a or less	0.05MPa or more		
Lo	ck direction	Both directions				

Standard Stroke

(mm)

Bore size (mm)	Standard stroke
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200

Mounting Bracket and Accessories/Refer to p.3.1-14 for details.

	g =						
	Mounting bracket	Basic	Axial foot	Front flange	Double clevis		
2	Mounting nut	•	•	•	_		
Standard	Rod end nut	•	•	•	•		
	Clevis pin	_	_	_	•		
	Single knuckle joint	•	•	•	•		
Option	Double knuckle joint (With pin)	•	•	•	•		
	T bracket	_	_	_	•		

Bracket Part No.

Mounting bracket	Part No.	
Foot	CLJ-L016B	
Flange	CLJ-F016B	
T bracket*	CJ-T016B	
T		

^{*}T bracket is applicable to double clevis style (D).

Auto Switch Mounting Bracket Part No. (Band mounting)

Auto switch mounting bracket	Note
BJ2-016	For D-C7, C8, H7

Stainless steel mounting bolt set The set of stainless steel mounting screws described below is available and can be used depending on the operating environment. (The band for auto switches must be ordered separately, as they are not included.)
BBA4: For D-C7/C8/H7

The stainless steel bolts described above are used when the D-H7BAL type switch is shipped mounted on a cylinder. When the switches are shipped as individual parts, the BBA4 set is included.

MLGC

CNA CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC **MGF**

CY1 MY1

Minimum Strokes for Auto Switch Mounting

Auto switch mounting	Auto switch model	Number of auto switches	Minimum cylinder stroke (mm)
	D 07	2 (Same side)	50
	D-C7 D-C8	2 (Different side)	15
	D-C0	1	10
	D-H7 D-H7□W D-H7NF D-H7BAL	2 (Same side)	60
		2 (Different side)	15
Band		1	10
mounting	D-C73C D-C80C D-H7C	2 (Same side)	65
		2 (Different side)	15
		1	10
		2 (Same side)	65
	D-H7LF	2 (Different side)	25
		1	15

Weight

	- 3		
	16		
Basic weight*		320	
Addition	Additional weight per 15mm stroke		
	Axial direction foot	27	
Mounting bracket	Front flange	21	
DIACKEL	Double clevis (with pin)*	10	

*Basic weight includes mounting nut and rod end nut.
*Double clevis does not include mounting nut.

Calculation

Example: CLJ2L16-60

•Basic weight-----320(ø16) •Additional weight-----6.5/15 stroke Cylinder stroke…60 stroke

320+6.5/15 X 60+27=373g

Stopping Accuracy (Not including tolerance of control system) Unit: mm

	Piston speed (mm/s)				
Lock style	50	100	300	500	
Spring lock (Exhaust lock)	±0.4	±0.5	±1.0	±2.0	
Pneumatic lock (Pressurized lock) Spring and pneumatic lock	±0.2	±0.3	±0.5	±1.5	

Condition/Load: 2kg

Solenoid valve: Lock port mounting

Head Cover Port Position

In the case of the basic style, there are two port positions on the head cover: one that is at 90° to the axis, and the other that is in the axial direction.

Axial direction

90° direction

∕.\Caution

Recommended Pneumatic Circuit/Precautions

■ Refer to p.3.1-2 to 3.1-5 for further specifications of fine lock cylinder CLJ2

series mentioned above.

△Caution/Allowable Kinetic Energy when Locking

Bore size (mm)	16
Allowable kinetic energy J	0.17

- 1) In terms of specific load conditions, this allowable kinetic energy is equivalent to a load of 3.7kg in weight, and a piston speed of 300mm/sec. Therefore, if the operating conditions are below these values, there is no need to calculate.
- ② Apply the following formula to obtain the kinetic energy of the load. Ek: Load kinetic energy (J)

m: Load weight (kg) υ: Piston speed (m/s)

- 3 The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of the load, use 1.2 times the average speed as a guide.
- 4 The relationship between the speed and the load is indicated in the diagram below. The area below the line is the allowable kinetic energy range.
- 5 During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load. Therefore, even within an allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Holding Force of Spring Lock (Maximum static load)

Bore size (mm)	16
Holding force N	122

Note) Holding force at piston rod extended decreases approximately 15%.

Holding Force of Pneumatic Lock (Max. static load)

_Caution

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
- Do not use the cylinder in the locked state to sustain a load that involves impact.

Fine Lock Cylinder/Double Acting Single Rod Series CLJ2

Construction/(The cylinder cannot be disassembled.)

Spring lock (Exhaust lock) Spring and pneumatic lock

Pneumatic lock (Pressurized lock)

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	White anodized
2	Head cover	Aluminum alloy	White anodized
3	Cover A	Carbon steel	Nitrided, nickel chrome plated
4	Cover B	Aluminum alloy	Hard anodized
(5)	Cover C	Aluminum alloy	Hard anodized
6	Middle cover	Aluminum alloy	Hard anodized
7	Cylinder tube	Stainless steel	
8	Piston rod	Stainless steel	Hard chrome plated
9	Piston	Brass	
10	Brake piston	Carbon steel	Nitrided
11)	Brake arm	Carbon steel	Nitrided
12	Brake shoe	Special friction material	
13	Roller	Carbon steel	Nitrided
14)	Pin	Carbon steel	Heat treated
15	Snap ring	Carbon tool steel	Nickel plated
16	Brake spring	Steel wire	Zinc chromated
17	Bushing A	Oil impregnated sintered alloy	
18	Bushing B	Oil impregnated sintered alloy	
19	Manual lock relase cam	Chrome molybdenum steel	Nitrided
20	Cam guide	Carbon steel	Nitrided, platinum silver coated
21)	Lock nut	Rolled steel	Nickel plated

No.	Description	Material	Note
22	Plain washer	Rolled steel	Nickel plated
23	Snap ring	Carbon tool steel	Nickel plated
24)	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
25	Retaining plate	Steel wire	Nickel plated
26	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
27)	Retaining plate	Steel wire	Nickel plated
28	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
29	Retaining plate	Steel wire	Nickel plated
30	Silencer	Bronze	E type only
31)	Damper	Urethane	
32	Wearing	Resin	
33	Mounting nut	Brass	Nickel plated
34)	Rod end nut	Rolled steel	Nickel plated
35	Piston seal	NBR	
36	Rod seal A	NBR	
37)	Rod seal B	NBR	
38	Brake piston seal	NBR	
39	Cylinder tube gasket	NBR	
40	Middle cover gasket	NBR	
41	Cam gasket	NBR	
42	Piston gasket	NBR	
	·	·	·

CL

MLGC

CNA CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

Series CLJ2

Axial Foot (L)

CLJ2L16-□□-B 54 Silencer 12 25.5 Piping port M5 X 0.8 Spring lock M5 X 0.8 Pressurized port M5 X 0.8 Lock release port Manual lock Head cover port position Pneumatic lock and spring/ Lock released when pressurized at axis direction (R) release cam Lock nut pneumatic lock M5 X 0.8 31 Rod side cylinder port M5 X 1.0 M5 X 0.8 M5 X 1.0 50.5 Head side cylinder port 32 Width across 8 flats 10 2-ø5.5 6 9 65 18 9.5 Mounting 39 111 + Stroke 32 hole

150 + Stroke

Fine Lock Cylinder/Double Acting Single Rod Series CLJ2

Double Clevis (D) *Clevis pin and snap ring are packed with the double clevis style.

CLJ2F16.....SCLJ216, #3 (#1+#3+#6)

MXS

MXQ

Series CDLJ2 Auto Switch Specifications

Refer to p.5.3-2 for details of auto switch.

Auto switch setting position and mounting height dimensions (Band mounting style)

Refer to p.1.3-11 for dimensions because these are same as air cylinder CDJ2 series (Double acting single rod) style.

Applicable Auto Switch

Style	Model	Model Electrical entry/Function	
Reed switch		Grommet	5.3-9
Reed Switch	D-C73C/C80C	Connector	5.3-11
	D-H7	Grommet	5.3-29
	D-H7□W	-H7□W Grommet(2 color indication)	
Solid state switch	D-H7LF	Grommet(2 color, with diagnostic output)	5.3-49
Solid State Switch	D-H7NF	I7NF Grommet(2 color, with diagnostic output)	
	D-H7BAL	Grommet(2 color, with diagnostic output)	5.3-55
	D-H7C	Connector	5.3-31

Accessories

Single knuckle joint/I-LJ016B

Material: Rolled steel

Double knuckle joint/Y-LJ016B

* Knuckle pin and snap ring are packed.

Material: Rolled steel

Rod end nut/NT-015A

Material: Rolled steel

Clevis pin/CD-Z015

Material: Stainless steel

Knuckle pin/IY-J015A

Material: Stainless steel

Mounting nut/SNLJ-016B

Material: Brass

T bracket/CJ-T016B

Material: Rolled steel

Part no.	Bore size	TC	TD _{H10}	TH	TK	TN	TT	TU	TV	TW	TX	TY
CJ-T016B	16	5.5	5 ^{+0.048}	35	20	6.4	2.3	14	48	28	38	16

Fine Lock Cylinder/Double Acting Single Rod

Series CLM2

ø20, ø25, ø32, ø40

How to Order

Applicable Auto switches/Refer to p.5.3-2 for further information on auto switch

7 101	DIICADIE AUTO S				, p.o.	Load v		Ja	Lead v							
Style	Special function	Electrical entry	Indicator	Wiring (output)		DC	AC	Auto switch model	0.5 (—)	3 (L)		None (N)	Applio lo	cable ad		
			Yes	3 wire (NPN equiv.)	—	5V		C76	•	•	_	_	IC	_		
						12V	100V	C73	•	•	•	_	_	Relay,		
		Grommet	No			5V, 12V	100V or less	C80	•	•	_	_	IC	PLC		
ي			Yes			12V		B53	•	•	•	-		PLC		
vitc		163			12V	100V, 200V	B54	•	•	•	_					
<u>8</u>			No	2 wire	24V	12V	200V	B64	•	•	_	_	_	Relay,		
Reed switch	Connector	Yes		2-10	12V		C73C	•	•	•	•		PLC			
		Connector	No			_	24V or less	C80C	•	•	•	•	IC			
		Terminal				12V	_	A33A		_	_	•		PLC		
		conduit	Yes		12V	100V, 200V	A34A	_		二	•	_	Relay,			
		DIN terminal]						A44A	_		_	•		PLC	
	Diagnostic indication (2 color)	Grommet				_	_	B59W	•	•	_					
			_	3 wire (NPN)	-	5V, 12V		H7A1	•	•	0	_	IC			
		Grommet		3 wire (PNP)			01, 121		H7A2	•	•	0	_			
				2 wire		12V		H7B	•	•	0	_				
등		Connector				l			H7C	•	•	•	•	_		
ž		Termina		3 wire (NPN)		5V, 12V		G39A	_	_	_	•				
S		conduit		2 wire		12V		K39A	_	_	_	•				
Diamagetic indication	Diagnostic indication		Yes	3 wire (NPN)	24\/	5V, 12V		H7NW	•	•	0		IC	Relay,		
Solid state switch	(2 color)			3 wire (PNP)	240	JV, 12V		H7PW	•	•	0			PLC		
Ö	, ,			2 wire		12V		H7BW	•	•	0	_	_			
0,	Water resistant (2 color)	Grommet	· · · · · · · · · · · · · · · · · · ·			121		H7BA	_	•	0	_				
	With timer			3 wire (NPN)				G5NT	_	•	0	_	IC			
	With diagnostic output (2 color)			4 wire		5V, 12V		H7NF	_	•	0	_	.~			
	Latching with diagnostic output (2 color)			(NPN)						H7LF	•	•	0	-	_	

*Lead wire length symbol 0.5m----

(Example) C80C

(Example) C80CZ C80CN CL

MLGC

CNA

CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

^{**} Solid state switch marked with a "O" are manufactured upon receipt of order.

^{***} Do not specify "N" (No lead wire) in case of D-A3□A, A44A, G39A and K39A.

Series CLM2

Provided with a compact locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Locks in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Maximum piston speed: 500mm/s

It can be used at 50 to 500mm/s provided that it is within the allowable kinetic energy range.

Rod Boot Material

Symbol	Rod boot material	Max. ambient temperature
J	Nylon tarpaulin	60°C
K	Heat resistant tarpaulin	110°C*

^{*} Max. ambient temperature for rod boot

Specifications

_ •						
Bore size (mm)	20	25	32	40		
Action		Double acti	ng single rod			
Style		Pne	umatic			
Look on another		Spring lock (Exhaust lock),			
Lock operation	Pneumatic loc	k (Pressurized l	ock), Spring an	d pneumatic lock		
Fluid	Air					
Proof pressure	1.5MPa					
Max. operating pressure	1.0MPa					
Min. operating pressure	0.08MPa					
Ambient and fluid temperature	Without auto switch: -10°C to +70°C (No freezing) With auto switch: -10°C to +60°C					
Lubrication	Not required (Non-lube)					
Piston speed	50 to 500mm/s					
Thread tolerance	JIS class 2					
Stroke length tolerance	+1.4 0					
Piping/Screw-in style		Rc(PT)1/8		Rc(PT)1/4		
Mounting	Basic, Axial foot, Front flange, Rear flange, Single clevis, Double clevis, Rear trunnion, Integrated clevis, Boss cut, Boss cut flange					

^{*} Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked. To lock the piston in the stationary state for the purpose of drop prevention, the piston can be locked up to a maximum speed of 750mm/s.

Fine Lock Specifications

Lock operation	Spring lock (Exhaust lock)	Spring/ pneumatic lock	Pneumatic lock (Pressurized lock)				
Fluid	Air						
Max. operating lock	0.5MPa						
Lock release pressure	0.3MPa	a or more	0.1MPa or more				
Lock starting pressure	ing pressure 0.25MPa or less 0.05MPa o						
Lock direction	Both directions						

Standard Stroke

Bore size (mm)	Standard stroke (mm) ⁽¹⁾	Long stroke ⁽²⁾ (mm)	Allowable max. stroke (mm)
20		400	
25	25, 50, 75, 100, 125,	450	1000
32	150, 200, 250, 300	450	1000
40		500	

Note 1) Intermediate stroke is also available.

Minimum Strokes for Auto Switch Mounting

,	_			١
(n	٦r	r	ŋ

A	Number of auto switches					
Auto switch	2 p	cs.	1	pc.	4	
model	Different side	Same side	Different side	Same side	1 pc.	
D-C7 D-C8	15	50	45 . 45 (n=2)	50+45(n-2)	10	
D-H7□ D-H7□W D-H7BAL D-H7NF	15	60	$15+45(\frac{n-2}{2})$ (n=2, 4, 6···)		60+45(n-2)	10
D-C73C D-C80C D-H7C	15	65	$ \begin{array}{c} 15+50(\frac{n-2}{2}) \\ (n=2, 4, 6\cdots) \end{array} $	65 (50(n 2)	10	
D-H7LF	20	65	$20+50(\frac{n-2}{2})$ (n=2, 4, 6···)	-65+50(n-2)	10	
D-B5 D-B6	15	75	15+50($\frac{n-2}{2}$) (n=2, 4, 6···)	- 75 L 55 (n. 2)	10	
D-B59W	20	75	$20+50(\frac{n-2}{2})$ (n=2, 4, 6···)	75+55(n–2)	15	
D-A3□A D-G39A D-K39A D-A44A	35	100	35+30(n-2)	100+100(n-2)	10	

Note 2) The long stroke style is applicable to the axial foot style and the front flange style. For other applications that exceed the mounting support bracket and long stroke limitations, the maximum stroke that can be used is determined by the stroke selection table (reference edition)

Fine Lock Cylinder/Double Acting Single Rod Series CLM2

Mounting and Accessories

Accessory	Standard equipment				Acce	ssories	
Mounting	Mounting nut	Rod end nut	Clevis pin	Single knuckle joint	Double knuckle joint	Clevis bracket	Rod boot
Basic	● (1pc.)	•		•	•	_	•
Axial foot	•(2)	•	_	•	•	_	•
Front flange	●(1)	•	_	•	•	_	•
Rear flange	●(1)	•	_	•	•	_	•
Integrated clevis	(1)	•	_	•	•	•	•
Single clevis	(1)	•	_	•	•	_	•
Double clevis	(1)	•	•	•	•	_	•
Rear trunnion	● (1) ⁽²⁾	•	_	•	•	_	•
Boss cut basic	●(1)	•	_	•	•	_	•
Boss cut flange	●(1)	•	_	•	•	_	•
Note					With pin	With pin	

Note 1) The mouting nuts are not provided with the integrated clevis style, single clevis style, or the double clevis style.

Note 2) The rear trunnion style is provided with a trunnion nut.

Weight (kg)

Bore size (mm)		20	25	32	40
	Basic	0.55	0.87	0.94	1.30
	Axial foot	0.70	1.03	1.10	1.57
	Flange	0.61	0.96	1.03	1.42
	Integrated clevis	0.53	0.85	0.93	1.26
Basic weight	Single clevis	0.59	0.91	0.98	1.39
o.g	Double clevis	0.60	0.93	0.99	1.43
	Trunnion	0.59	0.94	1.00	1.40
	Boss cut basic	0.54	0.85	0.92	1.27
Boss cut flange		0.60	0.94	1.01	1.39
Additional weight per 50mm stroke		0.04	0.06	0.08	0.13
	Clevis bracket (with pin)	0.07	0.07	0.14	0.14
Accessory	Single knuckle joint	0.06	0.06	0.06	0.23
	Double knuckle joint (with pin)	0.07	0.07	0.07	0.20

Calculation Example: CLM2L32-100

-1.10(Foot, ø32) · Basic weight...
- · Additional weight ···· 0.08/50 stroke
- ----100 stroke 1.10+0.08 X 100/50=1.26kg

Auto Switch Mounting Bracket Part No.

Auto switch	Bore size (mm)					
model	20	25	32	40		
D-C7/C8 D-H7	BM2-020	BM2-025	BM2-032	BM2-040		
D-B5/B6 D-G	BA2-020	BA2-025	BA2-032	BA2-040		
D-A3□A/A44A D-G39A/K39A	BM3-020	BM3-025	BM3-032	BM3-040		

* Stainless steel mounting bolt set

The set of stainless steel mounting screws described below is available and can be used depending on the operating environment. (The band for auto switches must be ordered separately, as they are not included.)

BBA3: For D-B5/B6/G5 BBA4: For D-C7/C8/H7

The stainless steel bolts described above are used when the D-H7BA type switch is shipped mounted on a cylinder, when the switches are shipped as individual parts, the BBA4 set is included.

Mounting Bracket Part No.

Bore size (mm)	20	25	32	40
Axial foot*	CM-L020B	CM-L032B		CM-L040B
Flange	CM-F020B	CM-F032B		CM-F040B
Single clevis	CM-C020B	CM-C032B		CM-C040B
Double clevis**	CM-D020B	CM-D032B		CM-D040B
Trunnion (With nut)	CM-T020B	CM-T032B		CM-T040B

* When ordering foot brackets, 2pcs. should be ordered for each cylinder. ** Clevis pin and snap ring (ø40: cotter pin) are packed with the double clevis style

Boss cut

A cylinder that has been shortened overall by removing the boss for mounting the support bracket for the head cover, it can be used to achieve further space savings.

Total length comparison (vs. standard) (mm)						
ø 20	ø 25	ø 32	ø 40			
▲ 13	▲ 13	▲ 13	▲ 16			

Mounting style

■Boss cut basic style (BZ) ■Boss cut flange style (FZ)

Air-hydro

CLM2H Mounting style Stroke Rod boot Bore size Air-hydro

Low hydraulic cylinder 1MPa or less Through the concurrent use of a CC Series air-hydro unit, it is possible to operate at a constant or low speeds or for intermediate stops, just like a hydraulic unit, while using pneumatic equipment such as a valve.

Specifications

- poemeaneme	
Fluid	Turbine oil (Locked area: air)
Action	Double acting single rod
Bore size Ø20, Ø25, Ø32, Ø40	
Max. operating pressure	1.0MPa
Min. operating pressure	0.2MPa
Piston speed	15 to 300mm/s
Cushion	Rubber bumper (Standard equipment)
Piping	Screw-in piping
Mounting	Basic, Axial foot, Front flange, Rear flange, Single clevis, Double clevis, Rear trunnion, Integrated clevis, Boss cut

* Auto switch can be mounted.

• For an exterior dimension diagram to identify the mounting support types, refer to p.3.1-21 to 3.1-24 as the dimensions are identical to those of standard.

MLGC

CB

CNA

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS MXQ

MXF

MXW

MXP

MG

MGP MGQ

MGG

MGC **MGF**

CY1

Series CLM2

⚠ Caution/Allowable Kinetic Energy when Locking

Bore size (mm)	20	25	32	40
Allowable kinetic energy J	0.26	0.42	0.67	1.19

- ① In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5MPa, and a piston speed of 300mm/sec. Therefore, if the operating conditions are below these values, calculations are unnecessary.
- ② Apply the following formula to obtain the kinetic energy of the load.

