Fine Lock Cylinder Lock-up Cylinder

ø63, ø80, ø100, ø125, ø140, ø160

\triangle Precautions

I Be sure to read before handling.
I The precautions on these pages are for the fine lock cylinder and lock-up cylinder.
I Refer to actuator common precautions on p.0-39 to 0-46 for general actuator precautions.

Warning

Design on Equipment Machine

(1)Prevent personnel from coming into direct contact with the driven object as well as the moving portion of a cylinder. If there is a risk of contact, provide safety measures such as a cover or a system that uses sensors that will activate an emergency stop before contact is made.
(2) Use a balance circuit in which lurching of the piston is taken into consideration. If the lock is applied at a desired position of a stroke and compressed air is applied to only one side of the cylinder, the piston will lurch at a high speed the moment the lock is disengaged. In such a situation, there is a risk of injury to humans, or equipment damage. To prevent the piston from lurching, use a balance circuit such as the recommended pneumatic circuit (p.3.1-4). If an air-hydro fine lock cylinder is used, make sure to operate the lock portion through air pressure. Never use oil on the lock-up cylinder because the lock-up cylinder is a nonlube style. Failure to observe this could cause the lock to malfunction.

Warning

Selection

Notes for setting the maximum load in the locked state.
When a cylinder is in a no-load and locked state, the holding force (maximum static load) is the lock's ability to hold a static load that does not involve vibrations or shocks. To ensure braking force, the maximum load must be set as described below.
(1) For constant static loads, such as for drop prevention:

- Fine lock series (CLJ2, CLM2, CLG1, CLA series)
35% or less of the holding force (maximum static load)
Note: For applications such as drop prevention, consider situations in which the air source is shut off, and make selections based on the holding force of the spring locked state. Do not use the pneumatic lock for drop prevention purposes.
- Lock-up series (Series CL1)
50% or less of the holding force (maximum static load)
(2) When kinetic energy acts upon the cylinder, such as when effecting an intermediate stop:
There are constraints in terms of the allowable kinetic energy that can be applied to the cylinder in a locked state. Therefore, refer to the allowable kinetic energy of the respective series. Furthermore, during locking, the mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the kinetic energy. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the amount of the load that can be sustained.
- Fine lock series (Series CLJ1, CLM2, CLG1, CLA)
Max. load at horizontal mounting: 70\% or less of the holding force (max. static load) for spring lock
Max. load at vertical mounting: 35\% or less of the holding force (max. static load) for spring lock
- Lock-up series (Series CL1)

Max. load at horizontal mounting: 50\% or less of the holding force (max. static load)
Max. load at vertical mounting: 25\% or less of the holding force (max. static load)
(3) In a locked state, do not apply impacts, strong vibrations or rotational forces. Do not apply a impacts, strong vibrations or rotational forces from external sources, because this could damage or shorten the life of the lock unit.
(4) The locking of the fine lock cylinder is directional. Although the fine lock cylinder can be locked in both directions, be aware that its holding force is smaller in one of the directions. CLJ2/CLM2/CLG1 \cdots Holding force at piston rod extended side decreases approx. 15\%.
CLA… Holding force at piston rod retracted side decreases approx. 15\%.
(5) The locking of the lock-up cylinder is unidirectional.
Because the locking direction of the lock-up cylinder is unidirectional, select the locking direction in accordance with the particular operating conditions. It is also possible to manufacture a bidirectional lock-up cylinder. For details, refer to "Made to Order" on p.5.4-90. Due to the nature of its construction, a lock-up cylinder has a play of approximately 0.5 mm to 1 mm in the axial direction. Therefore, if an external stopper is used to stop the piston rod and the lock is engaged, the piston rod will shift in the amount of its axial play.
(6) To effect an intermediate stop, take the cylinder's stopping precision and overrun amount into consideration. Because the lock is applied by mechanical means, the piston will not stop immediately in response to a stopping signal, but only after a time lag. This lag determines the amount of the overrun of the piston stroke. Thus, the range of the maximum and minimum amounts of the overrun is the stopping precision.

- Place the limit switch before the desired stopping position, only in the amount of the overrun.
- A limit switch requires a detection length (dog length) that is equivalent to the amount of overrun $+\mathbf{a}$
- SMC's auto switches have an operation range of 8 to 14 mm , depending on the switch. If the overrun exceeds this range, self holding of the contact point must be effected on the switch load side.
*The series and their stopping accuracy are as follows: CLJ series (p.3.1-10), CLM2 series (p.3.1-18), CLG1 (p.3.127), CLA series (p.3.1-35), and CL1 series (p.3.1-50).
(7) To improve stopping accuracy, use DCbased control circuitry and a solenoid valve with an excellent response, and locate the solenoid valve as close as possible to the cylinder.
(8) Be aware that the stopping accuracy is influenced by changes in the piston speed.
The variance in the stopping position increases if the piston speed changes, such as due to load fluctuations during the reciprocal movement of the piston. Therefore, take measures to ensure a constant piston speed immediately preceding the stopping position. Furthermore, the variances in the stopping position increases when the piston is effecting a cushioning stroke or during acceleration after starting its movement.

\triangle Warning

(1) To attach a load to the end of the rod, make sure that the lock is in the disengaged state. - If this is performed with the lock engaged, a load that exceeds the allowable rotational force or holding force would be applied to the piston rod, which could damage the locking mechanism. The fine lock and CL1 series $\varnothing 40$ to $\varnothing 100$ cylinders have a built-in manual unlocking mechanism. Therefore, they can be maintained in the unlocked state without supplying air. For CL1 series with $\varnothing 125$ to $\varnothing 160$ cylinders, simply connect piping to the lock-up port, and supply air pressure of 0.2 MPa or more to disengage the lock in order to attach a load.