Ek= 1/2 mv² Ek: Load kinetic energy (J)
υ: Piston speed (m/s)

- 3 The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of the load, use 1.2 times the average speed as a guide.
- The relationship between the speed and the load is indicated in the diagram below. Use the cylinder in the range below the line.
- ⑤ During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Stopping Accuracy (Not including tolerance of control system) (mm)

<u> </u>						
Lock	Piston speed (mm/s)					
LOCK	20*	50	100	300	500	
Spring lock (Exhaust lock)	±0.3	±0.4	±0.5	±1.0	±2.0	
Pneumatic lock (Pressurized lock), Spring and pneumatic lock	±0.15	±0.2	±0.3	±0.5	±1.5	

Conditions/load: 25% of thrust force at 0.5MPa Solenoid valve: mounted to the lock port

The "20mm/s" marked with "*" is applicable to an air-hydro style that is actuated hydraulically.

△ Caution

Recommended Pneumatic Circuit/Cautions on Handling

Refer to p.3.1-2 to 3.1-5 for further specifications of fine lock cylinder CLM2 series.

Fine Lock Cylinder with Auto Switch

Regarding the installation position and the mounting height of the auto switch, refer to p.1.4-21, as the dimensions are identical to those of the CDM2 series air cylinder (double acting, single rod style).

Accessories

Refer to p.1.4-19 and 1.4-20 for accessory dimensions because it is same as CM2 series.

Holding Force of Spring Lock (Max. static load)

Bore size (mm)	20	25	32	40
Holding force N	196	313	443	784

Note) Holding force at piston rod extended side decreases approx. 15%.

Holding Force of Pneumatic Lock (Max. Static Load)

△ Caution

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- •Do not use the cylinder in the locked state to sustain a load that involves impact
- •To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.

Fine Lock Cylinder/Double Acting Single Rod Series CLM2

Construction/(The cylinder cannot be disassembled.)

Spring lock (Exhaust lock) Spring and pneumatic lock

Pneumatic lock (Pressurized lock)

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	White anodized
2	Head cover	Aluminum alloy	White anodized
3	Cover	Carbon steel	Nitrided, chrome plated
4	Middle cover	Aluminum alloy	Hard anodized
(5)	Cylinder tube	Stainless steel	
6	Piston rod	Carbon steel	Hard chrome plated
7	Piston	Aluminum alloy	Chromated
8	Brake piston	Carbon steel	Nitrided
9	Brake arm	Carbon steel	Nitrided
10	Brake shoe	Special friction material	
11)	Roller	Carbon steel	
12	Pin	Carbon steel	
13	Snap ring	Carbon tool steel	Nickel plated
14)	Brake spring	Spring steel wire	Dacrodized
15)	Bushing	Oil impregnated sintered alloy	
16	Bushing	Oil impregnated sintered alloy	
17)	Snap ring	Carbon tool steel	Nickel plated
18	Manual lock release cam	Chrome molybdenum steel	Nickel plated
19	Cam guide	Carbon steel	Nitrided, coated
20	Lock nut	Rolled steel	Nickel plated
21)	Flat washer	Rolled steel	Nickel plated
22	Snap ring	Carbon tool steel	Nickel plated
23	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated

No.	Description	Motorial	Note
	· · · · · · · · · · · · · · · · · · ·	Material	
24	Spring washer	Steel wire	Nickel plated
25	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
26	Spring washer	Steel wire	Nickel plated
27)	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
28	Spring washer	Steel wire	Nickel plated
29	Damper A	Urethane	
30	Damper B	Urethane	
31)	Wearing	Resin	_
32	Wearing	Resin	
33	Hex. socket head plug	Carbon steel	E type only
34)	Element	Bronze	E type only
35	Piston seal	NBR	
36	Piston gasket	NBR	
37)	Brake piston seal	NBR	_
38	Rod seal A	NBR	
39	Rod seal B	NBR	
40	Middle cover gasket A	NBR	
41)	Middle cover gasket B	NBR	
42	Cam gasket	NBR	
43	Mounting nut	Carbon steel	Nickel plated
44	Rod end nut	Carbon steel	Nickel plated

CL

MLGC

CNA CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF CY1

MY1

-

Series CLM2

CLM2B Bore size Stroke

Standard

Boss cut With rod boot

																									(mm)
Bore	Stroke range	Α	AL	B ₁	B ₂	ВС	BN	BP	BQ	BZ	D	E	F	GA	GB	GC	GD	GK	GL	GQ	GR	Н	H₁	H ₂	T
20	to 300	18	15.5	13	26	38	80	1/8	1/8	57.5	8	20_0.033	13	73.5	8	8	55	3.5	6	4	4	41	5	8	28
25	to 300	22	19.5	17	32	45	90	1/8	1/8	69	10	26_0.033	13	83.5	8	9	64.5	4	9	7	7	45	6	8	33.5
32	to 300	22	19.5	17	32	45	90	1/8	1/8	69	12	26_0.033	13	83.5	8	9	64.5	4	9	7	7	45	6	8	37.5
40	to 300	24	21	22	41	52	100.5	1/8	1/8	76	14	32_0.039	16	90.5	11	8	70	4	11	8	7	50	8	10	46.5

												(mm)
Bore	K	MM	N	NA	NN	Р	PG	PH	PL	PW	S	ZZ
20	5	M8 X 1.25	15	24	M20 X 1.5	1/8	22	19.5	20	38	127	181
25	5.5	M10 X 1.25	15	30	M26 X 1.5	1/8	27	24	24	41	137	195
32	5.5	M10 X 1.25	15	34.5	M26 X 1.5	1/8	27	24	24	41	139	197
40	7	M14 X 1.5	21.5	42.5	M32 X 2	1/4	29	24	24	41	167	233

Bore	ZZ
20	168
25	182
32	184
40	217

Boss cut

With rod	boo	t														(mm)
Dava						h							e			
Bore	е		1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	301 to 400	401 to 500	1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	301 to 400	401 to 500
20	35	17	68	81	93	106	131	156	_	12.5	25	37.5	50	75	100	-
25	35	17	72	85	97	110	135	160	185	12.5	25	37.5	50	75	100	125
32	35	17	72	85	97	110	135	160	185	12.5	25	37.5	50	75	100	125
40	46	17	77	90	102	115	140	165	190	12.5	25	37.5	50	75	100	125
•																

* Over 301mm stroke: Long stroke.

CLM2B20-----SCLM220, #1 (#1+#12)

CLM2B25------SCLM225, #1 (#1+#12) CLM2B32-----SCLM232, #1 (#1+#12)

CLM2B40......SCLM240, #1 (#1+#12)

Fine Lock Cylinder/Double Acting Single Rod Series CLM2

9

8 70 4 11

11

64.5 4 9 7 7

8 7 50 8

45 6 8

																						(mm)
Bore	K	LC	LD	LH	LS	LT	LX	LZ	MM	N	NA	NN	Р	PG	PH	PL	PW	S	Χ	Υ	Z	ZZ
20	5	4	6.8	25	167	3.2	40	55	M8 X 1.25	15	24	M20 X 1.5	1/8	22	19.5	20	38	127	20	8	21	196
25	5.5	4	6.8	28	177	3.2	40	55	M10 X 1.25	15	30	M26 X 1.5	1/8	27	24	24	41	137	20	8	25	210
32	5.5	4	6.8	28	179	3.2	40	55	M10 X 1.25	15	34.5	M26 X 1.5	1/8	27	24	24	41	139	20	8	25	212
40	7	4	7	30	213	3.2	55	75	M14 X 1.5	21.5	42.5	M32 X 2	1/4	29	24	24	41	167	23	10	27	250

1/8

74.5 12 13 83.5 8

80

16 90.5

1/8 1/8

Rear Flange (G)

to 450

to 500

22 19.5 47

24

21

54

17 32 45 90

22

41 52 100.5 1/8

32

40

																-							(mm)	MGF
	Bore	Stroke range	Α	AL	В	B ₁	B ₂	вс	BN	BP	BQ	BZ	C ₁	D	E	F	FD	FT	FX	FY	FZ	GA	GB	
	20	to 300	18	15.5	34	13	26	38	80	1/8	1/8	57.5	30	8	20_0.033	13	7	4	60	-	75	73.5	8	CY1
	25	to 300	22	19.5	40	17	32	45	90	1/8	1/8	69	37	10	26_0.033	13	7	4	60	_	75	83.5	8	
_	32	to 300	22	19.5	40	17	32	45	90	1/8	1/8	69	37	12	26_0.033	13	7	4	60	_	75	83.5	8	MY1
	40	to 300	24	21	52	22	41	52	100.5	1/8	1/8	76	47.3	14	32_0 033	16	7	5	66	36	82	90.5	11	

																						(mm)
Bore	GC	GD	GK	GL	GQ	b	Н	H ₁	H ₂	K	MM	N	NA	NN	Р	PG	PH	PL	PW	S	Z	ZZ
20	8	55	3.5	6	4	4	41	5	8	5	M8 X 1.25	15	24	M20 X 1.5	1/8	22	19.5	20	38	127	172	181
25	9	64.5	4	9	7	7	45	6	8	5.5	M10 X 1.25	15	30	M26 X 1.5	1/8	27	24	24	41	137	186	195
32	9	64.5	4	9	7	7	45	6	8	5.5	M10 X 1.25	15	34.5	M26 X 1.5	1/8	27	24	24	41	139	188	197
40	8	70	4	11	8	7	50	8	10	7	M14 X 1.5	21.5	42.5	M32 X 2	1/4	29	24	24	41	167	222	233

	CLM2L20	·SCLM220,	#3	(#1+#3+#12)
	CLM2L25	·SCLM225,	#3	(#1+#3+#12)
CAD	CLM2L20 CLM2L25 CLM2L32	·SCLM232,	#3	(#1+#3+#12)
	CLM2L40			

CLM2G20.....SCLM220, #5 (#1+#5+#12) CLM2G25.....SCLM225, #5 (#1+#5+#12) CLM2G32.....SCLM232, #5 (#1+#5+#12) CLM2G40.....SCLM240. #5 (#1+#5+#12) CL

MLGC

CNA

CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

10

Series CLM2

CLM2F Bore size - Stroke

Boss cut

																										(mm)
E	Bore	Stroke range	Α	AL	В	B ₁	B ₂	ВС	BN	BP	BQ	BZ	C ₁	D	Е	F	FD	FT	FX	FY	FZ	GA	GB	GC	GD	GK
	20	to 400	18	15.5	34	13	26	38	80	1/8	1/8	57.5	30	8	20 0 -0.033	13	7	4	60	_	75	73.5	8	8	55	3.5
	25	to 450	22	19.5	40	17	32	45	90	1/8	1/8	69	37	10	26 0 0 0	13	7	4	60	_	75	83.5	8	9	64.5	4
	32	to 450	22	19.5	40	17	32	45	90	1/8	1/8	69	37	12	26 0 -0.033	13	7	4	60	_	75	83.5	8	9	64.5	4
	40	to 500	24	21	52	22	41	52	100.5	1/8	1/8	76	47.3	14	32 0 033	16	7	5	66	36	82	90.5	11	8	70	4

																				(mm)
Bore	GL	GQ	GR	Н	H₁	H ₂	I	K	MM	N	NA	NN	Р	PG	PH	PL	PW	S	Z	ZZ
20	6	4	4	41	5	8	28	5	M8 X 1.25	15	24	M20 X 1.5	1/8	22	19.5	20	38	127	37	181
25	9	7	7	45	6	8	33.5	5.5	M10 X 1.25	15	30	M26 X 1.5	1/8	27	24	24	41	137	41	195
32	9	7	7	45	6	8	37.5	5.5	M10 X 1.25	15	34.5	M26 X 1.5	1/8	27	24	24	41	139	41	197
40	11	8	7	50	8	10	46.5	7	M14 X 1.5	21.5	42.5	M32 X 2	1/8	29	24	24	41	167	45	233

Boss cu	ıt
Bore	ZZ
20	168
25	182
32	184
40	217

CLM2F20------SCLM220, #4 (#1+4+#12) CLM2F25------SCLM225, #4 (#1+4+#12) CLM2F32------SCLM232, #4 (#1+4+#12)

CLM2F40-----SCLM240, #4 (#1+4+#12)

Fine Lock Cylinder/Double Acting Single Rod Series CLM2

^{*}Clevis pin and snap ring (ø40: cotter pin) are packed with the double clevis style.

CLM2D20······SCLM220, #7 (#1+#7+#12)
CAD CLM2D25······SCLM225, #7 (#1+#7+#12)

CLM2D32······SCLM232, #7 (#1+#7+#12) CLM2D40······SCLM240, #7 (#1+#7+#12)

Series CLM2

Rear Trunnion (T)

Integrated Clevis (E)

		-												_					1				1
20	to 3	300	18	15.5	13	38	80	1/8	1/8	57.5	8	12	8	20_	0 0.033	13	73.5	8	8	55	3.5	6	4
25	to 3	300	22	19.5	17	45	90	1/8	1/8	69	8	12	10	26_	0 0.033	13	83.5	8	9	64.5	4	9	7
32	to 3	300	22	19.5	17	45	90	1/8	1/8	69	10	20	12	26_	0 0.033	13	83.5	8	9	64.5	4	9	7
40	to 3	300	24	21	22	52	100.5	5 1/8 1		76	10	20	14	32-	0 0.039	16	90.5	11	8	70	4	11	8
Bore	GR	Н	H ₁	- 1	K	L	М	MM		NA	N	N	Р	PG	PH	PL	PW	RR	S	U	Z	ZZ	
20	4	41	5	28	5	12	M8 X	1.25	15	24	M20	X 1.5	1/8	22	19.5	20	38	9	127	11.5	180	189	
25	7	45	6	33.5	5.5	12	M10 X	K 1.25	15	30	M26	X 1.5	1/8	27	24	24	41	9	137	11.5	194	203	
32	7	45	6	37.5	5.5	15	M10 X	10 X 1.25		34.5	M26	X 1.5	1/8	27	24	24	41	12	139	14.5	199	211	
40	7	50	8	46.5	7	15	M14	X 1.5	21.5	42.5	M32	X 2	1/4	29	24	24	41	12	167	14.5	232	244	

Fine Lock Cylinder/Double Acting Single Rod

Series CLG1

ø20, ø25, ø32, ø40

How to Order

CL

MLGC

CNA

CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

Series CLG1

With rod boot

Bore (mm)	Stroke range	AL	Α	B1	вс	BN	BZ	С	D	Е	GA	GB	GC	GD	GK	GL	GQ	GR	1	J	K	KA	ММ
20	to 200	15.5	18	13	38	91	57.5	14	8	12	84	10	19	54	3.5	5.5	4	4	26	M4 X 0.7 depth7	5	6	M8 X 1.25
25	to 300	19.5	22	17	45	101	69	16.5	10	14	94	10	20	62	4	9	7	7	31	M5 X 0.8 depth7.5	5.5	8	M10 X 1.25
32	to 300	19.5	22	17	45	102	69	20	12	18	95	10	21	62	4	9	7	7	38	M5 X 0.8 depth8	5.5	10	M10 X 1.25
40	to 300	27	30	19	52	111	76	26	16	25	103	10	23	67	4	11	8	8	47	M6 X 1 depth12	6	14	M14 X 1.5

Bore	Stroke	H1	NA	Р	PG	PH	PL	PW	s	TA	ТВ	TC	Without	rod boot		With	rod l	boot	
(mm)	range	П1	INA	P	PG	РП	PL		3	IA	ID	10	Н	ZZ	е	f	h	e	ZZ
20	to 200	5	24	Rc(PT)1/8	33	19.5	20	38	141	11	11	M5 X 0.8	35	178	30	16	55		198
25	to 300	6	29	Rc(PT)1/8	38	24	24	41	151	11	11	M6 X 0.75	40	193	30	17	62	0.25	215
32	to 300	6	35.5	Rc(PT)1/8	39	24	24	41	154	11	10	M8 X 1	40	196	35	17	62	Stroke	218
40	to 300	8	44	Rc(PT)1/8	44	24	24	41	169	12	10	M10 X 1.25	50	221	35	17	70		241

CAD

Rubber bumper basic style	SCLG1	Bore size	M1 (#1+#11)
Air cushion basic style	SCLG1	Bore size	M2 (#2+#11)
Axial direction foot style	SCLG1	Bore size	M3 (#1+#3+#11)
Front flange style	SCLG1	Bore size	M4 (#1+#4+#11)
Front trunnion style	SCLG1	Bore size	M5 (#1+#5+#11)
Front trunnion style	SCLG1	Bore size	M6 (#6+#11+#13)
Clevis style	SCLG1	Bore size	M7 (#7-#11+#13)
Clevis style	SCLG1	Bore size	M9 (#1+#8+#11)
Rod boot	SCLG1	Bore size	M9 (#1+#8+#11)
Rod boot	SCLG1	Bore size	M10 (#1+#14)
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore size	M10 (#1+#14)	
SCLG1	Bore si		

Fine Lock Cylinder/Double Acting Single Rod Series CLG1

Caution/Allowable Kinetic Energy when Locking

Bore (mm)	20	25	32	40
Allowable kinetic energy J	0.26	0.42	0.67	1.19

- ① In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5MPa, and a piston speed of 300mm/sec. Therefore, if the conditions are below these values, calculations are unnecessary.
- 2 Apply the following formula to obtain the kinetic energy of the load.

Ek: Load kinetic energy (J) mυ² m: Load weight (kg)

- υ: Piston speed (m/s) (Average speed X 1.2 times)
- 3 The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of the load, use 1.2 times the average speed as a guide.
- 4) The relationship between the speed and the load of the respective tube bores is indicated in the diagram below. Use the cylinder in the range below the line.
- (5) During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Holding Force of Spring Lock (Max. static load)

	3	(, 10 0101,
Bore size (mm)	20	25	32	40
Holding force N	196	313	443	784

Note) Holding force at piston rod extended side decreases approx. 15%.

Holding Force of Spring Lock (Max. static load)

⚠ Caution

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened
- To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
- Do not use the cylinder in the locked state to sustain a load that involves impact.

Stopping Accuracy (Not including tolerance of control system)

Unit:mm

	•		, ,	Offication				
	Piston speed (mm/s)							
Lock	50	100	300	500				
Spring lock (Exhaust lock)	± 0.4	± 0.5	± 1.0	± 2.0				
Pneumatic lock (Pressurized lock) Spring and pneumatic lock	± 0.2	± 0.3	± 0.5	± 1.5				

Condition/load: 25% of thrust force at 0.5MPa Solenoid valve: mounted to the lock port

Wei	ght				(kg)
	Bore size (mm)	20	25	32	40
	Basic	0.61	0.97	1.06	1.35
igh	Axial foot	0.72	1.10	1.22	1.57
Basic weight	Flange	0.73	1.15	1.23	1.58
asic	Trunnion	0.62	0.99	1.09	1.40
ă	Clevis	0.66	1.05	1.21	1.58
Front	pivot bracket	0.11	0.13	0.20	0.27
Rear	pivot bracket	0.08	0.09	0.17	0.25
Singl	e knuckle joint	0.05	0.09	0.09	0.10
Doubl	e knuckle joint (With pin)	0.05	0.09	0.09	0.13
Additional weight per 50mm stroke		0.05	0.07	0.09	0.15
Additional weight of air cushion		0.01	0.01	0.02	0.02
Additio	onal weight of long stroke	0.01	0.01	0.02	0.03

Calculation

Example: CLG1LA20-100(Foot, Ø20, 100st)

- •Basic weight------0.72
- •Additional weight------0.05/50 stroke
- Air cvlinder stroke
 100 stroke
- •Additional weight of air cushion 0.01kg 0.72+0.05 X 100/50+0.01=0.83kg

△ Caution

Recommended Pneumatic Circuit/Cautions on Handling

Refer to p.3.1-2 to 3.1-5 for further specifications of fine lock cylinder CLG1 series.

Fine Lock Cylinder with Auto Switch

Refer to p.1.6-13 for auto switch setting position and mounting height because it is same as those of air cylinder CDG1 series (double acting single rod style).

Auto Switch Mounting Bracket (Band)/Part No.

Auto switch model	Bore size (Part No.)								
Auto Switch model	20	25	32	40					
D-B5, B6 D-G5, K5	BA-01	BA-02	BA-32	BA-04					
D-C7, C8 D-H7	BMA2-020	BMA2-025	BMA2-032	BMA2-040					

*Stainless steel mounting bolt set

The set of stainless steel mounting screws described below is available and can be used depending on the operating environment.

(The band for auto switches must be ordered separately, as they are not included.) BBA3: For D-B5/B6/G5

BBA4: For D-C7/C8/H7

The stainless steel bolts described above are used when the D- H7BA type switch is shipped mounted on a cylinder. When the switches are shipped as individual parts, the BBA4 set are included.

Mounting Bracket Part No.

Mounting bracket	Bore size (Part No.)							
wounting bracket	20	25	32	40				
Axial foot*	CLG-L020	CLG-L025	CLG-L032	CLG-L040				
Flange	CLG-F020	CLG-F025	CLG-F032	CLG-F040				
Trunnion	CG-T020	CG-T025	CG-T032	CG-T040				
Clevis**	CG-D020	CG-D025	CG-D032	CG-D040				
Front pivot bracket	CLG-020-24	CLG-025-24	CLG-032-24	CLG-040-24				
Rear pivot bracket	CG-020-24A	CG-025-24A	CG-032-24A	CG-040-24A				

* When ordering foot brackets, 2 pcs, should be ordered for each cylinder.

MLGC

CNA CB

CV/MVG CXW

CXS

CXT

ΜX

MXU MXS

MXQ

MXF

MXW

MXP

MG

MGP MGQ

MGG

MGC

MGF

CY1

^{**} Clevis pin and snap ring are packed with the clevis style.

Series CLG1

Provided with a compact locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Locks in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Model

Series	Style	Action	Cushion	Piston seal	Bore (mm)	Lock operation
CLG1□N CLG1□A	Non-lube style	Double acting	Rubber bumper Air cushion	Special seal	20, 25 32, 40	Spring lock (Exhaust lock), Pneumatic lock (Pressurized lock), Spring and pneumatic lock
CLGILA	Style	acting	All Cushion	3001	32, 40	Spring and priedmatic lock

Specifications

Fluid	Air
Proof pressure	1.5MPa
Max. operating pressure	1MPa
Min. operating pressure	0.08MPa
Ambient and fluid temperature	Without auto switch: -10°C to +70°C (No freezing) With auto switch: -10°C to +60°C
Piston speed	50 to 500mm/sec*
Thread tolerance	JIS Class 2
Stroke length tolerance	to 800st ^{+1.4} mm
Mounting**	Basic, Axial foot, Front flange, Rear flange, Front trunnion, Rear trunnion, Clevis (Used when port position is changed to 90°.)

Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked. To lock the piston in the stationary state for the purpose of drop prevention, the piston can be locked up to a maximum speed of 1000mm/s.

** The long stroke style is applicable to the basic style, the axial foot style, and the front flange style.

Fine Lock Specifications

i ilic Ecok op	Combations								
Lock operation	Spring lock (Exhaust lock)	Spring/ pneumatic lock	Pneumatic lock (Pressurized lock)						
Fluid		Air							
Max. operating press.		0.5MPa							
Lock release press.	0.3MPa	or more	0.1MPa or more						
Lock starting press.	0.25MP	0.25MPa or less 0.05MPa or more							
Lock direction		Both directions							

Accessories

N	lounting	Basic	Axial foot	Front flange	Rear flange	Front trunnion	Rear trunnion	Clevis
Standard	Rod end nut	•	•	•	•	•	•	•
Standard	Clevis pin		_	_	_	_		•
	Single knuckle joint	•	•	•	•	•	•	•
Option	Double knuckle joint (With pin)	•	•	•	•	•	•	•
	Pivot bracket	_	_	_	_	•	•	•
	Rod boot	•	•	•	•	•	•	•

Standard Stroke

Bore (mm)	Standard stroke (mm)	Long stroke (mm)
20	25, 50, 75, 100, 125, 150, 200	201 to 350
25	25, 50, 75, 100,	301 to 400
32	125, 150, 200,	301 to 450
40	250, 300	301 to 800

^{*} Intermediate strokes are available.

Rod Boot Material

Symbol	Material	Max. ambient temp.
L	Nylon tarpaulin	60°C
K	Heat resistant tarpaulin	110°C*

^{*} Max. ambient temperature for rod boot

Minimum Strokes for Auto Switch Mounting

Due to the space requirements for installing auto switches, the minimum cylinder strokes are as shown in the table below.

Model	Number of a	uto switches
Model	1	2
D-B5/B6 D-C7/C8 D-H7 D-G5/K5	10mm	15mm
D-B59W	15mm	20mm
D-H7LF	10mm	20mm

Fine Lock Cylinder/Double Acting Single Rod Series CLG1

With Mounting Bracket

Foot/CLG1LN

Foot

Rear flange/CLG1GN

ZZ+Stroke

Bore (mm)	BZ	М	W	Х	Υ	LC	LD	LH	LS	LT	LX		Without rod boot	With rod boot
20	63.5	3	10	15	7	4	6	25	117	3	50	62	182	202
25	74.5	3.5	10	15	7	4	6	28	127	3	57	70	197.5	219.5
32	74.5	3.5	10	16	8	4	6.6	28	128	3	60	74	200.5	222.5
40	83	4	10	16.5	8.5	4	6.6	33	142	3	68	84	226	246

*Refer to p.3.1-30 for long stroke dimensions.

(O)

Front flange

Bore (mm)	В	ΒZ	FD	FT	FX	FY	FΖ
20	38	57.5	5.5	6	52	25	65
25	45	69	5.5	7	60	30	75
32	45	69	6.6	7	60	30	75
40	52	76	6.6	8	66	36	82

*Refer to p.3.1-30 for long stroke dimensions

Rear flange

Bore	Without rod boot	With rod boo
(mm)	ZZ	ZZ
20	182	202
25	198	220
32	201	223
40	227	247
25 32	182 198 201	202 220 223

Front flange/CLG1FN

Front trunnion/CLG1UN

Front trunnion

	_								_			_	_		
Bore	ΒZ	TDe8	TE	TF	TH	TR	TS	TT	TV	TW	TX	TY	TZ		With rod boo
(111111)														Z	Z
20	69.5	8 ^{-0.025} -0.047	10	5.5	31	51	40	3.2	47.8	42	26	28	59.6	46	66
25	83.5	10 -0.025	10	5.5	37	58	47	3.2	54.8	42	28	28	68	51	73
32	85	12 -0.032 -0.059	10	6.6	38.5	62.5	47	4.5	57.4	48	28	28	75.7	51	73
40	92.5	14 ^{-0.032} _{-0.059}	10	6.6	42.5	72.5	54	4.5	65.4	56	36	30	85.7	62	82
	(mm) 20 25 32	(mm) BZ 20 69.5 25 83.5 32 85	(mm) BZ TDe8 20 69.5 8 $^{-0.025}_{-0.047}$ 25 83.5 10 $^{-0.025}_{-0.047}$ 32 85 12 $^{-0.032}_{-0.059}$	(mm) BZ TDes TE 20 69.5 8 -0.025 10 25 83.5 10 -0.027 10 32 85 12 -0.039 10	(mm) BZ TDes TE TF 20 69.5 8 $^{-0.025}_{-0.047}$ 10 5.5 25 83.5 $^{10}_{-0.047}$ 10 5.5 32 85 $^{12}_{-0.059}$ 10 6.6	(mm) BZ TDes TE TF TH 20 69.5 8 -0.025 10 5.5 31 25 83.5 10 -0.025 10 5.5 37 32 85 12 -0.032 10 6.6 38.5	(mm) BZ TDe8 TE TF TH TR 20 69.5 8 $^{-0.025}_{-0.047}$ 10 5.5 31 51 25 83.5 10 $^{-0.025}_{-0.047}$ 10 5.5 37 58 32 85 12 $^{-0.032}_{-0.059}$ 10 6.6 38.5 62.5	(mm) BZ TDes TE TF TH TR TS 20 69.5 8 $^{-0.025}_{-0.047}$ 10 5.5 31 51 40 25 83.5 10 $^{-0.025}_{-0.047}$ 10 5.5 37 58 47 32 85 12 $^{-0.092}_{-0.095}$ 10 6.6 38.5 62.5 47	(mm) BZ TDe8 TE TF TH TR TS TT 20 69.5 8 $^{-0.025}_{-0.047}$ 10 5.5 31 51 40 3.2 25 83.5 $^{10}_{-0.025}$ 10 5.5 37 58 47 3.2 32 85 $^{12}_{-0.032}$ 10 6.6 38.5 62.5 47 4.5	(mm) BZ TDes TE TF TH TR TS TI TV 20 69.5 8 -0.025 10 5.5 31 51 40 3.2 47.8 25 83.5 10 -0.025 10 5.5 37 58 47 3.2 54.8 32 85 12 -0.032 10 6.6 38.5 62.5 47 4.5 57.4	(mm) BZ TDe8 TE TF TH TR TS TT TV TW 20 69.5 8 $^{-0.025}_{-0.047}$ 10 5.5 31 51 40 3.2 47.8 42 25 83.5 10 $^{-0.025}_{-0.047}$ 10 5.5 37 58 47 3.2 54.8 42 32 85 12 $^{-0.032}_{-0.059}$ 10 6.6 38.5 62.5 47 4.5 57.4 48	(mm) BZ TDes TE TF TH TR TS TT TV TW TX 20 69.5 8 -0.025 -0.047 10 5.5 31 51 40 3.2 47.8 42 26 25 83.5 10 -0.025 -0.027 -0.032 -0	(mm) BZ TDes TE TF TH TR TS TT TV TW TX TY 20 69.5 8 -0.025 10 5.5 31 51 40 3.2 47.8 42 26 28 25 83.5 10 -0.025 10 5.5 37 58 47 3.2 54.8 42 28 28 32 85 12 -0.032 10 6.6 38.5 62.5 47 4.5 57.4 48 28 28	(mm) BZ TDe8 TE TF TH TR TS TT TV TW TX TY TZ 20 69.5 8 $^{-0.025}_{-0.047}$ 10 5.5 31 51 40 3.2 47.8 42 26 28 59.6 25 83.5 10 $^{-0.025}_{-0.047}$ 10 5.5 37 58 47 3.2 54.8 42 28 28 68 32 85 12 $^{-0.032}_{-0.059}$ 10 6.6 38.5 62.5 47 4.5 57.4 48 28 28 75.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Rear trunnion/CLG1TN

mounting range Rear trunnion

Bore	ΒZ	TDe8	тс	TE	т⊔	тр	те	тт	T\/	T\\\/	TV	TV		With		With rod boot				
(mm)	DΖ	1 Des	' -	11	111	11	13	' '	l v	1 00	17	1 1	12	Z	ZZ		ZZ			
20	63.5	8 -0.025	10	5.5	25	39	28	3.2	35.8	42	16	28	47.6	165	186	185	206			
25	76.5	10 -0.025	10	5.5	30	43	33	3.2	39.8	42	20	28	53	180	201	202	223			
32	81.5	12 -0.032 -0.059	10	6.6	35	54.5	40	4.5	49.4	48	22	28	67.7	184	208	206	230			
40	90	14 ^{-0.032} -0.059	10	6.6	40	65.5	49	4.5	58.4	56	30	30	78.7	209	237	229	257			

207 228 229 250

214 238 236 260

241 269 261 289

Clevis/CLG1DN

25

32

Clevis	i														
Bore (mm)	BZ			CZ	L	RR	TE	TF	ТН	TT	TV	TW	TX	TY	TZ
20	44	8+0)	29	14	11	10	5.5	25	3.2	35.8	42	16	28	43.4
25	52.5	10+0).058)	33	16	13	10	5.5	30	3.2	39.8	42	20	28	48
32	57.5			40	20	15	10	6.6	35	4.5	49.4	48	22	28	59.4
40	66	14+0).070)	49	22	18	10	6.6	40	4.5	58.4	56	30	30	71.4
Bore		hout boot		ith boot	1								*(F	lole	dia.)
(mm)	Z	ZZ	Z	ZZ											
20	100	211	210	23,	1										

CL

MLGC

CNA CB

CV/MVG

CXW

CXS

CXT MX

MXU

MXS

MXQ

MXF MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

Series CLG1

With Air Cushion/Basic: CLG1BA

*Refer to p.3.1-29 for mounting bracket since dimensions except GA, P, WA, WB, WH, WW, Wθ are same.

With rod boot

Bore (mm)	Stroke range	AL	Α	B1	вс	BN	BZ	С	D	Е	GA	GB	GC	GD	GK	GL	GQ	GR	ı	J	K	KA	MM	NA
20	to 200	15.5	18	13	38	91	57.5	14	8	12	85	10	19	54	3.5	5.5	4	4	26	M4 X 0.7 depth 7	5	6	M8 X 1.25	24
25	to 300	19.5	22	17	45	101	69	16.5	10	14	95	10	20	62	4	9	7	7	31	M5 X 0.8 depth 5	5.5	8	M10 X 1.25	29
32	to 300	19.5	22	17	45	102	69	20	12	18	95	10	21	62	4	9	7	7	38	M5 X 0.8 depth 8	5.5	10	M10 X 1.25	35.5
40	to 300	27	30	19	52	111	76	26	16	25	103	10	23	67	4	11	8	8	47	M6 X 1 depth 12	6	14	M14 X 1.5	44

Bore	Stroke	H1	D	PG	рн	рI	PW	٥	TA	ТВ	TC	WA	14/14/	\A/D	WH	Wθ	Without	rod boot		With	rod	boot	
(mm)	range	' ' '	F	٦٦	ГП	FL	I V V	3	IA	ID	10	VVA	* * * * *	VVD	VVI	VVO	Н	ZZ	е	f	h	e	ZZ
20	to 200	5	M5 X 0.8	33	19.5	20	38	141	11	11	M5 X 0.8	86	5.5	15	23	30°	35	178	30	16	55		198
25	to 300	6	M5 X 0.8	38	24	24	41	151	11	11	M6 X 0.75	96	7	15	25	30°	40	193	30	17	62	0.25	1210
32	to 300	6	Rc(PT) ¹ /8	39	24	24	41	154	11	10	M8 X 1	97	7	15	28.5	25°	40	196	35	17	62	Stroke	218
40	to 300	8	Rc(PT) ¹ /8	44	24	24	41	169	12	10	M10 X 1.25	105.5	9	15	33	20°	50	221	35	17	70		241

Long stroke/Refer to p.3.1-28 and 3.1-29 for mounting dimensions except table below.

	Bore (mm)	Stroke range	GB	S	W/o rod boot	W/ rod boot ZZ	тв	WE
	20	201 to 350	12	149	186	206	11	16
ĺ	25	301 to 400	12	159	201	223	11	16
	32	301 to 450	12	162	204	226	11	16
	40	301 to 800	13	178	230	250	12	16

Bore	Stroke	GB	s	LS	W/o rod boot	W/ rod boot
(mm)	range	GD	٥	LO	ZZ	ZZ
20	201 to 350	12	149	125	190	210
25	301 to 400	12	159	135	205.5	227.5
32	301 to 450	12	162	136	208.5	230.5
40	301 to 800	13	178	151	235	255

Bore (mm)	Stroke range	GB	S	W/o rod boot	W/ rod boot ZZ
20	201 to 350	12	149	186	206
25	301 to 400	12	159	201	223
32	301 to 450	12	162	204	226
40	301 to 800	13	178	230	250

Series CLG1 Accessory Dimensions

Single Knuckle Joint

I-G02, G03 Material: Rolled steel

I-G04

Material: Casting steel

Part No.	Tube dia. (mm)	Α	A ₁	E ₁	L ₁	ММ	RR1	U₁	ND _{H10}	NX
I-G02	20	34	8.5	□16	25	M8 X .25	10.3	11.5	8 +0.058	8-0.2
I-G03	25, 32	41	10.5	□20	30	M10 X .25	12.8	14	10+0.058	10 -0.2
I-G04	40	42	14	ø22	30	M14 X 1.5	12	14	10+0.058	18 -0.3

Front Side Pivot Bracket

ø20 to ø40

Part No.	Tube dia. (mm)	ТВ	Tdн9	TE	TF	ТН	TN
CLG-020-24	20	42	8 ^{+0.036}	10	5.5	31	41 ^{+0.4}
CLG-025-24	25	48	10+0.036	10	5.5	37	48+0.4
CLG-032-24	32	53	12 ^{+0.036}	10	6.6	38.5	48 ^{+0.5} _{+0.1}
CLG-040-24	40	60	14+0.043	10	6.6	42.5	56 ^{+0.5}

Part No.	Tube dia. (mm)	TR	TT	TU	TV	TW	TX	TY	TZ
CLG-020-24	20	13	3.2	21.2	47.8	42	26	28	50
CLG-025-24	25	15	3.2	21.3	54.8	42	28	28	57
CLG-032-24	32	17	4.5	25.6	57.4	48	28	28	61.4
CLG-040-24	40	21	4.5	26.3	65.4	56	36	30	71.4

Knuckle Pin

Material: Carbon steel

Part No.	Tube dia. (mm)	Dd9	L	d	e	m	t	Used snap ring
IY-G02	_	8 ^{-0.040} -0.076			16.2		0.9	C shape 8 for axis
IY-G03	25, 32	10 -0.040	25.6	9.6	20.2	1.55	1.15	C shape 10 for axis
IY-G04	40	10 -0.040	41.6	9.6	36.2	1.55	1.15	C shape 10 for axis

Double Knuckle Joint (*Knuckle pin and snap ring are packed.)

Part No.	, ,			E ₁					ND _{H10}				Pin part no.
Y-G02	20	34	8.5	□16	25	M8 X .25	10.3	11.5	8 ^{+0.058}				IY-G02
Y-G03	25, 32					M10 X 1.25			10 ^{+0.058}				IY-G03
Y-G04	40	42	16	ø22	30	M14 X 1.5	12	14	10 ^{+0.058}	18 ^{+0.5}	36	41.6	IY-G04

Rear Side Pivot Bracket

ø20 to ø40

Material: Rolled steel TR

Part No.	Tube dia. (mm)	ТВ	Td	TE	TF	тн	TN
CG-020-24A	20	36	8	10	5.5	25	(29.3)
CG-025-24A	25	43	10	10	5.5	30	(33.1)
CG-032-24A	32	50	12	10	6.6	35	(40.4)
CG-040-24A	40	58	14	10	6.6	40	(49.2)

Part No.	Tube dia.(mm)	TR	TT	TU	TV	TW	TX	TY	TZ
CG-020-24A	20	13	3.2	18.1	35.8	42	16	28	38.3
CG-025-24A	25	15	3.2	20.7	39.8	42	20	28	42.1
CG-032-24A	32	17	4.5	23.6	49.4	48	22	28	53.8
CG-040-24A	40	21	4.5	27.3	58.4	56	30	30	64.6

Clevis Pin

Material: Carbon steel

Part No.	Tube dia. (mm)	Dd9	L	d	e	m	t	Used snap ring
CD-G02	20	8 ^{-0.040} -0.076	43.4	7.6	38.6	1.5	0.9	C shape 8 for axis
CD-G25	25	10 -0.040	48	9.6	42.6	1.55		C shape 10 for axis
CD-G03	32	12 -0.050	59.4	11.5	54	1.55		C shape 12 for axis
CD-G04	40	14 ^{-0.050} _{-0.093}	71.4	13.4	65	2.05		C shape 14 for axis

Rod End Nut

Material: Carbon steel

Part No.	Tube dia. (mm)	В	С	D	d	Н
NT-02	20	13	15.0	12.5	M8 X 1.25	5
NT-03	25, 32	17	19.6	16.5	M10 X 1.25	6
NT-G04	40	19	21.9	18	M14 X 1.5	8

Fine Lock Cylinder/Double Acting Single Rod Series CLG1

Construction

With air cushion

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	White hard anodized
2	Tube cover	Aluminum alloy	White hard anodized
3	Cover	Carbon steel	Nitrided, chrome plated
4	Middle cover	Aluminum alloy	White hard anodized
5	Piston rod	Carbon steel*	Hard chrome plated
6	Piston	Aluminum alloy	Chromated, Hard anodized (With air cushion)
7	Brake piston	Carbon steel	Nitrided
8	Brake arm	Carbon steel	Nitrided
9	Brake shoe	Special friction material	
10	Roller	Carbon steel	Nitrided
11)	Pin	Carbon steel	Heat treated
12	Snap ring	Carbon tool steel	Nickel plated
13	Brake spring	Spring steel wire	Dacrodized
14)	Bushing	Oil impregnated sintered alloy	
15	Bushing	Oil impregnated sintered alloy	
16	Manual lock release cam	Chrome molybdrenum steel	Nickel plated
17	Cam guide	Carbon steel	Nitrided, coated

^{*}In the ø20 and ø25 cylinders with auto switches, the piston rod is made of

Component Parts

COII	iponent Parts				
No.	Description	Material			
4 1	Piston seal	NBR			
42	Rod seal A	NBR			
43	Rod seal B	NBR			
44	Brake piston seal	NBR			
45	Middle cover gasket	NBR			
46	Cam gasket	NBR			
47)	Cushion seal A	NBR			
48	Cushion seal B	NBR			
49	Piston gasket	NBR			
50	Cushion ring gasket A	NBR			
5 1	Cushion ring gasket B	NBR			
52	Valve seal A	NBR			
53	Valve seal B	NBR			
54)	Gasket for valve retainer	NBR			
(55)	Cylinder tube gasket	NBR			

Note) Contact SMC if the fine lock unit must be disassembled.