\triangle Caution

(1)Do not apply an unbalanced load to the piston rod.

- Pay particular attention to aligning the center of gravity of the load with the axial center of the cylinder. If there is a large amount of deviation, the piston rod could become unevenly worn or damaged due to the inertial moment that is created when the piston rod is stopped by the lock.

X (Load center of gravity and cylinder axis center are not matched.)

(Load center of gravity and cylinder axis center are matched.)
Note) Can be used if all of the generated moment is absorbed by an effective guide.

\triangle Caution

Adjustment

(1)Place it in the locked position. (Excluding the

CL1 series $\varnothing 125$ to $\varnothing 160$.)

- The locks are manually disengaged at the time the cylinders are shipped from the factory. Therefore, make sure to change them to the locked state before using the cylinders. For procedures to effect the change, refer to p.3.1-5 for the fine lock series, and p.3.1-52 for the lock-up cylinders. Be aware that the lock will not operate properly if the change is not performed correctly.
- Adjust the cylinder's air balance. In the state in which a load is attached to the cylinder, disengage the lock and adjust the air pressure at the rod side and the head side of the cylinder to obtain a load balance. By maintaining a proper air balance, the piston rod can be prevented from lurching when the lock is disengaged.
(2)Adjust the mounting position of detections such as those of the auto switches. To effect an intermediate stop, adjust the mounting position of the auto switch detection by taking the amount of overrun into consideration in relation to the desired stopping position.

Pneumatic Circuit

. Warning

(1) To stop the piston by engaging the lock, make sure to use a pneumatic circuit that applies a balanced pressure to both ends of the piston.
To prevent the piston from lurching after it has been stopped with the lock, during restarting or when disengaging manually, provide a circuit that applies a balanced pressure to both ends of the piston to cancel out the force that is generated by the load in the direction of the operation of the piston.
(2) Using 50% or more of the effective area of the cylinder actuating solenoid valve as a guide, use a solenoid valve with a large effective area for the unlocking solenoid.
The greater the effective area, the shorter will be the length of time the lock takes to engage (shortening the overrun amount), thus improving the stopping precision.
(3) Place the unlocking solenoid close to the cylinder so that it will not be located farther than the cylinder actuating solenoid valve.
The closer the valve is located to the cylinder (the shorter the pipe length), the shorter will be the overrun amount, thus improving the stopping precision.
(4) Provide 0.5 seconds or more between the time the lock is engaged (to effect an intermediate stop of the cylinder) until the lock is disengaged.
If the length of time the piston is stopped by engaging the lock is short, the piston rod (and the load) could lurch at a speed that is higher than the speed controlled by the speed controller.
(5) During restarting, control the signal for switching the unlocking solenoid to be output before or at the same time as the signal for the cylinder actuating solenoid valve is output.
If the signal is delayed, the piston rod (and the load) could lurch at a speed that is higher than the speed controlled by the speed controller.
(6) Basic circuit

1. [Horizontal]

2. [Vertical]
[Load in direction of rod extension]

[Load in direction of rod retraction]

\triangle Caution

(1) The 3 position pressure center solenoid valve and regulator with check valve can be interchanged with two 3-port, N.O. valves and a relieving style regulator.

[Example]

1. [Horizontal]

2. [Vertical]
[Load in direction of rod extension] [Load in direction of rod retraction]

How to Manually Disengage the Lock and Change from the Unlocked to the Locked State

The lock is manually disengaged at the time the cylinder is shipped from the factory. Because the lock will not operate in this state, make sure to change it to the locked state before operation, after having adjusted the axial center for installation.

How to Change from the Unlocked State to the Locked State

(a) CLJ2, CLM2, CLG1
(1) Loose locking nut.
(2) Turn the wrench flats section of the manual unlocking cam to the LOCK position that is marked on the cam guide.
(3) While keeping the wrench flats section in place, tighten the lock nut.
Note) The manual unlocking cam will rotate approximately 180°. Do not rotate the wrench flats section excessively.

Locked condition

Manually lock released

(b) CLA
(1) Loosen the two hexagon socket bolts and remove the pin guide.
(2) As viewed from the end of the rod, the pin is tilted 15° to the right of the center.
(3) Supply air pressure of 0.3 MPa or more to the lock release port.
(4) Using a wooden or plastic rod, such as the handle of a wooden mallet, push the pin and rotate it 30°.
Note) Never rotate the pin by striking it because this could bend or damage the pin. Be very careful when pushing the pin, as the surface is slippery.
(5) Inside the pin guide, there is a slotted hole that is slightly larger than the pin. Align the pin with the slotted hole and secure them to the cover, using the hexagon socket bolts that were removed in step (1). The protruding portion of the pin guide will then align with the LOCK mark on the nameplate that is attached to the cover surface.

Manually Disengaging the Lock
The lock of a fine lock series cylinder can be disengaged manually through the procedure described below. However, make sure to disengage the lock pneumatically before operating the cylinder.

Note) Manual disengagement of the lock could create a greater cylinder sliding resistance than pneumatic disengagement of the lock.
(a) CLJ2, CLM2, CLG1
(1) Loose locking nut.
(2) Supply air pressure of 0.3 MPa or more to the lock release port.
(3) Turn the wrench flats section of the manual unlocking cam until it stops at the FREE position that is marked on the cam guide.
(4) While keeping the wrench flats section in place, tighten the lock nut.
(b) CLA
(1) Loosen the two hexagon socket bolts and remove the pin guide.
(2) As viewed from the end of the rod, the pin is tilted 15° to the left of the center.
(3) Supply air pressure of 0.3 MPa or more to the lock release port.
(4) Using a wooden or plastic rod, such as the handle of a wooden mallet, rotate the pin 30° without scratching it.