No.	Description	Material	Note	MXS
18	Lock nut	Rolled steel	Nickel plated	INIVO
19	Flat washer	Rolled steel	Nickel plated	
20	Snap ring	Carbon tool steel	Nickel plated	MXQ
21)	Hex. socket head cap screw	Chrome molybdenum steel	Black zinc chromated	
22	Spring washer	Steel wire	Black zinc chromated	MXF
23	Hex. socket head cap screw	Chrome molybdenum steel	Black zinc chromated	
24	Spring washer	Steel wire	Black zinc chromated	MXW
25	Hex. socket head cap screw	Chrome molybdenum steel	Black zinc chromated	IAIVAA
26	Spring washer	Steel wire	Black zinc chromated	MANA
27	Damper A	Urethane		MXP
28	Damper B	Urethane		
29	Snap ring	Carbon tool steel		MG
30	Wearing	Resin		
31)	Wearing	Resin		MGP
32	Hex. socket head plug	Carbon steel	E type only	WICI
33	Element	Bronze	E type only	1400
34	Cushion ring A	Brass		MGQ
35	Cushion ring B	Brass		
36	Seal retainer	Rolled steel	Nickel plated	MGG
37)	Cushion valve A	Brass	Electroless nickel plated	
38	Cushion valve B	Rolled steel	Electroless nickel plated	MGC
39	Cushion valve retainer	Rolled steel	Electroless nickel plated	
40	Luck nut	Rolled steel	Nickel plated	MGF
				IVILTE

CL

MLGC

CNA

CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXW

MGP

MGF

CY1

Fine Lock Cylinder/Double Acting Single Rod

Series CLA

ø40, ø50, ø63, ø80, ø100

How to order

Applicable Auto Switches/Refer to p.5.3-2 for further information on auto switch.

•	Siloubic Auto (Load v		Auto swit			d wir	re (m	1)*			
Style	Special function	Electrical entry	Indicator	Wiring (Output)		DC	AC	Tie-rod mounting	Band mounting	0.5 (—)	3 (L)	5 (Z)	None	Ap	Applicable load	
				3 wire (NPN equiv.)	_	5V	_	A56		•	•	-	_	IC	_	
_		Grommet	Yes			12V	_	A53	B53	•	•	•	_		PLC	
Reed switch		Grommet				12V	100V, 200V	A54	B54	•	•	•			Relay, PLC	
S			No			5V, 12V	_	A67	_			_	_	IC	PLC	
eq			IVO	2 wire	24V	5V, 12V	200V or less	A64	B64	•		_	_		Relay, PLC	
8		Terminal		2 WIIG	240			A33C	A33	_	_	_			PLC	
		conduit	Yes			—	100V, 200V	A34C	A34	_	_	_		_	Relay, PLC	
		DIN terminal	100	163			1007, 2007	A44C	A44	_	_	_				
	Diagnostic indication (2 color)	Grommet					_	A59W	B59W	•		_	_			
		Grommet Terminal	3 wire (NPN) 3 wire (PNP) 2 wire	3 wire (NPN)	241/	24V 5V, 12V	_	F59	G59	•		0	_	IC		
				3 wire (PNP)	vire (PNP)			F5P	G5P	•	•	0	_	- 10		
				_		100V, 200V	J51	_	•	•	0	_	_			
£						12V		J59	K59	•		0	_			
ξ				3 wire (PNP)		5V, 12V	G39C	G39	_	_	_		IC			
Solid state switch		conduit	Yes	2 wire		12V		K39C	K39	_	_	_		_		
ate			100	3 wire (NPN)		5V, 12V		F59W	G59W			0		IC	Relay, PLC	
Si C	Diagnostic indication (2 color)			3 wire (PNP)	24V	01, 121	_	F5PW	G5PW	•	•	0	_		, , , , , , , ,	
∺	` ′			2 wire	270	12V		J59W	K59W	•		0	_	_		
တ	Water resistant (2 color)	Grommet				12 4		F5BA	G5BA	_		0	_			
	With timer			3 wire (NPN)		5V, 12V		F5NT	G5NT	_		0		IC		
	With diagnostic output (2 color)			4 wire				F59F	G59F	•	•	0				
	Latch with diagnostic output (2 color)			(NPN)		_		F5LF	_	•	•	0	_	_		

^{*} Lead wire length symbol 0.5m----- (Example) A53

MG

MGP

MGQ

MGG

MGC

MGF

CY1

³m-----L (Example) A53L

⁵m······Z (Example) A53Z

^{*} Solid state switches marked with a "O" are manufactured upon receipt order.

Series CLA

Provided with a compact locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Style

Series	Style	Action	Bore size (mm)	Lock style	
CLA□N	Non-lube style	Double acting	40, 50, 63, 80, 100	Spring lock, Pneumatic lock.	
CLA□H	Air-hydro style	Double acting		Spring and pneumatic lock	

Specifications

Style	Non-lube	Air-hydro			
Fluid	Air	Turbine oil (Lock portion is air)			
Proof pressure	1.5	МРа			
Max. operating pressure	1.01	МРа			
Min. operating pressure	0.08MPa	0.2MPa			
Piston speed	50 to 500mm/s*	15 to 300mm/s*			
Ambient and fluid temperature	Without auto switch: -10 With auto switch: -10°C	°C to 70°C (No freezing)			
Cushion	Air cushion	None			
Thread tolerance	JIS c	lass 2			
Stroke length tolerance	to 250: ^{+1.0} ₀ , 251 to 1000: ^{+1.4} ₀ , 1001 to 1500: ⁺¹ ₀				
Mounting	Basic, Axial direction foot, Front flange, Rear flange,				
Mounting	Single clevis, Double clevis, Center trunnion				

*Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked.

Lock Specifications

Lock	Spring lock (Exhaust lock)	Pneumatic lock (Pressurized lock)		
Lock release pressure (MPa)	0.3 o	0.1 or more		
Lock starting pressure (MPa)	0.25 (0.05 or more		
Max. operating pressure (MPa)		-		
Lock direction	Both directions			

Standard Stroke

Bore size (mm)	Standard stroke (mm)	Max. stroke
40	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500	800
50 , 63	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600	1200
80	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700	1400
100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700	1500

Note) Intermediate stroke except stroke mentioned above is also available. Contact SMC.

Minimum Strokes for Auto Switch Mounting

Refer to p.1.9-4 because it is same as air cylinder CDA1 series (Standard/Double acting: Single Rod) style.

⚠ Caution

Recommended Pneumatic Circuit/Caution on Handling

Refer to p.3.1-2 to 3.1-5 for details of CLA series specifications mentioned above.

Rod Boot Material

Symbol	Material	Max. ambient temp.
J	Nylon tarpaulin	60°C
K	Heat resistant tarpaulin	110°C*

^{*} Maximum ambient temperature for the rod boot itself.

Accessories

Rod end nut (Standard equipment), Single knuckle joint, Double knuckle joint, Knuckle pin*, Clevis pin*, Rod boot

Mounting Bracket Part No.

Bore size (mm)	40	50	63	80	100
Foot*	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10
Single clevis	CA1-C04	CA1-C05	CA1-C06	CA1-C08	CA1-C10
Double clevis**	CA1-D04	CA1-D05	CA1-D06	CA1-D08	CA1-D10

^{*} When ordering foot brackets, 2pcs. should be

Auto Switch Mounting Bracket Part No.

Auto switch model	Bore size							
Auto switch model	40	50	63	80	100			
D-A5/A6/A59W D-F5□/J5□/F5W□/J59W D-F5NT, F5BA, F59F	BT-04	BT-04	BT-06	BT-08	BT-08			
D-A3/A44/G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M			
D-B5/B6/B59W D-G5□/K59/G5□W/K59W D-G5BA/G59F/G5NTL	BA-04	BA-05	BA-06	BA-08	BA-10			
D-A3 C/A44C/G39C/K39C	BA3-040	BA3-050	BA3-063	BA3-080	BA3-100			

^{*} Mounting brackets are provided with D-A3 C, A44C, G39C, and K39C. When ordering, indicate as described below, in accordance with the cylinder size. Example) $\emptyset40$ —D-A3 \square C-4, $\emptyset50$ —D-A3 \square C-5, $\emptyset63$ —D-A3 \square C-6,

Ø80—D-A3□C-8, Ø100—D-A3□C-10

To order the mounting brackets separately, use the part number shown above.

Only the Double knuckle and the double clevis are provided as standard equipment.

ordered for each cylinder.

** Clevis pin, plain washer and cotter pin are packed with the double clevis style.

Fine Lock Cylinder/Double Acting Single Rod Series CLA

Weight/(): Value at steel tubing (kg)									
Во	ore size (n	nm)	40	50	63	80	100		
	Basic		1.82 (1.87)	2.79 (2.83)	4.41 (4.45)	7.20 (7.36)	10.29 (10.50)		
	Foot		2.01 (2.06)	3.01 (3.05)	4.75 (4.79)	7.87 (8.03)	11.28 (11.49)		
Pasia waight	Flange		2.19 (2.24)	3.24 (3.28)	5.20 (5.24)	8.65 (8.81)	12.21 (12.42)		
Basic weight	Single clevis		2.05 (2.10)	3.13 (3.17)	5.04 (5.08)	8.31 (8.47)	12.07 (12.28)		
	Double clevis		2.09 (2.14)	3.22 (3.26)	5.20 (5.24)	8.60 (8.76)	12.59 (12.80)		
	Trunnion		2.27 (2.37)	3.32 (3.42)	5.30 (5.50)	8.90 (9.19)	12.69 (13.08)		
A 1 Per 1	Aluminum tubing	All brackets	0.22	0.28	0.37	0.52	0.65		
Additional weight per	Steel tubing	Mounting bracket except trunnion	0.28	0.35	0.43	0.70	0.87		
50mm stroke		Trunnion	0.36	0.46	0.65	0.86	1.07		
	Single kn	uckle joint	0.23	0.26	0.26	0.60	0.83		
Accessory	Double kr	Double knuckle joint		0.38	0.38	0.73	1.08		
	Knuckle pin		0.05	0.05	0.05	0.14	0.19		

Calculation Example: **CLAL40-100-E** Basic weight--------Additional weight------.....2.01(Foot style, ø40) -0.22/50 stroke Cylinder stroke.....100 stroke 2.01+0.22 X 100/50=2.45kg

Caution/Allowable Kinetic Energy when Locking

Bore size (mm)	40	50	63	80	100
Allowable kinetic energy J	1.42	2.21	3.53	5.69	8.83

1) In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5MPa, and a piston speed of 300mm/sec. Therefore, if the operating conditions are below these values, calculations are unnecessary.

2 Apply the following formula to obtain the kinetic energy of the load. Ek: Load kinetic energy (J)

mυ² m: Load weight (kg)

υ: Piston speed (m/s)

3) The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of the load, use 1.2 times the average speed as a guide.

4 The relationship between the speed and the load of the respective tube bores is indicated in the diagram below. Use the cylinder in the range below the line.

5 During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted

Fine Lock Cylinder with Auto Switch

Refer to p.1.9-4 for auto switch setting position and mounting height since it is same as air cylinder CDA1 series (Double acting single rod) style.

Stopping Accuracy (Not including tolerance of control system.) Unit: mm

L Iv - to d -	Piston speed (mm/sec)			
Lock style	50	100	300	500
Spring lock	± 0.4	± 0.5	± 1.0	± 2.0
Pneumatic lock Spring and pneumatic lock	± 0.2	± 0.3	± 0.5	± 1.5

Condition/load: 25% of thrust force at 0.5MPa Solenoid valve: mounted to the lock port

Holding Force of Spring Lock (Max. static load)

Bore size (mm)	40	50	63	80	100
Holding force N	882	1370	2160	3430	5390

Note) Holding force at piston rod retracted side decreases approx. 15%.

Holding Force of Pneumatic Lock

Holding Force of Spring and Pneumatic Lock

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
- Do not use the cylinder in the locked state to sustain a load that involves impact.

3.1 - 35

CL

MLGC CNA

CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW MXP

MG

MGP MGQ

MGG

MGC MGF

CY1

Series CLA

Construction

Air-hydro style

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Black coated after hard anodized
2	Head cover	Aluminum alloy	Black coated
3	Cover	Aluminum alloy	Black coated after hard anodized
4	Cylinder tube	Aluminum alloy	Hard anodized
5	Piston rod	Carbon steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
7	Brake piston	Carbon steel	Nitrided
8	Brake arm	Carbon steel	Nitrided
9	Arm holder	Carbon steel	Nitrided
10	Brake shoe holder	Carbon steel	Nitrided
11)	Brake shoe	Special friction material	
12	Roller	Chrome molybdenum steel	Nitrided
13	Pin	Chrome bearing steel	Heat treated
14)	Snap ring	Carbon tool steel	Nickel plated
15	Brake spring	Steel wire	Dacrodized
16	Retainer	Rolled steel	Zinc chromated
17	Cushion ring A	Rolled steel	Zinc chromated
18	Cushion ring B	Rolled steel	Zinc chromated
19	Bushing	Lead bronze casting	
20	Bushing	Lead bronze casting	
21)	Cushion valve	Rolled steel	Electroless nickel plated
22	Tie rod	Carbon steel	Chromated
23	Unit fixing tie rod	Carbon steel	Chromated

No.	Description	Material	Note
24)	Piston nut	Rolled steel	Zinc chromated
25	Non rotating pin	Carbon steel	Induction hardening
26	Pin guide	Carbon steel	Black coated after nitrided
27)	Hex. socket head pulg	Chrome molybdenum steel	Black zinc chromated
28	Elememnt	Bronze	
29	Tie rod nut	Rolled steel	Black zinc chromated
30	Lock nut	Rolled steel	Nickel plated
31)	Hex. socket head cap screw	Chrome molybdenum steel	Black zinc chromated
32	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
33	Spring seat	Steel wire	Black zinc chromated
34)	Spring seat	Steel wire	Black zinc chromated
35	Spring seat	Steel wire	Black zinc chromated
36	Spring seat	Steel wire	Black zinc chromated
37)	Spring seat	Steel wire	Zinc chromated
38	Wearing	Resin	
39	Exhaust valve	Chrome molybdenum steel	
40	Check ball	Chrome bearing steel	

Component Parts

No.	Description	Material		
41)	Piston seal	NBR		
42	Rod seal A	NBR		
43	Rod seal B	NBR		
44	Brake piston seal	NBR		
45	Cushion seal	NBR		
46	Piston gasket	NBR		
47	Tube gasket	NBR		
48	Cushion valve seal	NBR		
(49)	Rod seal C	NBR		

Note) Contact SMC if the fine lock unit must be disassembled.

With rod boot

																					(mm)
Bore (mm)		nge (mm) With rod boot	А	AL	В	B1	BN	BP	BQ	С	D	Е	F	GA	GB	GC	GD	GL	GR	H1	J
40	to 500	20 to 500	30	27	60	22	96	1/4	1/4	44	16	32	10	85	15	26	54	10	10	8	M8 X 1.25
50	to 600	20 to 600	35	32	70	27	108	1/4	1/4	52	20	40	10	95	17	27	59	13	12	11	M8 X 1.25
63	to 600	20 to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	26	67	18	15	11	M10 X 1.25
80	to 750	20 to 750	40	37	102	32	129	1/4	1/4	78	25	52	14	113	21	30	72	23	17	13	M12 X 1.75
100	to 750	20 to 750	40	37	116	41	140	1/4	1/4	92	30	52	14	124	21	31	76	25	19	16	M12 X 1.75

Bore	К	KA	17	М	MM	N	Р	PG	PH	PL	PW	S	W	Without	rod boot		V	Vith ro	d boot	
(mm)	'`	101		""	141141	'`	'	' ~		' -	' ' '		**	Н	ZZ	е	f	h	e	ZZ
40	6	14	71	11	M14 X 1.5	27	1/4	42	11	20	45	153	8	51	215	43	11.2	59	1/4 Stroke	223
50	7	18	80	11	M18 X 1.5	30	3/8	46	10	21	50	168	0	58	237	52	11.2	66	1/4 Stroke	245
63	7	18	99	14	M18 X 1.5	31	3/8	48.5	13	23	60	182	0	58	254	52	11.2	66	1/4 Stroke	262
80	11	22	117	17	M22 X 1.5	37	1/2	55	15	23	70	208	0	71	296	65	12.5	80	1/4 Stroke	305
100	11	26	131	17	M26 X 1.5	40	1/2	56.5	15	25	80	226	0	72	315	65	14	81	1/4 Stroke	324

CAD

CLAB40 SCLA40, #1 (#1+#11)
CLAB50 SCLA50, #1 (#1+#11)
CLAB50 SCLA50, #1 (#1+#11)
CLAB63 SCLA63, #1 (#1+#11)
CLAB80 SCLA61, #1 (#1+#11)
CLAB80 SCLA100, #1 (#1+#11)

CL

MLGC

CNA CB

CV/MVG

CXW

CXS

CXT

MX

MXU MXS

MXQ

MXF

25 MXW 25 MXP

1.75 MG

MGP

MGQ

MGG

MGC

MGF

CY1

Long stroke

Bore (mm)	Stroke range (mm)	RT	RY
40	501 to 800	_	_
50	601 to 1000	_	_
30	1001 to 1200	30	76
63	601 to 1000	_	_
	1001 to 1200	40	92
80	751 to 1000	_	_
	1001 to 1400	45	112
100	751 to 1000	_	_
	1001 to 1500	50	136

(mm)

Bore	St	roke rai	nge	(mm)		A	AL	В	B ₁	BN	BP	BQ	С	Ь		≣	F	GA	GB	GC	GD	GL	GR
(mm)	Withou	t rod boot	With	h rod bo	oot	^	ΛL	Ь .	ы	DIA	ы	DQ		"	"	-		٦ ا	GD	GC	GD	GL	GIX
40	to	500	20	to 50	0 3	30	27	60	22	96	1/4	1/4	44	16	3	2	10	85	15	26	54	10	10
50	to	600	20	to 60	0 3	35	32	70	27	108	1/4	1/4	52	20	4	0	10	95	17	27	59	13	12
63	to	600	20	to 60	0 3	35	32	86	27	115	1/4	1/4	64	20	4	0	10	102	17	26	67	18	15
80	to	750	20	to 75	0 4	10	37	102	32	129	1/4	1/4	78	25	5	2	14	113	21	30	72	23	17
100	to	750	20	to 75	0 4	10	37	116	41	140	1/4	1/4	92	30	5	2	14	124	21	31	76	25	19
Bore (mm)	H ₁	J		K	KA	LD	LF	l LS	LT	LX	LY	LZ	MN	1	N	Р	PG	PH	PL	PW	S	W	Х
40	8	M8 X 1.	.25	6	14	9	40	207	3.2	42	70	81	M14 X	1.5	27	1/4	42	11	20	45	153	8	27
50	11	M8 X 1.	.25	7	18	9	45	222	3.2	50	80	90	M18 X	1.5	30	3/8	46	10	21	50	168	0	27
63	11	M10 X 1	.25	7	18	11.5	50	250	3.2	59	93	106	M18 X	1.5	31	3/8	48.5	13	23	60	182	0	34
80	13	M12 X 1	.75	11	22	13.5	65	296	4.5	76	116	131	M22 X	1.5	37	1/2	55	15	23	70	208	0	44
100	16	M12 X 1	.75	11	26	13.5	75	312	2 6	92	133	148	M26 X	1.5	40	1/2	56.5	15	25	80	226	0	43

Bore		Without	rod boot		V	Vith roo	d boot	
(mm)	· ·	Н	ZZ	е	f	h	e	ZZ
40	13	51	244	43	11.2	59	1/4 Stroke	252
50	13	58	266	52	11.2	66	1/4 Stroke	274
63	16	58	290	52	11.2	66	1/4 Stroke	298
80	16	71	339	65	12.5	80	1/4 Stroke	348
100	17	72	358	65	14.0	81	1/4 Stroke	367

CLAL40......SCLA40, #2 (#1+#2+#11) CLAL50.....SCLA50, #2 (#1+#2+#11) CLAL63.....SCLA63, #2 (#1+#2+#11) CLAL80.....SCLA80, #2 (#1+#2+#11) CLAL100.....SCLA100, #2 (#1+#2+#11)

Rear Flange/CLAG

Single Clevis/CLAC

+I+Stroke

	1.																						(111111)
Bore (mm)		ange (mm) W/ rod boot	А	AL	В	B1	BN	ВР	BQ	С	CD	СХ	D	Е	F	GA	GB	GC	GD	GL	GR	H1	J
40	to 500	20 to 500	30	27	60	22	96	1/4	1/4	44	10	15 ^{-0.1} _{-0.3}	16	32	10	85	15	26	54	10	10	8	M8 X 1.25
50	to 600	20 to 600	35	32	70	27	108	1/4	1/4	52	12	18 ^{-0.1} -0.3	20	40	10	95	17	27	59	13	12	11	M8 X 1.25
63	to 600	20 to 600	35	32	86	27	115	1/4	1/4	64	16	25 ^{-0.1} _{-0.3}	20	40	10	102	17	26	67	18	15	11	M10 X 1.25
80	to 750	20 to 750	40	37	102	32	129	1/4	1/4	78	20	31.5-0.1	25	52	14	113	21	30	72	23	17	13	M12 X 1.75
100	to 750	20 to 750	40	37	116	41	140	1/4	1/4	92	25	35.5 -0.1	30	52	14	124	21	31	76	25	19	16	M12 x 1.75

	Bore	l v	KA	1	17	MM	N	Ь.	PG	PH	PL	PW	RR	s	11	w	VV/	o roa i	1000			VV.	7 100 0001		
	(mm)	I K	KA	_	LZ	IVIIVI	IN	Г	ru	ГΠ	FL	FVV	KK	3	U	VV	Н	Z	ZZ	е	f	h	e	Ζ	ZZ
	40	6	14	30	71	M14 X 1.5	27	1/4	42	11	20	45	10	153	16	8	51	234	244	43	11.2	59	1/4 Stroke	242	252
	50	7	18	35	80	M18 X 1.5	30	3/8	46	10	21	50	12	168	19	0	58	261	273	52	11.2	66	1/4 Stroke	269	281
	63	7	18	40	99	M18 x 1.5	31	3/8	48.5	13	23	60	16	182	23	0	58	280	296	52	11.2	66	1/4 Stroke	288	304
Ī	80	11	22	48	117	M22 X 1.5	37	1/2	55	15	23	70	20	208	28	0	71	327	347	65	12.5	80	1/4 Stroke	336	356
	100	11	26	58	131	M26 X 1.5	40	1/2	56.5	15	25	80	25	226	36	0	72	356	381	65	14.0	81	1/4 Stroke	365	390

--SCLA40, #5 (#1+#5+#11) --SCLA50, #5 (#1+#5+#11) --SCLA63, #5 (#1+#5+#11)

CLAC80-----SCLA80, #5 (#1+#5+#11) CLAC100-----SCLA100, #5 (#1+#5+#11)

*Clevis pin, flat washer and cotter pin are packed.