Construction/Applicable Series: CLJ2, CLM2, CLG1

Spring lock style

Spring lock (exhaust lock)

The spring force that is applied to the tapered brake piston becomes amplified through the wedge effect. This force becomes further amplified to the power of $A B / A C$ through the mechanical advantage of a lever and acts on the brake shoe, which in turn, applies a large force to tighten and lock the piston rod. To disengage the lock, air pressure is supplied through the lock release port, thus disengaging the brake spring force.

Pneumatic lock style

Brake piston is operated by air pressure.

Lock system concurrently using spring and air pressure

Lock released condition

Lock released condition

Brake piston is operated by air pressure and spring force

Spring lock style

Spring lock (exhaust lock)

The spring force that is applied to the tapered brake piston becomes amplified through the wedge effect. This force becomes further amplified to the power of $A B / A C$ through the mechanical advantage of a lever and acts on the brake shoe, which in turn, applies a large force to tighten and lock the piston rod. To disengage the lock, air pressure is supplied through the lock release port, thus disengaging the brake spring force.

Pneumatic lock style

Lock released condition

Locked condition

Brake piston is operated by air pressure.
Lock system concurrently using spring and air pressure

Lock released condition

Locked condition

Brake piston is operated by air pressure and spring force.

Fine Lock Cylinder/Double Acting Single Rod Series CLJ2
 ø16

How to Order

Applicable Auto Switches/Refer to p.5.3-2 for further information on auto switch

Style	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	Lead wire length (m)******				Applicable load	
					DC		AC		$\begin{aligned} & 0.5 \\ & (-) \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$	None (N)		
		Grommet	Yes	3 wire (NPN equiv.)	-	5 V	-	C76	-	\bigcirc	-	-	IC	-
				2 wire	24 V	12V	100V	C73	\bigcirc	\bigcirc	\bigcirc	-	-	Relay PLC
			No			$5 \mathrm{~V}, 12 \mathrm{~V}$	100 V or less	C80	\bigcirc	\bigcirc	-	-	IC	
		Connector	Yes			12V	-	C73C	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
			No			$5 \mathrm{~V}, 12 \mathrm{~V}$	24 V or less	C80C	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC	
		Grommet				5V, 12V		H7A1	\bigcirc	\bigcirc	\bigcirc	-	IC	
				3 wire (PNP)				H7A2	\bigcirc	\bigcirc	\bigcirc	-		
								H7B	\bigcirc	\bigcirc	\bigcirc	-		
		Connector		2 wire		12 V		H7C	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
			Ye	3 wire (NPN)				H7NW	\bigcirc	\bigcirc	\bigcirc	-	IC	
	Diagnostic indication (2 color, With timer)		Yes 3	$3 \text { wire (PNP) }$	24 V	5V, 12V		H7PW	-	\bigcirc	\bigcirc	-	10	$\begin{aligned} & \text { Relay, } \\ & \text { PLC } \end{aligned}$
		Grommet				12V		H7BW	\bigcirc	\bigcirc	\bigcirc	-		
	Water resistant (2 color)			2 wire		12 V		H7BA	-	\bigcirc	\bigcirc	-		
	With diagnostic output (2 color)			3 wire (NPN)		5V, 12V		H7NF	-	\bigcirc	\bigcirc	-	IC	
	Latching with diagnosic output (2 coorr)			4 wire (NPN)		-		H7LF	\bigcirc	\bigcirc	\bigcirc	-	-	
*Lea	d wire length symbo	l 0.5 m	.	- (Ex	xam	le) C 73	3 C 5m.	$\cdots \mathrm{Z}$ (Exa	ple)					
		$3 \mathrm{~m} \cdots$			C73	CL None	$\ldots . . \mathrm{N}$		C73	3 CN			

Fine Lock Cylinder/Double Acting Single Rod Series CLJ2

Provided with a compact locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Locks in both directions
The piston rod can be locked in either direction of its cylinder stroke.

Maximum piston

 speed: $500 \mathrm{~mm} / \mathrm{s}$It can be used at 50 to $500 \mathrm{~mm} / \mathrm{s}$ provided that it is within the allowable kinetic energy range.

Specifications

Bore size (mm)	16
Action	Double acting single rod
Style	Both of non-lube style and lube style
Lock operation	Spring lock (Exhaust lock) Pneumatic (Pressurized lock) Spring and pneumatic lock
Fluid	Air
Proof pressure	1.05 MPa
Max. operating pressure	0.7 MPa
Min. operating pressure	0.08 MPa
Ambient and fluid temperature	Without auto switch: $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ With auto switch: $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}^{*}$
Cushion	Rubber bumper
Thread tolerance	JIS class 2
Stroke tolerance	${ }^{+1.0}$
Mounting	Basic, Axial foot, Front flange, Double clevis
*Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked. To lock the piston in the stationary state for the purpose of drop prevention the piston can be locked up to a maximum speed of $750 \mathrm{~mm} / \mathrm{s}$.	

Fine Lock Specifications

Lock operation	Spring lock (Exhaust lock)	Spring/ pneumatic lock	Pneumatic lock (Pressurized lock)
Fluid	Air		
Max. operating pressure	0.5 MPa		
Lock release pressure	0.3 MPa or more	0.1 MPa or more	
Lock start pressure	0.25 MPa or less	0.05 MPa or more	
Lock direction	Both directions		

Standard Stroke
(mm)

Bore size (mm)	Standard stroke
16	$15,30,45,60,75,100,125,150,175,200$

MXW
MXP
MG
MGP
MGQ
MGG
MGC
MGF

Bracket Part No.