CLAD40-CLAD50-CLAD63--SCLA40, #6 (#1+#6+#11) -SCLA50, #6 (#1+#6+#11) -SCLA63, #6 (#1+#6+#11) CLAD80···· CLAD100··· SCLA80, #6 (#1+#6+#11) SCLA100, #6 (#1+#6+#11)

Trunnion/CLAT

Bore (mm)	Stroke ra	inge (mm) W/ rod boot	A	AL	В	В1	BN	ВР	BQ	С	D	Е	F	GA	GB	GC	GD	GL	GR	H1	J	К	KA	LZ	MM	(
40	25 to 500	25 to 500	30	27	60	22	96	1/4	1/4	44	16	32	10	85	15	26	54	10	10	8	M8 X 1.25	6	14	71	M14 X 1.5	ı
50	25 to 600	25 to 600	35	32	70	27	108	1/4	1/4	52	20	40	10	95	17	27	59	13	12	11	M8 X 1.25	7	18	80	M18 X 1.5	ľ
63	32 to 600	32 to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	26	67	18	15	11	M10 X 1.25	7	18	99	M18 X 1.5	
80	41 to 750	41 to 750	40	37	102	32	129	1/4	1/4	78	25	52	14	113	21	30	72	23	17	13	M12 X 1.75	11	22	117	M22 X 1.5	
100	45 to 750	45 to 750	40	37	116	41	140	1/4	1/4	92	30	52	14	124	21	31	76	25	19	16	M12 X 1.75	11	26	131	M26 X 1.5	

Bore	N	Ь.	PG	PH	PL	PW	s	w	TDe8		TV	TV	TZ	W/d	rod b	oot			W	/ rod boot		
(mm)	IN	Г	ru	ГΠ	FL	L AA	٥	VV	I Des	11	17	11	12	Н	Z	ZZ	е	f	h	e	Z	ZZ
40	27	1/4	42	11	20	45	153	8	15 ^{-0.032} -0.059	22	85	62	117	51	162	209	43	11.2	59	1/4 Stroke	170	217
50	30	3/8	46	10	21	50	168	0	15 ^{-0.032} _{-0.059}	22	95	74	127	58	181	232	52	11.2	66	1/4 Stroke	189	240
63	31	3/8	48.5	13	23	60	182	0	18 ^{-0.032} -0.059	28	110	90	148	58	191	248	52	11.2	66	1/4 Stroke	199	256
80	37	1/2	55	15	23	70	208	0	25 ^{-0.040} -0.073	34	140	110	192	71	221	286	65	12.5	80	1/4 Stroke	230	295
100	40	1/2	56.5	15	25	80	226	0	25 ^{-0.040} -0.073	40	162	130	214	72	235	306	65	14.0	81	1/4 Stroke	244	315

CLAT80------ SCLA80, #7 (#1+#7+#11) CLAT100----- SCLA100, #7 (#1+#7+#11)

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

MY1

(mm)

Accessory Dimensions

I type single knuckle joint

Material: Sulfur free-cutting steel

Part No.	Tube I.D. (mm)	Α	A 1	øE1		ММ	R ₁	_	øND ^{H10}	NX
I-04	40	69	22	24	55	M14 X 1.5	15.5	20		
I-05	50/63	74	27	28	60	M18 X 1.5	15.5	20	12 +0.070	16 -0.1
I-08	80	91	37	36	71	M22 X 1.5	22.5	26	18 ^{+0.070}	28 -0.1
I-10	100	105	37	40	83	M26 X 1.5	24.5	28	20 +0.084	30 -0.1

Clevis pin/Knuckle pin

Material: Carbon steel

Part No.	Tube	e I.D.	Dd9		e	m	d	Used cotter	Used flat
rait No.	Clevis	Knuckle		١	E	m	Cut through		washer
CDP-2A	40	_	10 -0.040	46	38	4	3	ø3 X 18ℓ	"MIGAKIMARU"10
CDP-3A	50	40/50/63	$12 {}^{-0.050}_{-0.093}$	55.5	47.5	4	3	ø3 X 18ℓ	"MIGAKIMARU"12
CDP-4A	63	_	$16 {}^{-0.050}_{-0.093}$	71	61	5	4	ø4 X 25ℓ	"MIGAKIMARU"16
CDP-5A	-	80	$18 ^{-0.050}_{-0.093}$	76.5	66.5	5	4	ø4 X 25ℓ	"MIGAKIMARU"18
CDP-6A	80	100	20 -0.065	83	73	5	4	ø4 X 30ℓ	"MIGAKIMARU"20
CDP-7A	100	_	25 ^{-0.065} -0.117	88	78	5	4	ø4 X 36ℓ	"MIGAKIMARU"24

Y type double knuckle joint * Knuckle pin, cotter pin and flat washer are packed.

øND법이

(mm)

Part No.	Tube I.D. (mm)	Αı	E ₁	L ₁	ММ	RR1	U₁	ND	NX	ΝZ	L	Cotter pin size	Flat washer
Y-04C	40	22	24	55	M14 X 1.5	13	25	12	16 ^{+0.3}	38	55.5	ø3 X 18ℓ	"MIGAKIMARU" 12
Y-05C	50/63	27	28	60	M18 X 1.5	15	27	12	16 ^{+0.3}	38	55.5	ø3 X 18ℓ	"MIGAKIMARU" 12
Y-08C	80	37	36	71	M22 X 1.5	19	28	18	28 ^{+0.3} _{+0.1}	55	76.5	ø4 X 25ℓ	"MIGAKIMARU" 18
Y-10C	100	37	40	83	M26 X 1.5	21	38	20	30+0.3	61	83	ø4 X 30ℓ	"MIGAKIMARU" 20

Rod end nut

Material: Rolled steel

(mm)

Ī	Part No.	Tube I.D. (mm)	d	Н	В	С	D
	NT-04	40	M14 X 1.5	8	22	25.4	21
Ī	NT-05	50/63	M18 X 1.5	11	27	31.2	26
Ī	NT-08	80	M22 X 1.5	13	32	37.0	31
	NT-10	100	M26 X 1.5	16	41	47.3	39

⚠ Caution

Caution on Handling

① After mounting and adjusting, follow the procedures for changing the lock to the locked state shown on p.3.1-5. Rotate the pin, and put the cylinder into the locked state before using.

② Precautions for using the basic body or replacing the support bracket:

The lock unit and the cylinder rod cover are assembled as shown in the diagram below. Therefore, unlike the ordinary air cylinder that uses the basic type, it is not possible to mount it directly by screwing the cylinder tie rods into a machine. Furthermore, the tie rods for securing the unit could become loosened when the support bracket is replaced. If this occurs, make sure to retighten the tie rods. Use a socket wrench when replacing the support bracket or to retighten the tie rods for securing the unit.

Bore	Mour	nting brack	cet nut	Unit fix	ring tie rod
(mm)	Used nut	Width across flats	Used socket	Width across flats	Used socket
40	JIS B1181 Class 3	13	JIS B4636	10	JIS B4636 Socket10
50	M8 X 1.25	Socket13	Socket13	13	JIS B4636 Socket13
63	JIS B1181 Class 3 M10 X 1.25	17	JIS B4636 Socket17	13	JIS B4636 Socket13
80/100	JIS B1181 Class 3 M12 X 1.75	19	JIS B4636 Socket19	17	JIS B4636 Socket17

Unit fixing tie rod A has hole (ø2, depth 1mm) at end side.

Fine Lock Cylinder/Double Acting Double Rod

Series CLAW

Non-lube Style/ø40, ø50, ø63, ø80, ø100

How to Order

Applicable Auto Switches/Refer to p.5.3-2 for further information on auto switch.

<u>Ap</u>	plicable Auto Sv		_	Refer to p	.5.3-			nation or	n auto sv														
		Flectrical	ator	Wiring		Load v	voltage		nliaabla														
Style	Special function	Electrical entry	Indica	(Output)		DC	AC	Tie rod mounting	Band mounting	0.5 (—)	3 (L)	5 (Z)	None	load									
				3 wire (NPN equiv.)	_	5V		A56		•	•	_		IC									
			Yes			12V		A53	B53	•	•	•	_		PLC								
뒫		Grommet				12V	100V, 200V	A54	B54	•	•	•	_		Relay, PLC								
Reed switch			No			5V, 12V		— A67	_	•	•	_	_	IC	PLC								
ğ			INO	-	24V	5V, 12V	200V	A64	B64	•	•	_	I —		Relay, PLC								
Şe		Terminal	П		2 WII 6 24 V			A33C	A33	_	_	_	•		PLC								
		conduit	Yes			—	100V, 200V	A34C	A34	_	_	_	•	_									
		DIN Terminal	163				100 v, 200 v	A44C	A44	_	_	_	•		Relay, PLC								
	Diagnostic indication (2 color)	Grommet					_		A59W	B59W	•	•	_	-									
												3 Wire (NPN)	241/	5) (40) (F59	G59	•	•	0	_	IC	
		Grommet		3 Wire (PNP)	24 V	5V, 12V		F5P	G5P	•	•	0	_	ic									
		Gionniet	Grommer	Gioinnet		2 wire	_	_	100V, 200V	J51	_	•	•	0	_								
_					2 wire		12V		J59	K59	•	•	0	_									
호		Terminal		3 wire (NPN)		5V, 12V		G39C	G39	_	_	_	•	IC									
S		conduit		2 wire		12V		K39C	K39	-	_	_	•	_									
Ę.	B		Yes	3 Wire (NPN)		5) / 40) /		F59W	G59W	•	•	0	-	10	D D O								
sta	Diagnostic indication (2 color)			3 Wire (PNP)	24V	5V, 12V		F5PW	G5PW	•	•	0	_	IC	Relay, PLC								
₽	(2 00101)			2 wire	24V	40) (J59W	K59W	•	•	0	-										
Solid state switch	Water resistant (2 color)	Grommet		2 wire		12V		F5BA	G5BA	_	•	0	—	_									
	With timer	Grommet		3 wire (NPN)		5) / 40) /		F5NT	G5NT	_	•	0	_	IC									
	With diagnostic output (2 color)			4 wire		5V, 12V		F59F	G59F	•	•	0	_	.0									
	Latch with diagnostic output (2 color)			(NPN)		_		F5LF	_	•	•	0	_	_									

^{*} Lead wire length symbol 0.5m------ (Example) A53 3m------L (Example) A53L 5m-----Z (Example) A53Z

MLGC CNA

CB CV/MVG

CXW

CXS

MX

MXU MXS

MXQ

MXF

MXW

MXP

MG MGP

MGQ

MGG

MGC

MGF

CY1

 $[\]ast$ Solid state switches marked with a "O" are manufactured uon receipt of order.

Series CLAW

Provided with a compact locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Specifications

Bore size (mm)	40	50	63	80	100	
Action		Double	acting dou	ble rod		
Lock action	Spring lock, Pneumatic lock, Spring and pneumatic lock					
Style			Non-lube			
Proof pressure	1.5MPa					
Max. operating pressure	1.0MPa					
Min. operating pressure	0.1MPa					
Piston speed		50 to	500mm/s	ec*		
Ambient and fluid temperature			: -10°C to 10°C to +6		No freezing)	
Cushion		,	Air cushion			
Thread tolerance			JIS class 2			
Stroke length tolerance		to 250	: +1.0, 251 to	o 750: ^{+1.}	4	
Mounting	Ва	sic, Foot, F	lange, Ce	nter trun	nion	

^{*}Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked.

Lock Specifications

Lock style	Spring lock Spring/ (Exhaust lock) pneumatic lock		Pneumatic lock (Pressurized lock)	
Lock release pressure (MPa)	0.3 or	0.1 or more		
Lock starting pressure (MPa)	0.25 c	or less	0.05 or more	
Max. operating pressure (MPa)		0.5		
Lock direction		Both directions		

Accessories/Refer to p.3.1-42 for details.

	Mounting	Basic	Foot	Flange	Center trunnion
Standard	Rod end nut	•	•	•	•
	Single knuckle joint	•	•	•	•
Option	Double knuckle joint (with pin)	•	•	•	•
	Rod boot	•	•	•	•
Option	, , , ,	•	•	•	•

^{*} Dimensions are same as CLA series (standard). Refer to p.3.1-42.

Standard Stroke

(mm)

Bore size (mm)	Standard stroke (mm)
40	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500
50 , 63	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600
80, 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700

Note) Intermediate strokes are also available. Contact SMC.

Minimum Strokes for Auto Switch Mounting

Refer to p.1.9-4 for minimum strokes for auto switch mounting because it is same as air cylinder CA1 series (Standard/Double acting: Single rod style).

Fine Lock Cylinder with Auto Switch

Refer to p.1.9-14 for auto switch setting position and mounting height because it is same as air cylinder CDA1 series (Double acting single rod style).

Rod Boot Material

Symbol	Material	Max. ambient temp.
J	Nylon tarpaulin	60°C
K	Heat resistant tarpaulin	110°C*

^{*} Maximum ambient temp. for the rod boot itself.

Auto Switch Mounting Bracket

Refer to p.3.1-46 for auto switch mounting bracket (Band) when auto switch is mounted.

Mounting Bracket

Refer to p.3.1-46 for part no. of mounting bracket except basic style.

 ⚠ Caution

specifications.

Recommended Pneumatic Circuit/Caution on Handling

Refer to p.3.1-2 to 3.1-5 for CLA series

Fine Lock Cylinder/Double Acting Double Rod Series CLAW

weight	vveignv (): Value at steel tubing							
Bore	size (m	m)	40	50	63	80	100	
	Basic		1.96 (2.01)	3.02 (3.07)	4.67 (4.71)	7.66 (7.82)	10.99 (11.21)	
Rasic weight	Flange 2.15 (2.20) Flange 2.33 (2.38)	3.24 (3.29)	5.01 (5.05)	8.33 (8.49)	11.98 (12.20)			
basic weight				3.49 (3.52)	5.46 (5.50)	9.11 (9.28)	12.91 (13.13)	
	Trunnic	on	2.41 (2.51)	3.55 (3.66)	5.56 (5.76)	9.36 (9.65)	13.39 (13.78)	
	Al tubing	All brackets	0.30	0.40	0.50	0.71	0.92	
Additional weight per 50mm stroke	Steel tubing	Mounting bracket except trunnion	0.35	0.47	0.55	0.89	1.15	
JUIIIII SUUKE		Trunnion	0.44	0.58	0.77	1.06	1.35	
A 000000n/	Single kı	nuckle joint	0.23	0.26	0.26	0.60	0.83	
Accessory	Double k (with pi	nuckle joint n)	0.37	0.43	0.43	0.87	1.27	

Calculation Example: WeightCLAWL40-100-E

- ...2 15(Foot, 100stroke) · Basic weight...
- Additional weight 30/50 stroke
- Cylinder stroke-----100 stroke
- 2.15+0.30 X 100/50=2.75kg

Bore size (mm)	40	50	63	80	100
Allowable kinetic energy J	1.42	2.21	3.53	5.69	8.83

- 1) In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5MPa, and a piston speed of 300mm/sec. Therefore, if the operating conditions are below these values, calculations are unnecessary.
- 2 Apply the following formula to obtain the kinetic energy of the load.

Ek: Load kinetic energy (J) $Ek = \frac{1}{2} mv^2$ m: Load weight (kg)

- υ: Piston speed (m/s)
- 3 The piston speed will exceed the average speed immediately before locking. To determine the piston speed, use 1.2 times the average
- 4 The relationship between the speed and the load is indicated in the diagram below. Use the cylinder in the range below the line.
- During locking, the lock mechanism must sustain the thrust of the cylinder, in addition to absorbing the energy of the load. Therefore, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Stopping Accuracy (Not including tolerance of control system.) Unit: mm

Lock style	F	Piston speed mm/sec					
LOOK Style	50	100	300	500			
Spring lock	±0.4	±0.5	±1.0	±2.0			
Pneumatic lock,	10.0	10.2	10.5	.4.5			
Spring and pneumatic lock	±0.2	±0.3	±0.5	±1.5			

Condition/load: 25% of output force at 0.5MPa Solenoid valve: mounted to the lock port

Holding Force of Spring Lock (Max. Static Load)

Bore size (mm)	40	50	63	80	100
Holding force N	882	1370	2160	3430	5390

Note) Holding force at piston rod retracted side decreases approx. 15%.

Holding Force of Pneumatic Lock

Holding Force of Spring and Pneumatic Lock

△ Caution

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- •If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- •To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
- •Do not use the cylinder in the locked state to sustain a load that involves impact.

CL

MLGC

CNA

CB CV/MVG

CXW

CXS CXT

MX

MXU

MXS

MXQ MXF

MXW

MG

MGP MGQ

MGG

MGC MGF

CY1

Series CLAW

Construction

Component Parts

No.	Description	Material	Note
1	Rod cover A	Aluminum alloy	Black coated after hard anodized
2	Rod cover B	Aluminum alloy	Black coated
3	Cover	Aluminum alloy	Black coated after hard anodized
4	Cylinder tube	Aluminum alloy	Hard anodized
(5)	Piston rod A	Carbon steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
7	Brake piston	Carbon steel	Nitrided
8	Brake arm	Carbon steel	Nitrided
9	Arm holder	Carbon steel	Nitrided
10	Brake shoe holder	Carbon steel	Nitrided
11)	Brake shoe	Special friction material	
12	Roller	Chrome molybdenum steel	Nitrided
13	Pin	Chrome bearing steel	Heat treated
14)	Snap ring	Carbon tool steel	Nickel plated
15)	Brake spring	Steel wire	Dacrodized
16	Retainer	Rolled steel	Zinc chromated
17)	Cushion ring B	Rolled steel	Zinc chromated
(18)	Piston rod B	Carbon steel	Hard chrome plated

	No.	Description	Material	Note
	19	Bushing	Lead bronze casting	
	20	Bushing	Lead bronze casting	
	21)	Cushion valve	Rolled steel	Electroless nickel plated
	22	Tie rod	Carbon steel	Chromated
	23	Unit fixing tie rod	Carbon steel	Chromated
	24)	Non rotating pin	Carbon steel	Induction hardening
	25	Pin guide	Carbon steel	Black coated after nitrided
	26	Hex. socket head plug	Chrome molybdenum steel	Black zinc chromated
	27)	Element	Bronze	
	28	Tie rod nut	Carbon steel	Black zinc chromated
	29	Lock nut	Carbon steel	Nickel plated
	30	Hex. socket head cap screw	Chrome molybdenum steel	Black zinc chromated
	31)	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
	32	Spring seat	Steel wire	Black zinc chromated
	33	Spring seat	Steel wire	Black zinc chromated
Ì	34)	Spring seat	Steel wire	Black zinc chromated
ľ	35	Spring seat	Steel wire	Black zinc chromated

Component Parts

No.	Description	Material
36	Piston seal	NBR
37)	Rod seal A	NBR
38	Rod seal B	NBR
39	Brake piston seal	NBR
40	Cushion seal	NBR
41)	Tube gasket	NBR
42	Cushion valve seal	NBR
43	Piston gasket	NBR

Note) Contact SMC if the fine lock unit must be disassembled.

Mounting Bracket Part No.

Bore (mm)	40	50	63	80	100
Foot*	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10

 $[\]ast$ When ordering foot brackets, 2pcs. should be ordered for each cylinder.