Mounting bracket	Part No.
Foot	CLJ-L016B
Flange	CLJ-F016B
Tbracket*	CJ-T016B

[^0]Auto Switch Mounting Bracket
Part No. (Band mounting)

Auto switch mounting bracket	Note
BJ2-016	For D-C7, C8, H7

*Stainless steel mounting bolt set

,
The set of stainless steel mounting screws described below is available and can be used depending on the operating environment.
(The band for auto switches must be ordered separately, as they are not included.)
BBA4:For D-C7/C8/H7
The stainless steel bolts described above are used when the D-H7BAL type switch is shipped mounted on a cylinder. When the switches are shipped as individual parts, the BBA4 set is included.

Minimum Strokes for Auto Switch Mounting

Auto switch mounting	Auto switch model	Number of auto switches	Minimum cylinder stroke (mm)
Band mounting	$\begin{aligned} & \text { D-C7 } \\ & \text { D-C8 } \end{aligned}$	2 (Same side)	50
		2 (Different side)	15
		1	10
	$\begin{aligned} & \text { D-H7 } \\ & \text { D-H7■W } \\ & \text { D-H7NF } \\ & \text { D-H7BAL } \end{aligned}$	2 (Same side)	60
		2 (Different side)	15
		1	10
	$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$	2 (Same side)	65
		2 (Different side)	15
		1	10
	D-H7LF	2 (Same side)	65
		2 (Different side)	25
		1	15

Weight

Bore size (mm)		$\mathbf{1 6}$
Basic weight*		320
Additional weight per 15mm stroke		6.5
Mounting bracket Axial direction foot	Front flange	27
	Double clevis (with pin)*	10

*Basic weight includes mounting nut and rod end nut.
*Double clevis does not include mounting nut.
Calculation
Example: CLJ2L16-60

- Basic weight..................320(ø16)
-Additional weight.........6.5/15 stroke
-Cylinder stroke..........60 stroke
$320+6.5 / 15 \times 60+27=373 \mathrm{~g}$

Stopping Accuracy (Not including tolerance of control system) Unit: mm

Lock style	Piston speed (mm/s)			
	50	100	300	500
Spring lock (Exhaust lock)	± 0.4	± 0.5	± 1.0	± 2.0
Pneumatic lock (Pressurized lock) Spring and pneumatic lock	± 0.2	± 0.3	± 0.5	± 1.5

Condition/Load: 2kg
Solenoid valve: Lock port mounting

Head Cover Port Position

In the case of the basic style, there are two port positions on the head cover: one that is at 90° to the axis, and the other that is in the axial direction.

Axial direction

90° direction
\triangle Caution
Recommended Pneumatic Circuit/Precautions

©Caution/Allowable Kinetic Energy when Locking

Bore size (mm)	16
Allowable kinetic energy J	0.17

(1) In terms of specific load conditions, this allowable kinetic energy is equivalent to a load of 3.7 kg in weight, and a piston speed of $300 \mathrm{~mm} / \mathrm{sec}$. Therefore, if the operating conditions are below these values, there is no need to calculate.
(2) Apply the following formula to obtain the kinetic energy of the load. $\mathrm{Ek}=\frac{1}{2} \mathrm{~m} v^{2} \quad$ Ek: Load kinetic energy (J) m : Load weight (kg)
(3) The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of the load, use 1.2 times the average speed as a guide.
(4) The relationship between the speed and the load is indicated in the diagram below. The area below the line is the allowable kinetic energy range.
(5) During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load.
Therefore, even within an allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Holding Force of Spring Lock (Maximum static load)

Bore size (mm)	16
Holding force N	122

Note) Holding force at piston rod extended decreases approximately 15%.
Holding Force of Pneumatic Lock (Max. static load)

©Caution

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
- Do not use the cylinder in the locked state to sustain a load that involves impact.

Spring lock (Exhaust lock)
Spring and pneumatic lock

Series CLJ2

Basic (B) CAD
CLJ2B16- $\square \square$ - E

Axial Foot (L)

CLJ2L16- $\square \square$ - ${ }_{\mathrm{P}}^{\mathrm{D}}$

CLJ2L16...............SCLJ216, \#2 (\#1+\#2+\#6)

CLJ2F16-■ロ-

CL

CLJ2D16- $\square \square-\frac{\mathrm{E}}{\mathrm{P}}$

CLJ2D16..........SCLJ216, \#4 (\#4+\#6)

Series CDLJ2
 Auto Switch Specifications

Refer to p.5.3-2 for details of auto switch.

Applicable Auto Switch

Style	Model	Electrical entry/Function	Page
Reed switch	D-C7/C8	Grommet	$5.3-9$
	D-C73C/C80C	Connector	$5.3-11$
	D-H7	Grommet	$5.3-29$
	D-H7 $\square \mathbf{W}$	Grommet(2 color indication)	$5.3-42$
	D-H7LF	Grommet(2 color, with diagnostic output)	$5.3-49$
	D-H7NF	Grommet(2 color, with diagnostic output)	$5.3-50$
	D-H7BAL	Grommet(2 color, with diagnostic output)	$5.3-55$
	D-H7C	Connector	$5.3-31$

Refer to p.1.3-11 for dimensions because these are same as air cylinder CDJ2 series (Double acting single rod) style.