Auto Switch Mounting Bracket Part No. (Band Mounting)

Auto quitale medial	Bore size						
Auto switch model	40	50	63	80	100		
D-A5/A6/A59W D-F5□/J5□/F5□W/J59W D-F5NTL, F5BAL, F59F	BT-04	BT-04	BT-06	BT-08	BT-08		
D-A3/A44/G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M		
D-B5/B6/B59W D-G5□/K59/G5□W/K59W D-G5BAL/G59F/G5NTL	BA-04	BA-05	BA-06	BA-08	BA-10		
D-A3 C/A44C/G39C/K39C*	BA3-040	BA3-050	BA3-063	BA3-080	BA3-100		

* Mounting brackets are provided with D-A3□C, A44C, G39C, and K39C. When ordering, indicate as described below, in accordance with the cylinder size. To order the mounting brackets separately, use the part number shown above.

(Example) ø40/D-A3□C-4, 50/D-A3□C-5

ø63/D-A3□C-6, ø80/D-A3□C-8, ø100/D-A3□C-10

[Stainless steel mounting bolt set] The set of stainless steel mounting screws (with set screw) described below is available and can be used depending on the operating environment. (The mounting bracket and band for auto switches must be ordered separately, as they are not included.) BBA1: For D-A5/A6/F5/J5

BBA3: For D-B5/B6/G5/K5
The stainless steel bolts described above are used when the D-F5BAL/G5BAL type switch is shipped mounted on a cylinder. When the switches are shipped as individual parts, the BBA1 and BBA3 set are included.

Fine Lock Cylinder/Double Acting Double Rod Series CLAW

Basic/CLAWB

80

100

65 296 4.5

75 | 312

6

131

92 | 133 | 148

15

25 | 80 | 226

0

¹/₂ | 56.5 | 15

40

M26 X 1.5

16

72 | 370 | 65 | 14.0 | 81

43 | 17

388

379

¹/₄ Stroke

Series CLAW

Flange/CLAWF

Trunnion/CLAWT

Lock-up Cylinder/Double Acting Single Rod

Series CL1

ø40, ø50, ø63, ø80, ø100, ø125, ø140, ø160

The CL1 series lock-up cylinder is a self-locking style that contains a ring that is tilted by a spring force, which is further tilted by the load that is applied to the cylinder, thus locking the piston rod. This cylinder is suitable for intermediate stops, emergency stops, or for drop prevention.

Applicable Auto Switches/Refer to p.5.3-2 for further information on auto switch.

			o		Load voltage Auto switch model I						Lea	ead wire(m)*					
Style	Special function	Electrical entry	Indicator	Wiring (Output)		DC	AC			Band m		0.5 (-)	3		None	A	oplicable load
				3 wire (NPN equiv.)	_	5V	_	A56		_		•	•	_	_	IC	_
		Grommet	Yes			12V	_	A53	ø40	B53	ø40	•	•	•	_		PLC
_		Grommet				12V	100V, 200V	A54	to	B54	to	•	•	•	_		Relay, PLC
દ			No			5V, 12V		A67	ø160	_	ø100	•	•	_	_	IC	PLC
Reed switch			INO			12V	200V or less	A64		B64		•	•	_	_		Relay, PLC
ē		Terminal		2 wire	24V			A33C	ø40	A33	ø40	_	_	_	•		PLC
æ	cond	conduit	Yes			12V	100V, 200V	A34C	to ø100	A34	to	_	_	_	•	_	
		DIN terminal	00				1000, 2000	A44C	Ø100	A44	ø160	_	_	_	•		Relay, PLC
	Diagnostic indication (2 color)	Grommet				- -	_	A59W	ø40 to ø160	B59W	ø40 to ø100	•	•	_	_		
	Gromm			3 wire (NPN)	241/	/ 5V, 12V -		F59		G59		•	•	0	\Box	10	
				3 wire (PNP)	50, 120	F	F5P		G5P	ø40 to	•	•	0	_	IC		
		Grommet		2 wire	_	_	100V, 200V	J51		_	ø100	•	•	0	-		
						12V		J59		K59		•	•	0	-		
등		Terminal		3 wire(NPN)		5V, 12V		G39C		G39	ø40 to	_	_	_	•	IC	
Š		conduit	Yes	2 wire		12V		K39C	ø40	K39	ø160	_	_	_	•	_	
ē			103	3 wire(NPN)		5V. 12V		F59W	to	G59W		•	•	0	_	IC	Relay, PLC
stat	Diagnostic indication (2 color)			3 wire(PNP)		30, 120		F5PW	ø160	G5PW		•	•	0	_	10	INGIAY, FLO
<u>.0</u>	(2 00101)			2	24V	12V		J59W		K59W	ø40	•	•	0	_		
Solid state switch	Water resistant (2 color)	Grommet		2 wire		120		F5BA		G5BA	to	_	•	0			
	With timer			3 wire(NPN)		5\/ 12\/		F5NT		G5NT	ø100	_	•	0	_	IC	
	With diagnostic output (2 color)			4 wire		5V, 12V		F59F		G59F		•	•	0	_	- 10	
	Latch with diagnostic output (2 color)			(NPN)		_		F5LF		_		•	•	0	-	_	

^{*} Lead wire length symbol 0.5m---- (Example) A53

MG

MGP

MGQ

MGG

MGC

MGF

CY1

³m······L (Example) A53L 5m·····Z (Example) A53Z

 $[\]ast$ Solid state switches marked with a " \bigcirc " are manufactured upon receipt of order.

Provided with a compact locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Model

Series	Applicable air cylinder	Bore size (mm)	Action	Lock style	
CL1	CA1□N 40, 50, 63, 80, 1		Double acting	Spring lock	
CLI	CS1□N	125, 140, 160	Double acting	Spring lock	

Specifications

Bore size (mm)	ø40 to ø100	ø125 to ø160			
Fluid	Air				
Proof pressure	1.5MPa	1.57MPa			
Max. operating pressure	1.0MPa	0.97MPa			
Min. operating pressure	0.08	MPa			
Piston speed	50 to 20	0mm/s*			
Ambient and fluid temperature	Without auto switch –10 to +70°C With auto switch –10 to +60°C (No condensation)	Without auto switch 0 to +70°C With auto switch 0 to +60°C (No condensation)			
Lubrication	Non-	lube			
Cushion	Air cu	shion			
Thread tolerance	JIS CI	ass 2			
Stroke length tolerance	to 250 ^{+1.0} ₀ , 251 to 1000 ^{+1.0} ₀ , 10	01 to 1500 ^{+1.0} ₀ , 1501 to 1600 ^{+1.0} ₀			
	Basic, Axial foot, Front flange,				
Mounting	Rear flange, Single clevis,				
	Double clevis, Center trunnion				

^{*} Make sure to operate the cylinder in such a way that the piston speed does not exceed 200mm/s during locking. * The maximum speed of 500mm/s can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

Max. Load and Lock Holding Force (Max. Static Load)

Bore size	e (mm)	40	50	63	80	100	125	140	160
Max. load	Horizontal mounting	588	981	1470	2450	3820	6010	7540	9850
N	Vertical mounting	294	490	735	1230	1910	3000	3770	4920
Holding fo	orce (N)*	1230	1920	3060	4930	7700	12100	15100	19700

^{*} The cylinder can be used to 1/2 or less of its holding force, if only a static load is applied, such as for drop prevention.

Lock-up Unit Specifications

Lock-up release pressure	0.2MPa (at no load)
Lock-up start pressure	0.05MPa or less
Lock-up direction	One direction (Lock direction can be changed.)

Stopping Accuracy (Not including tolerance of control system)

Dieten anged	Bore siz	ze (mm)			
Piston speed	40 to 100	125 to 160			
50mm/s	±0.6mm	±1mm			
100mm/s	±1.2mm	±2mm			
200mm/s	±2.3mm	±3mm			

Lock-up Unit Style

Bore size (mm)	40	50	63	80	100
Lock up unit part No.	CL-40	CL-50	CL-63	CL-80	CL-100

Standard Stroke

Bore size (mm)	Standard stroke (mm)							
40	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500							
50, 63	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600							
80, 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700							

Max. Stroke

Refer to p.1.9-3 for maximum stroke of CA1 series ø40 to ø100 and p.1.10-3 for maximum stroke of CS1 series ø120 to ø160.

Minimum Strokes for Auto Switch Mounting

Refer to following pages for minimum strokes for auto switch mounting.

- Bore size ø40 to ø100: p.1.9-4
- Bore size ø125 to ø160: p.1.10-8

Provided with a compact locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Model

Series	Applicable air cylinder	Bore size (mm)	Action	Lock style
CL1	CA1□N	40, 50, 63, 80, 100	Double acting	ing Caring look
	CS1□N	125, 140, 160	Double acting	Spring lock

Specifications

Bore size (mm)	ø40 to ø100	ø125 to ø160			
Fluid	A	ir			
Proof pressure	1.5MPa	1.57MPa			
Max. operating pressure	1.0MPa	0.97MPa			
Min. operating pressure	0.08	MPa			
Piston speed	50 to 20	0mm/s*			
Ambient and fluid temperature	Without auto switch –10 to +70°C With auto switch –10 to +60°C (No condensation)	Without auto switch 0 to +70°C With auto switch 0 to +60°C (No condensation)			
Lubrication	Non-	lube			
Cushion	Air cu	shion			
Thread tolerance	JIS CI	ass 2			
Stroke length tolerance	to 250 ^{+1.0} ₀ , 251 to 1000 ^{+1.0} ₀ , 10	01 to 1500 ^{+1.0} ₀ , 1501 to 1600 ^{+1.0} ₀			
	Basic, Axial foot, Front flange,				
Mounting	Rear flange, Single clevis,				
	Double clevis, Center trunnion				

^{*} Make sure to operate the cylinder in such a way that the piston speed does not exceed 200mm/s during locking. * The maximum speed of 500mm/s can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

Max. Load and Lock Holding Force (Max. Static Load)

<u> </u>									
Bore size (mm)		40	50	63	80	100	125	140	160
Max. load	Horizontal mounting	588	981	1470	2450	3820	6010	7540	9850
N	Vertical mounting	294	490	735	1230	1910	3000	3770	4920
Holding fo	orce (N)*	1230	1920	3060	4930	7700	12100	15100	19700

^{*} The cylinder can be used to 1/2 or less of its holding force, if only a static load is applied, such as for drop prevention.

Lock-up Unit Specifications

Lock-up release pressure	0.2MPa (at no load)
Lock-up start pressure	0.05MPa or less
Lock-up direction	One direction (Lock direction can be changed.)

Stopping Accuracy (Not including tolerance of control system)

Piston speed	Bore size (mm)					
	40 to 100	125 to 160				
50mm/s	±0.6mm	±1mm				
100mm/s	±1.2mm	±2mm				
200mm/s	±2.3mm	±3mm				

Lock-up Unit Style

Bore size (mm)	40	50	63	80	100
Lock up unit part No.	CL-40	CL-50	CL-63	CL-80	CL-100

Standard Stroke

Bore size (mm)	Standard stroke (mm)							
40	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500							
50, 63	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600							
80, 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700							

Max. Stroke

Refer to p.1.9-3 for maximum stroke of CA1 series ø40 to ø100 and p.1.10-3 for maximum stroke of CS1 series ø120 to ø160.

Minimum Strokes for Auto Switch Mounting

Refer to following pages for minimum strokes for auto switch mounting.

- Bore size ø40 to ø100: p.1.9-4
- Bore size ø125 to ø160: p.1.10-8

Accessories

Мо	ounting bracket	Basic	Foot	Front flange	Rear flange	Single clevis	Double clevis	Center trunnion
Standard Rod end nut*	Rod end nut*	•	•	•	•	•	•	•
Standard	Clevis pin	_	_	_	_	_	•	_
	Single knuckle joint	•	•	•	•	•	•	•
Option	Double knuckle joint (with pin)	•	•	•	•	•	•	•
	Rod boot	•	•	•	•	•	•	•

^{*} ø125 to ø160: Option

Weight (kg)

	Tube material	Aluminum tubing								
Bore s	size (mm)	40	50	63	3 80 100 125 140 160					
Lock-up unit weight		0.76	1.23	2.05	3.04	4.40	16.93	21.46	32.31	
	Basic	1.66	2.55	4.12	6.56	9.49	30.88	38.25	55.72	
	Foot	1.83	2.75	4.42	7.36	10.43	32.21	40.83	59.09	
	Front flange	2.06	3.15	5.08	8.40	11.81	33.65	43.28	60.95	
Basic	Rear flange	2.09	3.29	5.16	8.51	12.06	34.35	44.32	62.98	
Ã	Single clevis	1.93	3.00	4.88	7.94	11.80	36.02	45.46	65.45	
	Double clevis	1.92	2.98	4.90	7.94	11.82	35.83	45.17	64.28	
	Trunnion	2.26	3.30	5.47	8.90	13.02	35.77	46.09	63.86	
Addition	nal weight per 100mm stroke	0.44	0.56	0.74	1.04	1.30	1.77	1.90	2.39	
Dries	Single knuckle joint	0.23	0.26	0.26	0.66	0.83	0.91	1.16	1.56	
Accessories	Double knuckle joint (with pin)	0.37	0.43	0.43	0.87	1.27	1.37	1.81	2.48	

Rod Boot Material

Symbol	Material	Max. ambient temp.
J	Nylon tarpaulin	60°C
K	Heat resistant tarpaulin	110°C*

^{*} Maximum ambient temperature for the itself

Lock-up Cylinder with Auto Switch

Refer to following pages for auto switch setting position and mounting height.

- Bore size/ø40 to ø100: p.1.9-14
- Bore size/ø125 to ø160: p.1.10-20

Calculation Example: CL1L125-500F

- Basic weight----32.21(ø125, Foot style)
- Additional weight----1.77/100 stroke 32.21+1.77/100 X 100/50=41.06kg
- *When steel tubes measuring ø40 to ø100, and ø125 to ø160 are used, the lock-up unit weight must be added to the respective cylinder weight as in the individual cylinder weight tables on p.1.9-4 and 1.10-4.

CL

MLGC

CNA

CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

MY1

Auto Switch Mounting Bracket Part No.

Auto switch		Bore size (mm)							
model	40	50	63	80	100	125	140	160	
D-A5/A6/A59W D-F5□/J5□/F5NT D-F5□W/J59W D-F5BAL/F59F	BT-04	BT-04	BT-06	BT-08	BT-08	BT-12	BT-12	BT-16	
D-A3/A44 D-G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M	BS1-125	BS1-140	BS1-160	
D-B5/B6/B59W D-G5□/K59/G5BA D-G5□W/K59W D-G59F/G5NT	BA-04	BA-05	BA-06	BA-08	BA-10	-	-	_	
D-A3□C/A44C D-G39C/K39C	BA3-040	BA3-050	BA3-063	BA3-080	BA3-100	_	_	_	

* Mounting brackets are provided with D-A3 C, A44C, G39C, and K39C. When ordering, indicate as described below, in accordance with the cylinder size.

Example) ø40—D-A3□C-4, ø50—D-A3□C-5, ø63—D-A3□C-6,
ø80—D-A3□C-8, ø100—D-A3□C-10

To order the mounting brackets separately, use the part number shown above.

[Stainless steel mounting bolt set]

The set of stainless steel mounting screws (with set screw) described below is available and can be used depending on the operating environment. (The mounting bracket and band for auto switches must be ordered separately, as they are not included.) BBA1: For D-A5/A6/F5/J5

BBA3: For D-B5/B6/G5/K5

The stainless steel bolts described above are used when the D-F5BAL/G5BAL type switch is shipped mounted on a cylinder. When the switches are shipped as individual parts, the BBA1 and BBA3 set are included.

Mounting Bracket Part No.

Bore siz	ze (mm)	40	50	63	80	100	125	140	160
Foot*	Rod side	CA-L04	CA-L05	CA-L06	CA-L08	CA-L10	CC1 12	CC1 14	CS1-L16
FOOL	Head side	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10	651-L12	US1-L14	CSI-LI6
Front fl	ange**	CA-F04	CA-F05	CA-F06	CA-F08	CA-F10	CS1-F12	CS1-F14	CS1-F16
Rear fla	ange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10	CS1-F12	CS1-F14	CS1-F16
Single	clevis	CA1-C04	CA1-C05	CA1-C06	CA1-C08	CA1-C10	CS1-C12	CS1-C14	CS1-C16
Double	clevis***	CA1-D04	CA1-D05	CA1-D06	CA1-D08	CA1-D10	CS1-D12	CS1-D14	CS1-D16

^{*} To order foot brackets for 1 cylinder, order 1 foot bracket each for the rod side and the head side for cylinders ø40 to ø100, and 2 foot brackets for cylinders ø125 to ø160.

^{**} The Ø125 to Ø160 front flange styles use the long stroke flanges of the CS1 series.

*** Clevis pin, flat washer and cotter pin are packed with the double clevis style.

Construction

Lock released condition

Locked condition

Precautions for Changing The Lock-up Direction

ø40 to ø100

The lock-up is unidirectional. However, the lock-up direction can be changed easily. To change the direction, pay particular attention to the following precautions:

Loosening the tie-rods for the purpose of changing the direction could also loosen the nuts on the cylinder side. Therefore, before assembling the unit, make sure to verify that the nuts on the cylinder are not loose. Retighten the nuts if they are loose, and while turning the piston rod, apply a low pressure of 0.08MPa to make sure that it operates smoothly in both the extending and retracting directions.

① Loosen the tie-rod nuts and pull out the four tie-rods.

② Open the rubber cap and screw in the unlocking bolt, which is provided as an accessory part. At this time, apply air pressure of 0.2MPa to 0.3MPa to disengage the lock and insert the bolt. (The operation to follow can be performed properly and easily with the application of air pressure.) After verifying that the bolt has been inserted properly, pull out the unit from the rod. Then, loosen the three screws in the scraper presser plate to remove the presser plate and the scraper. Install the scraper and the presser plate, in that order, on the opposite side.

⚠ Caution

When the lock-up unit is not secured by the tie-rods, the air pressure applied to the lock-up port should be between 0.2MPa and 0.3MPa. Never supply a higher air pressure as it could lead to equipment damage.

- ③ Turn the unit to the opposite end so that the end without the scraper is facing the cylinder rod cover. Then, securely insert the unit into the end boss portion of the rod cover.
- ④ Install the four tie-rods, with their shorter threaded portion oriented towards the rod cover, and tighten them with uniform torque. Until the installation and adjustment have been completed, never pull out the unlocking bolt (or release the air pressure).

The processes described above complete the changing of the lock-up direction. Before using the cylinder, make sure that the lock-up operates properly.

ø125 to ø160

① Loosen the tie-rod nuts and pull out the four tie-rods.

② Apply air pressure of 0.2MPa to 0.3MPa to disengage the lock and pull out the lock-up unit from the piston rod.

③ Remove the retainer plate from the lockup unit and install the retainer plate on the opposite end. Reapply the air pressure, and with the end on which the retainer plate had, until now, been facing towards the cylinder, insert the lock-up unit into the piston rod and fit it into the end boss portion of the rod cover.

④ Install the four tie-rods, with their shorter threaded portion oriented towards the rod cover, and tighten them with uniform torque. Maintain the application of air pressure until the installation and adjustment have been completed, and never actuate the lock in the meantime.

Manual Lock Release (ø40 to ø100)

To manually disengage the lock, perform the following steps:

- 1 Open the rubber cap.
- ② Apply 0.2MPa to 0.3MPa of air pressure to the locking port, and bring the tilted ring upright.
- 3 Screw a bolt of an appropriate length into the ring tap.

The bolt size is M5 for ø40 and ø50, and M6 for ø63, ø80, and ø100.

ø40 to ø100

(On cylinders ø125 to ø160, the lock cannot be disengaged manually.)

⚠ Caution

During installation adjustment, perform the operation by applying air pressure only to the lock-up port.

CL

MLGC

CNA

СВ

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

MY1

↑Caution Recommended Pneumatic Circuit/Caution on Handling

Refer to p.3.1-4 to 3.1-5 for recommended pneumatic circuits, stopping accuracy and cautions on handling.

⚠ Caution

Stopping Accuracy

- ① Load fluctuations during the reciprocal movement of the piston could cause the piston speed to change. A change in the piston speed could greatly increase the variance in the piston's stopping position. Therefore, perform the installation and adjustment operations so as not to create any load fluctuations during the piston's reciprocal movement, particularly just before stopping.
- ② During a cushioning stroke, or when the piston is in the acceleration region following the start of its travel, there is a large change in speed. Thus, the variance in the stopping position will also be large. Therefore, to effect a step movement in which the stroke from the start of the operation to the next position is short (approximately 30mm, although it could vary according to conditions) be aware of the possibility of being unable to attain the level of accuracy shown in the specifications column.
- ③ Precautions regarding lock-up after the piston has been stopped with an external stopper:

To apply the lock-up after the piston has been stopped by an external stopper other than the lock-up mechanism, including stoppage by the stroke end of the cylinder, be aware of the matters described below.

Due to the nature of the lock-up mechanism, there is an axial play of about 0.5 to 1.0mm. Furthermore, due to pipe routing conditions, if it takes longer for the air to discharge through the lock-up port than for the balance pressure to stabilize, causing a delay in locking, the piston rod will move for an amount that is equivalent to the "play+delay".

Piston speed over 200mm/s (When locking)

(4) Immediately before a lock stop, drop the piston speed to 200mm/s or lower by switching the speed controller (to the bypass circuit). Then, operate the lockup.

⚠ Caution

1 Flushing

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove cutting chip, cutting oil and other debris from inside the pipe.

- ② The load on the piston rod Use the cylinder in the state in which the load to the piston rod is always applied in the axial direction. This must be more strictly adhered to than with ordinary air cylinders. Furthermore, use a guide to control the movement of the load so as not to cause chatter or twist.
- ③ A rotational force against the piston rod Avoid applying a rotational force against the piston rod. In particular, the application of a rotational force must be prevented when in a lock-up state.
- ④ Protecting the sliding portion of the rod Make sure not to scratch or gouge the sliding portion of the piston rod, as this could damage the seals and lead to leaks or faulty lock-up.
- 5 Lubrication It is not necessary to lubricate the CL series because it is the non-lube style. Never lubricate it because doing so will cause faulty lock-up.

Recommended Pneumatic Circuit

Refer to p.3.1-4 for the recommended air pressure circuit.

① Operating the air pressure circuit Instead of the conventional reciprocal air cylinder circuit, use an air pressure circuit, such as the recommended circuit, in which measures are taken to prevent the piston from lurching after the lock-up has been disengaged. 2 Lock-up direction

Cautions on Handling

The lock-up is unidirectional. The locking direction is in accordance with the position of the lock-up port, as shown in the diagram below.

Forward direction lock

Backward direction lock

ø125 to ø160

For cylinders Ø40 to Ø100, verify the portion that is stamped on the cap of the lock.

- 3 Maximum speed and maximum load Never lock up a cylinder that involves a kinetic energy that exceeds the maximum speed or the maximum load indicated in the specifications.
- 4 After completing the installation adjustment, do not forget to remove the bolt that was used for disengaging the lock. (ø40 to ø100 only)

Construction

CL1ø40 to ø100

CL1ø125 to ø160

Component Parts/CL1ø40 to ø100

001	iiponent i arts/OL	1240 10 2 100	
No.	Description	Material	Note
1	Body	Aluminum alloy	Black coated
2	Cover	Aluminum alloy	Black coated
3	Lock up ring	Carbon steel	Heat treated
4	Release piston	Rolled steel	Zinc chromated
(5)	Pivot	Carbon steel	Heat treated, zinc chromated
6	Spring	Steel wire	Zinc chromated
7	Stopper	Stainless steel	Heat treated
8	Retainer	Rolled steel	Black zinc chromated
9	Bushing	Lead bronze casting	
10	Spring pin	Carbon steel	JIS B2808
11)	Spring pin for non-rotating	Carbon steel	JIS B2808
12	Long nut	Rolled steel	Black zinc chromated
13	Unit fixing hex. socket head cap screw	Chrome molybdenum steel	
14)	Retainer machine screw	Rolled steel	
15	Hex. socket counter sunk head screw	Chrome molybdenum steel	
16	Non lube air cylinder		CA1□N series
17	Сар	Nylon	
18	Cap screw	Rolled steel	
19	Release bolt	Chrome molybdenum steel	
20	Spacer	Aluminum alloy	Black coated
21)	Unit fixing tie rod	Carbon steel	Chromated
22	Scraper	NBR	
23	O ring	NBR	
24)	O ring	NBR	
25	Rod seal	NBR	

Note) Contact SMC if the fine lock-up unit must be disassembled.

Component Parts/CL1ø125 to ø160

	•		
No.	Description	Material	Note
1	Body	Rolled steel	Black coated
2	Cover	Rolled steel	Black coated
3	Lock up ring	Carbon steel	Heat treated
4	Release piston	Rolled steel	Zinc chromated
(5)	Pivot	Carbon steel	Heat treated
6	Spring	Steel wire	Zinc chromated
7	Stopper	Stainless steel	Heat treated
8	Retainer	Casting steel	Black coated
9	Bushing	Lead bronze casting	
10	Spring pin	Carbon steel	JIS B2808
11)	Spring pin	Carbon steel	JIS B2808
12	Long nut	Rolled steel	Black zinc chromated
13	Unit fixing hex. socket head cap screw	Chrome molybdenum steel	Zinc chromated
14)	Hex. socket head cap screw	Chrome molybdenum steel	Black zinc chromated
15	Hex. socket counter sunk head screw	Chrome molybdenum steel	Zinc chromated
16	Non lube air cylinder		CA1□N series
17	Brake tube	Carbon steel piping	Inside: Hard chrome plated
18	Sleeve	Rolled steel	Zinc chromated
19	Unit fixing tie rod	Carbon steel	Chromated
20	Spacer	Rolled steel	Black coated
21)	Hexagon socket head plug	Rolled steel	Black zinc chromated
22	Retainer	Casting steel	Black coated
23	Element	Sintered metal BC	
24	Wiper ring	NBR	
25	Retainer gasket	NBR	
26	O ring	NBR	
27)	O ring	NBR	
28	Rod seal	NBR	
Note	Contact SMC if the fin	e lock-up unit must be a	disassembled.

Note) Contact SMC if the fine lock-up unit must be disassembled.

EB F

FΑ

65 | 52

D

20 | 55

GΑ

15 | 15 | 11 | 8

17 | 17 | 11 | 11

17 17 11

21 | 21 | 11

21 21 11 16

GB GC H₁

16 16

18.5 18.5 18.5

FΑ

14 16

14

6.5

6.0

6.0

8.0

43 | 14 | 16 | 16 | 16

Basic/(B)

ø40 to ø100

A Lock-up at piston forward B Lock-up at piston backward

ø125 to ø160

Bore

(mm)

40

50

63

80

100

125

Stroke range (mm)

W/o rod boot | W/ rod boot

20 to 500

20 to 600

20 to 600

20 to 750

20 to 750

30 to 1000

30.5 M36 X 1.5 39 3/4 106 -

to 500

to 600

to 600

to 750

to 750

to 1000

BX BY BP C

59 | 69 | 1/4 | 44 | 16 | 40

77

1112.5 141.5

1/4

1/4

1/4

1/2 | 115 | 36 | 90

92

52 | 20 | 50 | 40

78 25

120 423.5 75 40 141 1/₅ Stroke 444.5

MG
MGP

KA MGG

MGQ

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MOC	14	6
MGC	18	7
	18	7
MGF	22	11
	26	11

31

31

15

15

(mm)

CY1
MV1

MY1

to 1	000	30 to 1000		50	47	161	-	121	150	1/2	128	36	90	_	43
to 1	200	30 to	1200	56	53 182		-	133	167	3/4	144	40	90	-	43
М	M	M	N	Р	S	W	W/o r	od boot	е	f			d boot ℓ		ZZ
11	M14 2	X 1.5	27	1/4	84	8	51	215	36	16	.5 !	59	1/4 Stro	ke	223
11	M18 2	X 1.5	30	3/8	90	0	58	237	45	16	.0	66	1/ ₄ Stro	ke	245
14	M18 2	X 1.5	31	3/8	98	0	58	254	45	16	.0	66	1/4 Stro	ke	262
17	M22 2	X 1.5	37	1/2	116	0	71	296	60	18	.0 8	30	1/ ₄ Stro	ke	305
17	M26	X 1.5	40	1/2	126	0	72	315	60	18	.0	81	1/ ₄ Stro	ke	324
27	M30 2	X 1.5	35	1/2	98	_	110	376.5	75	40) 1	33	1/5 Stro	ke	399.5
27	M30 2	X 1.5	35	1/2	98	_	110	385	75	40) 1	33	1/5 Stro	ke	408
	to 1 M 11 14 17 17 27	11 M14 1 11 M18 1 14 M18 1 17 M22 1 17 M26 1 27 M30 1	M MM 11 M14 X 1.5 11 M18 X 1.5 14 M18 X 1.5 17 M22 X 1.5 17 M26 X 1.5 27 M30 X 1.5	M MM N 11 M14 X 1.5 27 11 M18 X 1.5 30 14 M18 X 1.5 31 17 M22 X 1.5 37 17 M26 X 1.5 40 27 M30 X 1.5 35	to 1200 30 to 1200 56 M MM N P 11 M14 X 1.5 27 1/4 11 M18 X 1.5 30 3/8 14 M18 X 1.5 31 3/8 17 M22 X 1.5 37 1/2 17 M26 X 1.5 40 1/2 27 M30 X 1.5 35 1/2	to 1200 30 to 1200 56 53 M MM N P S 11 M14 X 1.5 27 1/4 84 11 M18 X 1.5 30 3/8 90 14 M18 X 1.5 31 3/8 98 17 M22 X 1.5 37 1/2 116 17 M26 X 1.5 40 1/2 126 27 M30 X 1.5 35 1/2 98	M MM N P S W 11 M14 X 1.5 27 1/4 84 8 11 M18 X 1.5 30 3/8 90 0 14 M18 X 1.5 31 3/8 98 0 17 M22 X 1.5 37 1/2 116 0 17 M26 X 1.5 40 1/2 126 0 27 M30 X 1.5 35 1/2 98 -	to 1200 30 to 1200 56 53 182 - M MM N P S W Wold H 11 M14 X 1.5 27 1/4 84 8 51 11 M18 X 1.5 30 3/8 90 0 58 14 M18 X 1.5 31 3/8 98 0 58 17 M22 X 1.5 37 1/2 116 0 71 17 M26 X 1.5 40 1/2 126 0 72 27 M30 X 1.5 35 1/2 98 - 110	M MM N P S W W/0 rod boot H ZZ 11 M14 X 1.5 27 1/4 84 8 51 215 11 M18 X 1.5 30 3/8 90 0 58 237 14 M18 X 1.5 31 3/8 98 0 58 254 17 M22 X 1.5 37 1/2 116 0 71 296 17 M26 X 1.5 40 1/2 126 0 72 315 27 M30 X 1.5 35 1/2 98 - 110 376.5	M MM N P S W W/0 rod boot H ZZ e 11 M14 X 1.5 27 1/4 84 8 51 215 36 11 M18 X 1.5 30 3/8 90 0 58 237 45 14 M18 X 1.5 31 3/8 98 0 58 254 45 17 M22 X 1.5 37 1/2 116 0 71 296 60 17 M26 X 1.5 40 1/2 126 0 72 315 60 27 M30 X 1.5 35 1/2 98 - 110 376.5 75	M MM N P S W W/o rod boot H ZZ e f 11 M14 X 1.5 27 1/4 84 8 51 215 36 16 11 M18 X 1.5 30 3/8 90 0 58 237 45 16 14 M18 X 1.5 31 3/8 98 0 58 254 45 16 17 M22 X 1.5 37 1/2 116 0 71 296 60 18 17 M26 X 1.5 40 1/2 126 0 72 315 60 18 27 M30 X 1.5 35 1/2 98 - 110 376.5 75 40	M MM N P S W W/o rod boot W W H ZZ e f I	M MM N P S W W/o rod boot H W/rod boot S W/rod follows 11 M14 X 1.5 27 1/4 84 8 51 215 36 16.5 59 11 M18 X 1.5 30 3/8 90 0 58 237 45 16.0 66 14 M18 X 1.5 31 3/8 98 0 58 254 45 16.0 66 17 M22 X 1.5 37 1/2 116 0 71 296 60 18.0 80 17 M26 X 1.5 40 1/2 126 0 72 315 60 18.0 81 27 M30 X 1.5 35 1/2 98 - 110 376.5 75 40 133	M MM N P S W Word boot H W/o rod boot S W/o rod boot S W/o rod boot H W/o rod boot S W/o rod boot S	M MM N P S W W/o rod boot H W/rod boot W/rod boot W/rod boot H W/rod b

AL

27 | 60

37

35 | 32 | 70 | 27 | 67 | 78

40

40 37 116 41 85 100 1/4 92 30 80 52 8.0

50 | 47 | 145

B B₁

86

102

32

M8 X 1.25

M8 X 1.25

M12 X 1.75 M14 X 1.5

M14 X 1.5

M16 X 1.5

11 M10 X 1.25

13 M12 X 1.75

^{*} In installing an air cylinder, if a hole must be made to accommodate the rod portion, make sure to machine a hole that is larger than the boot outer diameter "øe"

Axial Foot/(L)

160

373

118 | 197

M36 X 1.5

39 | 3/4 | 106

50 | 25 | 25 | 120 | 468 | 75 | 40 | 141

¹/₄ Stroke

Rear Flange/(G)

ø40 to 100

A Lock-up at piston forward B Lock-up at piston backward

ø125 to ø160

(mm) Stroke range (mm) Bore вх BY С EΑ FT F۷ GC H1 RF BF D EΒ F FΑ FD FX FΥ FΖ GΑ GB ΑI В B₁ (mm) W/o rod boot W/ rod boot 40 to 500 20 to 500 30 27 60 22 71 1/4 59 69 44 16 40 6.5 9.0 12 80 42 100 60 15 15 11 8 20 to 600 17 50 to 600 35 32 70 27 81 1/4 67 78 52 20 50 40 6.0 9.0 12 90 50 110 70 17 11 11 63 32 1/4 64 40 11.5 15 17 to 600 20 to 600 35 86 27 101 73 84 20 55 6.0 105 59 130 86 17 11 11 1/4 80 to 750 20 to 750 40 37 102 32 119 77 92 78 25 65 52 8.0 13.5 18 | 130 | 76 160 102 21 21 11 | 13 100 to 750 20 to 750 40 37 116 41 133 1/4 85 100 92 30 80 52 8.0 13.5 18 150 92 180 116 21 21 11 16 14 125 to 1000 30 to 1000 50 47 145 145 1/2 112.5 141.5 115 36 90 43 19 14 190 100 230 16 16 16 140 50 47 160 1/2 121 150 36 90 43 14 19 20 212 112 255 16 to 1000 30 to 1000 161 128 16 16 3/4 133 167 144 160 to 1200 30 to 1200 56 53 182 180 40 90 43 14 19 | 20 | 236 | 118 | 275 18.5 | 18.5 | 18.5

Bore	J	ĸ	KA	MM N		N P		W	W/o ro	d boot			W/ rc	d boot	
(mm)	J	K	INA	IVIIVI	IN	г	S	VV	Н	ZZ	е	f	h	e	ZZ
40	M8 X 1.25	6	14	M14 X 1.5	27	1/4	84	8	51	216	36	16.5	59	1/4 Stroke	224
50	M8 X 1.25	7	18	M18 X 1.5	30	3/8	90	0	58	238	45	16.0	66	1/4 Stroke	246
63	M10 X 1.25	7	18	M18 X 1.5	31	3/8	98	0	58	255	45	16.0	66	1/4 Stroke	263
80	M12 X 1.75	11	22	M22 X 1.5	37	1/2	116	0	71	297	60	18.0	80	¹ / ₄ Stroke	306
100	M12 X 1.75	11	26	M26 X 1.5	40	1/2	126	0	72	316	60	18.0	81	1/4 Stroke	325
125	M14 X 1.5	15	31	M30 X 1.5	35	1/2	98	_	110	363.5	75	40	133	¹ / ₅ Stroke	386.5
140	M14 X 1.5	15	31	M30 X 1.5	35	1/2	98	_	110	378	75	40	133	¹ / ₅ Stroke	401
160	M16 X 1.5	17	36	M36 X 1.5	39	3/4	106	_	120	413	75	40	141	¹ / ₅ Stroke	434

CL

MLGC

CNA

СВ

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ

MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

Front Flange/(F)

ø40 to ø100

A Lock-up at piston forward B Lock-up at piston backward

With rod boot

ø120 to ø160

With rod boot

																					(mm)
Bore (mm)	Stroke ran	nge (mm) W/ rod boot	Long stroke range (mm)	А	AL	В	B ₁	BF	ВР	вх	BY	С	D	EA	ЕВ	F	FD	FT	FX	FY	FZ
40	to 500	20 to 500	501 to 800	30	27	60	22	71	1/4	59	69	44	16	40	32	_	9.0	12	80	42	100
50	to 600	20 to 600	601 to 1000	35	32	70	27	81	1/4	67	78	52	20	50	40	_	9.0	12	90	50	110
63	to 600	20 to 600	601 to 1000	35	32	86	27	101	1/4	73	84	64	20	55	40	_	11.5	15	105	59	130
80	to 750	20 to 750	751 to 1000	40	37	102	32	119	1/4	77	92	78	25	65	52	_	13.5	18	130	76	160
100	to 750	20 to 750	751 to 1000	40	37	116	41	133	1/4	85	100	92	30	80	52	_	13.5	18	150	92	180
125	to 1400	30 to 1400		50	47	145	-	145	1/2	112.5	141.5	115	36	90	59	43	19	14	190	100	230
140	to 1400	30 to 1400		50	47	161	_	160	1/2	121	150	128	36	90	59	43	19	20	212	112	255
160	to 1400	30 to 1400		56	53	182		180	3/4	133	167	144	40	90	59	43	19	20	236	118	275

Bore	FV	C 4	CD	GC	11.		V	1/ /		N4.	MM N		P	s	۱۸/	W/o ro	d boot	W/ rod boot						
(mm)		GA	GB	GC	H ₁	J	K	KA	M	M ₁	IVIIVI	IN.	P	0	W	Н	ZZ	е	f	h	e	ZZ		
40	60	15	15	11	8	M8 X 1.25	6	14	11	_	M14 X 1.5	27	1/4	1/4 84		51	215	36	16.5	59	1/4 Stroke	223		
50	70	17	17	11	11	M8 X 1.25	7	18	11	_	M18 X 1.5	30	3/8	90	0	58	237	45	16.0	66	1/4 Stroke	245		
63	86	17	17	11	11	M10 X 1.25	7	18	14	_	M18 X 1.5	31	3/8	98	0	58	254	45	16.0	66	1/4 Stroke	262		
80	102	21	21	11	13	M12 X 1.75	11	22	17	_	M22 X 1.5	37	1/2	116	0	71	296	60	18.0	80	1/4 Stroke	305		
100	116	21	21	11	16	M12 X 1.75	11	26	17	_	M26 X 1.5	40	1/2	126	0	72	315	60	18.0	81	1/4 Stroke	324		
125	_	16	16	16	_	M14 X 1.5	15	31	30	22	M30 X 1.5	35	1/2	98	_	110	379.5	75	40	133	1/4 Stroke	402.5		
140	_	16	16	16	_	M14 X 1.5	15	31	24	19	M30 X 1.5	35	1/2	98	_	110	382	75	40	133	1/4 Stroke	405		
160	_	18.5	18.5	18.5	_	M16 X 1.5	17	36	26	22	M36 X 1.5	39	3/4	106	_	120	419	75	40	141	¹ / ₄ Stroke	440		

Front Flange/(F)

ø40 to ø100

A Lock-up at piston forward B Lock-up at piston backward

With rod boot

ø120 to ø160

With rod boot

																					(mm)
Bore (mm)	Stroke ran	nge (mm) W/ rod boot	Long stroke range (mm)	А	AL	В	B ₁	BF	ВР	вх	BY	С	D	EA	ЕВ	F	FD	FT	FX	FY	FZ
40	to 500	20 to 500	501 to 800	30	27	60	22	71	1/4	59	69	44	16	40	32	_	9.0	12	80	42	100
50	to 600	20 to 600	601 to 1000	35	32	70	27	81	1/4	67	78	52	20	50	40	_	9.0	12	90	50	110
63	to 600	20 to 600	601 to 1000	35	32	86	27	101	1/4	73	84	64	20	55	40	_	11.5	15	105	59	130
80	to 750	20 to 750	751 to 1000	40	37	102	32	119	1/4	77	92	78	25	65	52	_	13.5	18	130	76	160
100	to 750	20 to 750	751 to 1000	40	37	116	41	133	1/4	85	100	92	30	80	52	_	13.5	18	150	92	180
125	to 1400	30 to 1400		50	47	145	-	145	1/2	112.5	141.5	115	36	90	59	43	19	14	190	100	230
140	to 1400	30 to 1400		50	47	161	_	160	1/2	121	150	128	36	90	59	43	19	20	212	112	255
160	to 1400	30 to 1400		56	53	182		180	3/4	133	167	144	40	90	59	43	19	20	236	118	275

Bore	FV	C 4	CD	GC	11.		V	1/ /		N4.	NANA	l NI	P	s	۱۸/	W/o ro	d boot			W/ r	od boot	
(mm)		GA	GB	GC	H ₁	J	K	KA	M	M ₁	MM	N	P	0	W	Н	ZZ	е	f	h	e	ZZ
40	60	15	15	11	8	M8 X 1.25	6	14	11	_	M14 X 1.5	27	1/4	84	8	51	215	36	16.5	59	1/4 Stroke	223
50	70	17	17	11	11	M8 X 1.25	7	18	11	_	M18 X 1.5	30	3/8	90	0	58	237	45	16.0	66	1/4 Stroke	245
63	86	17	17	11	11	M10 X 1.25	7	18	14	_	M18 X 1.5	31	3/8	98	0	58	254	45	16.0	66	1/4 Stroke	262
80	102	21	21	11	13	M12 X 1.75	11	22	17	_	M22 X 1.5	37	1/2	116	0	71	296	60	18.0	80	1/4 Stroke	305
100	116	21	21	11	16	M12 X 1.75	11	26	17	_	M26 X 1.5	40	1/2	126	0	72	315	60	18.0	81	1/4 Stroke	324
125	_	16	16	16	_	M14 X 1.5	15	31	30	22	M30 X 1.5	35	1/2	98	_	110	379.5	75	40	133	1/4 Stroke	402.5
140	_	16	16	16	_	M14 X 1.5	15	31	24	19	M30 X 1.5	35	1/2	98	_	110	382	75	40	133	1/4 Stroke	405
160	_	18.5	18.5	18.5	_	M16 X 1.5	17	36	26	22	M36 X 1.5	39	3/4	106	_	120	419	75	40	141	1/4 Stroke	440