Accessories

Single knuckle joint/l-LJ016B

Material: Rolled steel

Clevis pin/CD-Z015

Double knuckle joint/Y-LJ016B

* Knuckle pin and snap ring are packed.

\qquad

Knuckle pin/IY-J015A

Material: Stainless steel

Rod end nut/NT-015A

\qquad

Mounting nut/SNLJ-016B

Material: Brass

T bracket/CJ-T016B

Material: Rolled steel												
Part no.	Bore size	TC	TDH10	TH	TK	TN	TT	TU	TV	TW	TX	TY
CJ-T016B	16	5.5	$5^{+0.048}$	35	20	6.4	2.3	14	48	28	38	16

Fine Lock Cylinder/Double Acting Single Rod Series CLM2

How to Order

Series CLM2

Provided with a compact locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Locks in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Maximum piston speed: $500 \mathrm{~mm} / \mathrm{s}$

It can be used at 50 to $500 \mathrm{~mm} / \mathrm{s}$ provided that it is within the allowable kinetic energy range.

Specifications

Bore size (mm)	20	25	32	40
Action	Double acting single rod			
Style	Pneumatic			
Lock operation	Spring lock (Exhaust lock), Pneumatic lock (Pressurized lock), Spring and pneumatic lock			
Fluid	Air			
Proof pressure	1.5MPa			
Max. operating pressure	1.0 MPa			
Min. operating pressure	0.08 MPa			
Ambient and fluid temperature	Without auto switch: $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (No freezing) With auto switch: $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$			
Lubrication	Not required (Non-lube)			
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}$			
Thread tolerance	JIS class 2			
Stroke length tolerance	${ }_{0}^{+1.4}$			
Piping/Screw-in style	$\mathrm{Rc}(\mathrm{PT}) 1 / 8$			$\mathrm{Rc}(\mathrm{PT}) 1$
Mounting	Basic, Axial foot, Front flange, Rear flange, Single clevis, Double clevis, Rear trunnion, Integrated clevis, Boss cut, Boss cut flange			

* Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked. To lock the piston in the stationary state for the purpose of drop prevention, the piston can be locked up to a maximum speed of $750 \mathrm{~mm} / \mathrm{s}$.
Fine Lock Specifications

Lock operation	Spring lock (Exhaust lock)	Spring/ pneumatic lock	Pneumatic lock (Pressurized lock)
Fluid	Air		
Max. operating lock	0.5 MPa		
Lock release pressure	0.3 MPa or more	0.1 MPa or more	
Lock starting pressure	0.25 MPa or less	0.05 MPa or less	
Lock direction	Both directions		

Standard Stroke

Bore size (mm)	Standard stroke (mm) ${ }^{(1)}$	Long stroke ${ }^{(2)}$ (mm)	Allowable max stroke (mm)
20	$\begin{aligned} & 25,50,75,100,125, \\ & 150,200,250,300 \end{aligned}$	400	1000
25		450	
32		450	
40		500	

Note 1) Intermediate stroke is also available.
Note 2) The long stroke style is applicable to the axial foot style and the front flange style. For other applications that exceed the mounting support bracket and long stroke limitations, the maximum stroke that can be used is determined by the stroke selection table (reference edition).

Minimum Strokes for Auto Switch Mounting

Auto switch model	Number of auto switches				
	2 pcs.		1 pc .		1 pc .
	Different side	Same side	Different side	Same side	
$\begin{aligned} & \mathrm{D}-\mathrm{C} 7 \\ & \mathrm{D}-\mathrm{C} 8 \end{aligned}$	15	50	$\begin{aligned} & 15+45\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \cdots) \end{aligned}$	50+45(n-2)	10
$\begin{aligned} & \text { D-H7ロ } \\ & \text { D-H7■W } \\ & \text { D-H7BAL } \\ & \text { D-H7NF } \end{aligned}$	15	60		60+45(n-2)	10
$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$	15	65	$\begin{aligned} & 15+50\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \cdots) \end{aligned}$	65+50(n-2)	10
D-H7LF	20	65	$\begin{aligned} & 20+50\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \cdots) \end{aligned}$		10
$\begin{aligned} & \text { D-B5 } \\ & \text { D-B6 } \end{aligned}$	15	75	$\begin{aligned} & 15+50\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \cdots) \\ & \hline \end{aligned}$	75+55(n-2)	10
D-B59W	20	75	$\begin{aligned} & 20+50\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \cdots) \end{aligned}$		15
$\begin{aligned} & \text { D-A3■A } \\ & \text { D-G39A } \\ & \text { D-K39A } \\ & \text { D-A44A } \end{aligned}$	35	100	35+30(n-2)	100+100(n-2)	10

Rod Boot Material

Symbol	Rod boot material	Max. ambient temperature
\mathbf{J}	Nylon tarpaulin	$60^{\circ} \mathrm{C}$
K	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}^{*}$

* Max. ambient temperature for rod boot

Mounting and Accessories

Accessory Mounting	Standard equipment			Accessories			
	Mounting nut	Rod end nut	Clevis pin	Single knuckle joint	Double knuckle joint	Clevis bracket	Rod boot
Basic	(1pc.)	-	-	\bigcirc	\bigcirc	-	\bigcirc
Axial foot	(2)	\bigcirc	-	-	-	-	-
Front flange	(1)	\bigcirc	-	\bigcirc	\bigcirc	-	
Rear flange	(1)	\bigcirc	-	-	\bigcirc	-	-
Integrated clevis	- ${ }^{(1)}$	-	-	\bigcirc	\bigcirc	\bigcirc	
Single clevis	- ${ }^{(1)}$	-	-	\bigcirc	\bigcirc	-	
Double clevis	- ${ }^{(1)}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
Rear trunnion	(1) ${ }^{(2)}$	\bigcirc	-	-	\bigcirc	-	\bigcirc
Boss cut basic	(1)	-	-	-	\bigcirc	-	\bigcirc
Boss cut flange	(1)	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc
Note					With pin	With pin	

Note 1) The mouting nuts are not provided with the integrated clevis style, single clevis style, or the double clevis style
Note 2) The rear trunnion style is provided with a trunnion nut.

Weight					(kg)
	Bore size (mm)	20	25	32	40
Basic weight	Basic	0.55	0.87	0.94	1.30
	Axial foot	0.70	1.03	1.10	1.57
	Flange	0.61	0.96	1.03	1.42
	Integrated clevis	0.53	0.85	0.93	1.26
	Single clevis	0.59	0.91	0.98	1.39
	Double clevis	0.60	0.93	0.99	1.43
	Trunnion	0.59	0.94	1.00	1.40
	Boss cut basic	0.54	0.85	0.92	1.27
	Boss cut flange	0.60	0.94	1.01	1.39
Additional weight per 50 mm stroke		0.04	0.06	0.08	0.13
Accessory	Clevis bracket (with pin)	0.07	0.07	0.14	0.14
	Single knuckle joint	0.06	0.06	0.06	0.23
	Double knuckle joint (with pin)	0.07	0.07	0.07	0.20

Calculation Example: CLM2L32-100

- Basic weight $\cdots \cdots1 .10$ (Foot, $\varnothing 32$)
- Additional weight $\cdots 0.08 / 50$ stroke
-Cylinder stroke $\cdots \cdots .100$ stroke $1.10+0.08 \times 100 / 50=1.26 \mathrm{~kg}$
Auto Switch Mounting Bracket Part No.

Auto switch model	$\mathbf{4 5}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
	BM2-020	BM2-025	BM2-032	BM2-040
D-B5/B6 D-G	BA2-020	BA2-025	BA2-032	BA2-040
D-A3 \square A/A44A D-G39A/K39A	BM3-020	BM3-025	BM3-032	BM3-040

Stainless steel mounting bolt set
The set of stainless steel mounting screws described below is available and can be used depending on the operating environment. (The band for auto switches must be ordered separately, as they are not included.)
BBA3: For D-B5/B6/G5
BBA4: For D-C7/C8/H7
The stainless steel bolts described above are used when the D-H7BA type switch is shipped mounted on a cylinder. when the switches are shipped as individual parts, the BBA4 set is included.

Mounting Bracket Part No.

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Axial foot*	CM-L020B	CM-L032B	CM-L040B	
Flange	CM-F020B	CM-F032B	CM-F040B	
Single clevis	CM-C020B	CM-C032B	CM-C040B	
Double clevis**	CM-D020B	CM-D032B	CM-D040B	
Trunnion (With nut)	CM-T020B	CM-T032B	CM-T040B	

* When ordering foot brackets, 2pcs. should be ordered for each cylinder.
** Clevis pin and snap ring ($\varnothing 40$: cotter pin) are packed with the double clevis style

Air-hydro

Air-hydro
Low hydraulic cylinder 1MPa or less
Through the concurrent use of a CC Series air-hydro unit, it is possible to operate at a constant or low speeds or for intermediate stops, just like a hydraulic unit, while using pneumatic equipment such as a valve.

Specifications

Fluid	Turbine oil (Locked area: air)
Action	Double acting single rod
Bore size	$\varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40$
Max. operating pressure	1.0 MPa
Min. operating pressure	0.2 MPa
Piston speed	15 to $300 \mathrm{~mm} / \mathrm{s}$
Cushion	Rubber bumper (Standard equipment)
Piping	Basic, Axial foot, Front flange, Rear flange, Single clevis, Double clevis, Rear trunnion, Integrated clevis, Boss cut
Mounting	

* Auto switch can be mounted.
- For an exterior dimension diagram to identify the mounting support types, refer to p.3.1-21 to 3.1-24 as the dimensions are identical to those of standard.

CL
MLGC CNA

. Caution/Allowable Kinetic Energy when Locking

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Allowable kinetic energy J	0.26	0.42	0.67	1.19

(1) In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5 MPa , and a piston speed of $300 \mathrm{~mm} / \mathrm{sec}$. Therefore, if the operating conditions are below these values, calculations are unnecessary.
(2) Apply the following formula to obtain the kinetic energy of the load.

$$
\begin{aligned}
& E k=\frac{1}{2} m v^{2} \begin{array}{l}
\text { Ek: Load kinetic energ } \\
\mathrm{m}: \text { Load weight }(\mathrm{kg}) \\
\mathrm{v}: \text { Piston speed }(\mathrm{m} / \mathrm{s})
\end{array}
\end{aligned}
$$

(3) The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of the load, use 1.2 times the average speed as a guide.
(4) The relationship between the speed and the load is indicated in the diagram below. Use the cylinder in the range below the line.
(5) During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Stopping Accuracy (Not including tolerance of control system)

Lock	Piston speed (mm/s)				
	$\mathbf{2 0 *}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	$\mathbf{5 0 0}$
Spring lock (Exhaust lock)	± 0.3	± 0.4	± 0.5	± 1.0	± 2.0
Pneumatic lock (Pressurized lock), Spring and pneumatic lock	± 0.15	± 0.2	± 0.3	± 0.5	± 1.5

Conditions/load: 25% of thrust force at 0.5 MPa
Solenoid valve: mounted to the lock port
The " $20 \mathrm{~mm} / \mathrm{s}$ " marked with " $*$ " is applicable to an air-hydro style that is actuated hydraulically.