Front Flange (F)/Long Stroke

A Lock-up at piston forward

® Lock-up at piston backward

ø50 to ø100

ø125 to ø160

(mm)

Bore (mm)	Stroke range	Α	AL	В	B ₁	BF	BP	вх	BY	С	D	EA	EB	F	FD	FT	FX	FY	FZ	GA	GB	GC	H ₁	J	К	KA
50	1001 to 1200	35	32	70	27	88	1/4	67	78	52	20	50	40	_	9.0	20	120	58	144	17	17	11	11	M8 X 1.25	7	18
63	1001 to 1200	35	32	86	27	105	1/4	73	84	64	20	55	40	_	11.5	23	140	64	170	17	17	11	11	M10 X 1.25	7	18
80	1001 to 1400	40	37	102	32	124	1/4	77	92	78	25	65	52	_	13.5	28	164	84	198	21	21	11	13	M12 X 1.75	11	22
100	1001 to 1500	40	37	116	41	140	1/4	85	100	92	30	80	52	_	13.5	29	180	100	220	21	21	11	16	M12 X 1.75	11	26
125	1401 to 1600	50	47	145		145	1/2	112.5	141.5	115	36	90	59	43	19	14	190	100	230	16	16	16	_	M14 X 1.5	15	31
140	1401 to 1600	50	47	161	_	160	1/2	121	150	128	36	90	59	43	19	20	212	112	255	16	16	16	_	M14 X 1.5	15	31
160	1401 to 1600	56	53	182	_	180	3/4	133	167	144	40	90	59	43	19	20	236	118	275	18.5	18.5	18.5	_	M16 X 1.5	17	36

Bore	Stroke	М	M ₁	MM	N	Р	RT	RY	S	W	W/o ro	d boot			W/ r	od boot	
(mm)	range	IVI	IVIT	IVIIVI	IN	F	KI	KI	3	VV	Н	ZZ	е	f	h	e	ZZ
50	1001 to 1200	6	_	M18 X 1.5	30	3/8	30	76	90	0	67	241	45	16.0	66	1/4 Stroke	240
63	1001 to 1200	10	_	M18 X 1.5	31	3/8	40	92	98	0	71	263	45	16.0	66	1/4 Stroke	258
80	1001 to 1400	12	_	M22 X 1.5	37	1/2	45	112	116	0	87	307	60	18.0	80	1/4 Stroke	300
100	1001 to1500	12	_	M26 X 1.5	40	1/2	50	136	126	0	89	327	60	18.0	81	1/4 Stroke	319
125	1401 to 1600	30	22	M30 X 1.5	35	1/2	36	164	98	_	110	379.5	75	40	133	1/5 Stroke	402.5
140	1401 to 1600	24	19	M30 X 1.5	35	1/2	36	184	98		110	382	75	40	133	¹ ∕ ₅ Stroke	405
160	1401 to 1600	26	22	M36 X 1.5	39	3/4	45	204	106	_	120	419	75	40	141	^{1/} ₅ Stroke	440

Note) ø125 to ø160 with auto switch and ø40 are not available.

CL

MLGC

CNA CB

CV/MVG

CXW

CXS

CXT

MX

MXU

MXS

MXQ MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

Single Clevis/(C)

(A) Lock-up at piston forward (B) Lock-up at piston backward

ø40 to ø100

ø125 to ø160

																								(mm)
Bore (mm)	Stroke ra	nge (n W/ ro		Α	AL	В	B1	ВР	вх	BY	С	С	D	СТ	С	X	D	EA	F	FA	GA	GB	GC	H1
40	to 500		500	30	27	60	22	1/4	59	69	44	1	0		15.0	0 ^{-0.1} 0 _{-0.3}	16	40	6.5	_	15	15	11	8
50	to 600	_	600	35	32	70	27	1/4	67	78	52	1	2	_		0.5 0-0.1 0-0.3	20	50	6.0	_	17	17	11	11
63	to 600	20 to	600	35	32	86	27	1/4	73	84	64	1	6	_) =0.1 0 =0.3	20	55	6.0		17	17	11	11
80	to 750	20 to	750	40	37	102	32	1/4	77	92	78	2	:0	_	31.	5 -0.1 5 -0.3	25	65	8.0	_	21	21	11	13
100	to 750	20 to	750	40	37	116	41	1/4	85	100	92	2	:5	_		5 -0.1 5 -0.3	30	80	8.0	_	21	21	11	16
125	to 1000	30 to	1000	50	47	145	_	1/2	112.5	141.5	115	2	:5	17	32.0) =0.1 -0.3	36	90	43	14	16	16	16	
140	to 1000	30 to	1000	50	47	161	_	1/2	121	150	128	2	.8	17	36.0) =0.1 -0.3	36	90	43	14	16	16	16	
160	to 1200	30 to	1200	56	53	182	_	3/4	133	167	144	3	2	20	40.0) =0.1 =0.3	40	90	43	14	18.5	18.5	18.5	
Bore	J	К	KA		М	N/I	N	Р	RR	S	U	W	W/c	rod b	oot				W/ ro	od bo	ot			
(mm)	J	IX.	IVA	L	IVI	IVI	IN		IXIX	3	U	VV	Н	Z	ZZ	е	f	h		l		Z	ZZ	
40	M8 X 1.25	6	14	30	M14	X 1.5	27	1/4	10	84	16	8	51	234	244	36	16.5	59	1/4	Stro	ke .	242	252	
50	M8 X 1.25	7	18	35	M18	X 1.5	30	3/8	12	90	19	0	58	261	273	45	16.0	66	1/4	Stro	ke	269	281	
63	M10 X 1.25	7	18	40	M18	X 1.5	31	3/8	16	98	23	0	58	280	296	45	16.0	66	1/4	Stro	ke .	288	304	
80	M12 X 1.75	11	22	48	M22	X 1.5	37	1/2	20	116	28	0	71	327	347	60	18.0	80		Stro		336	356	
100	M12 X 1.75	11	26	58	M26	X 1.5	40	1/2	25	126	36		72	356	381	60	18.0	81		Stro	-	365	390	
125	M14 X 1.5	15	31	65	M30		35	1/2	29	98	35	_	110	414.5	443.5	75	40	133	-	Stro		437.5	466.5	
140	M14 X 1.5	15	31	75	M30	X 1.5	35	1/2	32	98	40		110	433	465	75	40	133		Stro	-	456	488	
160	M16 X 1.5	17	36	80	M36	X 1.5	39	3/4	36	106	45	_	120	473	509	75	40	141	1/4	Stro	ke	494	530	

Double Clevis/(D)

ø40 to ø100

A Lock-up at piston forward B Lock-up at piston backward

ø125 to ø160

																				(mm)
Bore	Stroke ra	nge (mm)	Α	AL	В	B ₁	BP	вх	BY	С	CD	СТ	СХ	CZ	D	EA	F	FA	GA	GB
(mm)	W/o rod boot	W/ rod boot	, · ·	/ \L		5	, Di	DA	٥,)		5	_	02			•	1 / \	0,1	CD
40	to 500	20 to 500	30	27	60	22	1/4	59	69	44	10	_	15.0 ^{+0.3} _{+0.1}	29.5	16	40	6.5	_	15	15
50	to 600	20 to 600	35	32	70	27	1/4	67	78	52	12	_	18.0 +0.3	38	20	50	6.0	_	17	17
63	to 600	20 to 600	35	32	86	27	1/4	73	84	64	16	_	25.0 +0.3	49	20	55	6.0	_	17	17
80	to 750	20 to 750	40	37	102	32	1/4	77	92	78	20	_	31.5 +0.3	61	25	65	8.0	_	21	21
100	to 750	20 to 750	40	37	116	41	1/4	85	100	92	25		35.5 ^{+0.3} _{+0.1}	64	30	80	8.0	_	21	21
125	to 1000	30 to 1000	50	47	145	_	1/2	112.5	141.5	115	25	17	32.0 +0.3	$64_{-0.2}^{0}$	36	90	43	14	16	16
140	to 1000	30 to 1000	50	47	161	_	1/2	121	150	128	28	17	36.0 +0.3	$72_{-0.2}^{0}$	36	90	43	14	16	16
160	to 1200	30 to 1200	56	53	182	_	3/4	133	167	144	32	20	40.0 +0.3	80 -0.2	40	90	43	14	18.5	18.5
	•																			

Bore	GC	H ₁		ĸ	KA		MM	N	Р	RR	s	U	W	W/c	rod b	oot			W/	rod boot		
(mm)	GC	П	J	,	NΑ	_	IVIIVI	17	Р	KK	3	b	VV	Н	Z	ZZ	е	f	h	l	Z	ZZ
40	11	8	M8 X 1.25	6	14	30	M14 X 1.5	27	1/4	10	84	16	8	51	234	244	36	16.5	59	1/4 Stroke	242	252
50	11	11	M8 X 1.25	7	18	35	M18 X 1.5	30	3/8	12	90	19	0	58	261	273	45	16.0	66	¹ / ₄ Stroke	269	281
63	11	11	M10 X 1.25	7	18	40	M18 X 1.5	31	3/8	16	98	23	0	58	280	296	45	16.0	66	1/4 Stroke	288	304
80	11	13	M12 X1.75	11	22	48	M22 X 1.5	37	1/2	20	116	28	0	71	327	347	60	18.0	80	1/4 Stroke	336	356
100	11	16	M12 X 1.75	11	26	58	M26 X 1.5	40	1/2	25	126	36	0	72	356	381	60	18.0	81	¹ / ₄ Stroke	365	390
125	16	_	M14 X 1.5	15	31	65	M30 X 1.5	35	1/2	29	98	35	_	110	414.5	443.5	75	40	133	1/5 Stroke	437.5	466.5
140	16	_	M14 X 1.5	15	31	75	M30 X 1.5	35	1/2	32	98	40	_	110	433	465	75	40	133	1/5 Stroke	456	488
160	18.5		M16 X 1.5	17	36	80	M36 X 1.5	39	3/4	36	106	45		120	473	509	75	40	141	1/5 Stroke	494	530

*Clevis pin, flat washer and cotter pin are packed with the double clevis style.

CL

MLGC

CNA CB

CV/MVG

CXW

27/2

CXS

CXT

MX

MXU

MXS

MXQ MXF

MXW

MXP

MG

MGP

MGQ

MGG

MGC

MGF

CY1

Center Trunnion/(T)

(A) Lock-up at piston forward (B) Lock-up at piston backward

(mm)

ø40 to ø100

ø125 to ø160

With rod boot

																						(111111)
Bore (mm)		nge (mm) W/ rod boot	Α	AL	В	B1	ВР	вх	BY	С	D	EA	ЕВ	F	FA	GA	GB	GC	H1	J	К	KA
40	to 500	20 to 500	30	27	60	22	1/4	59	69	44	16	40	32	6.5	-	15	15	11	8	M8 X 1.25	6	14
50	to 600	20 to 600	35	32	70	27	1/4	67	78	52	20	50	40	6.0		17	17	11	11	M8 X 1.25	7	18
63	to 600	20 to 600	35	32	86	27	1/4	73	84	64	20	55	40	6.0	_	17	17	11	11	M10 X 1.25	7	18
80	to 750	20 to 750	40	37	102	32	1/4	77	92	78	25	65	52	8.0		21	21	11	13	M12 X 1.75	11	22
100	to 750	20 to 750	40	37	116	41	1/4	85	100	92	30	80	52	8.0		21	21	11	16	M12 X 1.75	11	26
125	25 to 1000	30 to 1000	50	47	145	_	1/2	112.5	141.5	115	36	90	_	43	14	16	16	16	_	M14 X 1.5	15	31
140	30 to 1000	30 to 1000	50	47	161	_	1/2	121	150	128	36	90	_	43	14	16	16	16	_	M14 X 1.5	15	31
160	35 to 1200	35 to 1200	56	53	182	_	3/4	133	167	144	40	90	_	43	14	18.5	18.5	18.5	_	M16 X 1.5	17	36

Bore	N.4	D 4 D 4	N.I.	Р	Б		TD .	тт	TV	TV	TZ	W	W/c	rod b	oot			W/ ro	d root		
(mm)	М	MM	N	P	R	S	TDe8	11	TX	IY	12	VV	Н	Ζ	ZZ	е	f	h	l	Z	ZZ
40	_	M14 X 1.5	27	1/4	_	84	15 ^{-0.032} _{-0.059}	22	85	62	117	8	51	162	209	36	16.5	59	1/4 Stroke	170	217
50	_	M18 X 1.5	30	3/8	_	90	15 ^{-0.032} _{-0.059}	22	95	74	127	0	58	181	232	45	16.0	66	1/4 Stroke	189	240
63	_	M18 X 1.5	31	3/8	_	98	18 ^{-0.032} _{-0.059}	28	110	90	148	0	58	191	246	45	16.0	66	¹ / ₄ Stroke	199	254
80	_	M22 X 1.5	37	1/2	_	116	25 ^{-0.040} -0.073	34	140	110	192	0	71	221	286	60	18.0	80	1/4 Stroke	230	295
100	_	M26 X 1.5	40	1/2	_	126	25 ^{-0.040} -0.073	40	162	130	214	0	72	235	306	60	18.0	81	1/4 Stroke	244	315
125	19	M30 X 1.5	35	1/2	1.0	98	32 ^{-0.050} -0.089	50	170	164	234	_	110	300.5	368.5	75	40	133	1/5 Stroke	323.5	391.5
140	19	M30 X 1.5	35	1/2	1.5	98	36 ^{-0.050} -0.089	55	190	184	262	_	110	309	377	75	40	133	1/5 Stroke	332	400
160	22	M36 X 1.5	39	3/4	1.5	106	40 -0.050	60	212	204	292	_	120	340	415	75	40	141	1/5 Stroke	361	436

World Wide SMC Support...

North American Branch Offices For a branch office near you call: 1-800-SMC-SMC1 (762-7621)

SMC Pneumatics Inc. (Atlanta) 1440 Lakes Parkway, Suite 600 Lawrenceville, GA 30043

Tel: (770) 624-1940 FAX: (770) 624-1943

SMC Pneumatics Inc. (Austin)

2324-D Ridgepoint Drive Austin, TX 78754 Tel: (512) 926-2646 FAX: (512) 926-7055

SMC Pneumatics Inc. (Boston)

Zero Centennial Drive Peabody, MA 01960 Tel: (978) 326-3600 Fax: (978) 326-3700

SMC Pneumatics Inc. (Charlotte)

5029-B West W.T. Harris Blvd. Charlotte, NC 28269 Tel: (704) 597-9292 FAX: (704) 596-9561

SMC Pneumatics Inc. (Chicago)

27725 Diehl Road Warrenville, IL 60555 Tel: (630) 393-0080 FAX: (630) 393-0084

SMC Pneumatics Inc. (Cincinnati)

4598 Olympic Blvd. Erlanger, KY 41018 Tel: (606) 647-5600 FAX: (606) 647-5609

SMC Corporation

SMC Pneumatics (U.K.) Ltd. **GERMANY**

SMC Pneumatik GmbH ITALY

SMC Italia SpA **FRANCE SMC Pneumatique SA**

HOLLAND

SMC Controls BV SWEDEN

SMC Pneumatics Sweden AB SWITZERLAND

SMC Pneumatik AG AUSTRIA SMC Pneumatik GmbH

SPAIN SMC España, S.A.

IRELAND

SMC Pneumatics (Ireland) Ltd.

Asia JAPAN SMC Pneumatics Inc. (Cleveland) 2305 East Aurora Rd., Unit A-3

Twinsburg, OH 44087 Tel: (330) 963-2727 FAX: (330) 963-2730

SMC Pneumatics Inc. (Columbus)

3687 Corporate Drive Columbus, OH 43231 Tel: (614) 895-9765 FAX: (614) 895-9780

SMC Pneumatics Inc. (Dallas)

12801 N. Stemmons Frwy, Ste. 815 Dallas, TX 75234

Tel: (972) 406-0082 FAX: (972) 406-9904

SMC Pneumatics Inc. (Detroit)

2990 Technology Drive Rochester Hills, MI 48309 Tel: (248) 299-0202 FAX: (248) 293-3333

SMC Pneumatics Inc. (Houston)

9001 Jameel, Suite 180 Houston, TX 77040 Tel: (713) 460-0762 FAX: (713) 460-1510

SMC Pneumatics Inc. (L.A.)

14191 Myford Road Tustin, CA 92780 Tel: (714) 669-1701 FAX: (714) 669-1715 SMC Pneumatics Inc. (Milwaukee)

16850 W. Victor Road New Berlin, WI 53151 Tel: (414) 827-0080 FAX: (414) 827-0092

SMC Pneumatics Inc. (Mnpls.)

990 Lone Oak Road, Suite 162 Eagan, MN 55121 Tel: (651) 688-3490 FAX: (651) 688-9013

SMC Pneumatics Inc. (Nashville)

5000 Linbar Drive, Suite 297 Nashville, TN 37211 Tel: (615) 331-0020 FAX: (615) 331-9950

SMC Pneumatics Inc. (Newark)

3434 US Hwy. 22 West, Ste. 110 Somerville, NJ 08876 Tel: (908) 253-3241 FAX: (908) 253-3452

SMC Pneumatics Inc. (Phoenix)

2001 W. Melinda Lane Phoenix, AZ 85027 Tel: (623) 492-0908 FAX: (623) 492-9493

SMC Pneumatics Inc. (Portland)

14107 N.E. Airport Way Portland, OR 97230 Tel: (503) 252-9299 FAX: (503) 252-9253

SMC Pneumatics Inc. (Richmond)

5377 Glen Alden Drive Richmond, VA 23231 Tel: (804) 222-2762 FAX: (804) 222-5221

SMC Pneumatics Inc. (Rochester)

245 Summit Point Drive Henrietta, NY 14467 Tel: (716) 321-1300 FAX: (716) 321-1865

SMC Pneumatics Inc. (S.F.)

85 Nicholson Lane San Jose, CA 95134 Tel: (408) 943-9600 FAX: (408) 943-9111

SMC Pneumatics Inc. (St. Louis)

4130 Rider Trail North Earth City, MO 63045 Tel: (314) 209-0080 FAX: (314) 209-0085

SMC Pneumatics Inc. (Tampa)

8507-H Benjamin Road Tampa, FL 33634 Tel: (813) 243-8350 FAX: (813) 243-8621

SMC Pneumatics Inc. (Tulsa)

10203 A East 61st Street Tulsa, OK 74146 Tel: (918) 252-7820 FAX: (918) 252-9511

Europe ENGLAND

KOREA SMC Pneumatics Korea Co., Ltd. **CHINA**

SMC (China) Co., Ltd. HONG KONG

SMC Pneumatics (Hong Kong) Ltd. SINGAPORE

SMC Pneumatics (S.E.A.) Pte. Ltd. **PHILIPPINES**

SMC Pneumatics (Philippines), Inc.

MALAYSIA SMC Pneumatics (S.E.A.) Sdn. Bhd.

TAIWAN SMC Pneumatics (Taiwan) Co., Ltd.

THAILAND SMC Thailand Ltd.

SMC Pneumatics (India) Pvt., Ltd.

North America

CANADA

SMC Pneumatics (Canada) Ltd.

SMC Pneumatics (Mexico) S.A. de C.V.

South America ARGENTINA SMC Argentina S.A. CHILE SMC Pneumatics (Chile) Ltda.

Oceania **AUSTRALIA**

SMC Pneumatics (Australia) Pty. Ltd.

NEW ZEALAND

SMC Pneumatics (N.Z.) Ltd.

SMC offers the same quality and engineering expertise in many other pneumatic components

Valves

Directional Control Valves

Manual Valves Mufflers

Exhaust Cleaners Quick Exhaust Valves Valves

Proportional Valves Mechanical Valves Miniature Valves Fluid Valves

Cylinders/Actuators Compact Cylinders

Miniature Cylinders Rodless Cylinders Rotary Actuators **Pneumatic Grippers** **Vacuum**

Vacuum Ejectors Vacuum Accessories

Instrumentation

Pneumatic Positioners Pneumatic Transducers Air Preparation Equipment

Filters-Regulators-Lubricators Coalescing Filters Micro Mist Separators

Fittings Air Fittings

SMC Pneumatics Inc.

P.O. Box 26640, Indianapolis, IN 46226 Tel: (317) 899-4440 • FAX: (317) 899-3102