\triangle Caution

Recommended Pneumatic Circuit/Cautions on Handling

IRefer to p.3.1-2 to 3.1-5 for further specifications of fine lock
cylinder CLM2 series.

Fine Lock Cylinder with Auto Switch

Regarding the installation position and the mounting height of the auto switch, refer to p.1.4-21, as the dimensions are identical to those of the CDM2 series air cylinder (double acting, single rod style).

Accessories

Refer to p.1.4-19 and 1.4-20 for accessory dimensions because it is same as CM2 series.

Holding Force of Spring Lock (Max. static load)

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Holding force N	196	313	443	784

Note) Holding force at piston rod extended side decreases approx. 15\%.
Holding Force of Pneumatic Lock (Max. Static Load)

\triangle Caution

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
-Do not use the cylinder in the locked state to sustain a load that involves impact.
-To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.

Construction/(The cylinder cannot be disassembled.)

Spring lock (Exhaust lock)
Spring and pneumatic lock

CL
MLGC

CNA

CB

CVING
Cxw
CXS
CXT
Pneumatic lock (Pressurized lock)

Component Parts

No.	Description	Material	Note
(1)	Rod cover	Aluminum alloy	White anodized
(2)	Head cover	Aluminum alloy	White anodized
(3)	Cover	Carbon steel	Nitrided, chrome plated
(4)	Middle cover	Aluminum alloy	Hard anodized
(5)	Cylinder tube	Stainless steel	
(6)	Piston rod	Carbon steel	Hard chrome plated
(7)	Piston	Aluminum alloy	Chromated
(8)	Brake piston	Carbon steel	Nitrided
(9)	Brake arm	Carbon steel	Nitrided
(10)	Brake shoe	Special friction material	
(11)	Roller	Carbon steel	
(12)	Pin	Carbon steel	
(13)	Snap ring	Carbon tool steel	Nickel plated
(14)	Brake spring	Spring steel wire	Dacrodized
(15)	Bushing	Oil impregnated sintered alloy	
(16)	Bushing	Oil impregnated sintered alloy	
(17)	Snap ring	Carbon tool steel	Nickel plated
(18)	Manual lock release cam	Chrome molybdenum steel	Nickel plated
(19)	Cam guide	Carbon steel	Nitrided, coated
(20)	Lock nut	Rolled steel	Nickel plated
(21)	Flat washer	Rolled steel	Nickel plated
(22)	Snap ring	Carbon tool steel	Nickel plated
(23)	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated

No.	Description	Material	Note
(24)	Spring washer	Steel wire	Nickel plated
(25)	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
(26)	Spring washer	Steel wire	Nickel plated
(27)	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
(28)	Spring washer	Steel wire	Nickel plated
(29)	Damper A	Urethane	
(30)	Damper B	Urethane	
(31)	Wearing	Resin	
(32)	Wearing	Resin	
(33)	Hex. socket head plug	Carbon steel	E type only
(34)	Element	Bronze	E type only
(35)	Piston seal	NBR	
(36)	Piston gasket	NBR	
(37)	Brake piston seal	NBR	
(38)	Rod seal A	NBR	
(39)	Rod seal B	NBR	
(40)	Middle cover gasket A	NBR	
(41)	Middle cover gasket B	NBR	
42$)$	Cam gasket	NBR	
(43)	Mounting nut	Carbon steel	Nickel plated
(44)	Rod end nut	Carbon steel	Nickel plated

CLM2B
 Bore size
 \qquad Stroke

Standard

Boss cut

With rod boot

Bore	Stroke range	A	AL	B1	B2	BC	BN	BP	BQ	BZ	D	E	F	GA	GB	GC	GD	GK	GL	GQ	GR	H	H_{1}	H_{2}	I
20	to 300	18	15.5	13	26	38	80	1/8	1/8	57.5	8	$20_{-0.033}^{0}$	13	73.5	8	8	55	3.5	6	4	4	41	5	8	28
25	to 300	22	19.5	17	32	45	90	1/8	1/8	69	10	26-0.033	13	83.5	8	9	64.5	4	9	7	7	45	6	8	33.5
32	to 300	22	19.5	17	32	45	90	1/8	1/8	69	12	$26_{-0.033}^{0}$	13	83.5	8	9	64.5	4	9	7	7	45	6	8	37.5
40	to 300	24	21	22	41	52	100.5	1/8	1/8	76	14	32-0.039	16	90.5	11	8	70	4	11	8	7	50	8	10	46.5

With rod boot

th r	00															(mm)
Bore	e	f	h							e						
			1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	301 to 400	401 to 500	1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	301 to 400	401 to 500
20	35	17	68	81	93	106	131	156	-	12.5	25	37.5	50	75	100	-
25	35	17	72	85	97	110	135	160	185	12.5	25	37.5	50	75	100	125
32	35	17	72	85	97	110	135	160	185	12.5	25	37.5	50	75	100	125
40	46	17	77	90	102	115	140	165	190	12.5	25	37.5	50	75	100	125

* Over 301 mm stroke: Long stroke.

Fine Lock Cylinder/Double Acting Single Rod Series CLM2

Axial Foot (L)
CLM2L

CL
MLGC
CNA
CB
CVMVG
CXW
CXS
CXT

Bore	K	LC	LD	LH	LS	LT	LX	LZ	MM	N	NA	NN	P	PG	PH	PL	PW	S	X	Y	Z	ZZ
20	5	4	6.8	25	167	3.2	40	55	M8 X 1.25	15	24	M20 X 1.5	1/8	22	19.5	20	38	127	20	8	21	196
25	5.5	4	6.8	28	177	3.2	40	55	M10 X 1.25	15	30	M26 X 1.5	1/8	27	24	24	41	137	20	8	25	210
32	5.5	4	6.8	28	179	3.2	40	55	M10 X 1.25	15	34.5	M26 X 1.5	1/8	27	24	24	41	139	20	8	25	212
40	7	4	7	30	213	3.2	55	75	M14 X 1.5	21.5	42.5	M32 X 2	$1 / 4$	29	24	24	41	167	23	10	27	250

Rear Flange (G)

MXQ

MXF
MXW
MXP
MG
MGP
MGQ
MGG
MGC
MGF

Bore	GC	GD	GK	GL	GQ	b	H	H_{1}	H_{2}	K	MM	N	NA	NN	P	PG	PH	PL	PW	S	Z	ZZ
20	8	55	3.5	6	4	4	41	5	8	5	M8 X 1.25	15	24	M 20×1.5	$1 / 8$	22	19.5	20	38	127	172	181
25	9	64.5	4	9	7	7	45	6	8	5.5	M10 X 1.25	15	30	M26 X 1.5	$1 / 8$	27	24	24	41	137	186	195
32	9	64.5	4	9	7	7	45	6	8	5.5	M10 X 1.25	15	34.5	M26 X 1.5	$1 / 8$	27	24	24	41	139	188	197
40	8	70	4	11	8	7	50	8	10	7	M14 X 1.5	21.5	42.5	M32 X 2	$1 / 4$	29	24	24	41	167	222	233
CLM2L20….....SCLM220, \#3 (\#1+\#3+\#12)CLM2L25…....SCLM225, \#3 (\#1+\#3+\#12)CLM2L32........SCLM232, \#3 (\#1+\#3+\#12)CLM2L40….....SCLM240, \#3 (\#1+\#3+\#12)								CLM2G20..........SCLM220, \#5 (\#1+\#5+\#12)CLM2G25........SCLM225, \#5 (\#1+\#5+\#12)CLM2G32........SCLM232, \#5 (\#1+\#5+\#12)CLM2G40........SCLM240, \#5 (\#1+\#5+\#12)														

Series CLM2

Front Flange (F)

CLM2F
 Bore size - Stroke

Boss cut

Bore	Stroke range	A	AL	B	B1	B2	BC	BN	BP	BQ	BZ	C_{1}	D	E	F	FD	FT	FX	FY	FZ	GA	GB	GC	GD	GK
20	to 400	18	15.5	34	13	26	38	80	1/8	1/8	57.5	30	8	$20_{-0.033}^{0}$	13	7	4	60	-	75	73.5	8	8	55	3.5
25	to 450	22	19.5	40	17	32	45	90	1/8	$1 / 8$	69	37	10	$26_{-0.033}^{0}$	13	7	4	60	-	75	83.5	8	9	64.5	4
32	to 450	22	19.5	40	17	32	45	90	1/8	$1 / 8$	69	37	12	$26_{-0.033}^{0}$	13	7	4	60	-	75	83.5	8	9	64.5	4
40	to 500	24	21	52	22	41	52	100.5	1/8	1/8	76	47.3	14	$32_{-0.033}^{0}$	16	7	5	66	36	82	90.5	11	8	70	4

Bore	GL	GQ	GR	H	H_{1}	H_{2}	1	K	MM	N	NA	NN	P	PG	PH	PL	PW	S	Z	ZZ
20	6	4	4	41	5	8	28	5	M8 X 1.25	15	24	M20 X 1.5	$1 / 8$	22	19.5	20	38	127	37	181
25	9	7	7	45	6	8	33.5	5.5	M10 X 1.25	15	30	M26 X 1.5	1/8	27	24	24	41	137	41	195
32	9	7	7	45	6	8	37.5	5.5	M10 X 1.25	15	34.5	M26 X 1.5	1/8	27	24	24	41	139	41	197
40	11	8	7	50	8	10	46.5	7	M14 X 1.5	21.5	42.5	M32 X 2	$1 / 8$	29	24	24	41	167	45	233

Boss cut	
Bore	ZZ
20	168
25	182
32	184
40	217

[^1]

Series CLM2

Rear Trunnion (T)

CLM2T Bore size - Stroke \square

Bore	Stroke range		A	AL	$\mathrm{B}_{1} \mathrm{~B}_{2}$	BC	BN	BP	BQ	BZ	D	E			F	GA	GB	GC	GD	GK	GL	GQ
20	to 300		18	15.5	13 26	38	80	1/8	1/8	57.5	8	20-0.033			13	73.5	8	8	55	3.5	6	4
25	to 300		22	19.5	17	45	90	1/8	1/8	69	10	26-0.033			13	83.5	8	9	64.5	4	9	7
32	to 300		22	19.5	17	45	90	1/8	1/8	69	12	26-0.033			13	83.5	8	9	64.5	4	9	7
40	to 300		24	21	22.41	52	100.5	1/8	1/8	76	14	32-0.039			16	90.5	11	8	70	4	11	8
Bore	GR	H	H_{1}	K	MM	N	NA			P	PG	PH	PL	PW	S	TD	TT	TX	TY	TZ	Z	ZZ
20	4	41	5	5	M8 X 1.25	15	24	M20	X 1.5	1/8	22	19.5	20	38	127	8	10	32	32	52	173	183
25	7	45	6	5.5	M10 X 1.25	15	30	M26	$\times 1.5$	1/8	27	24	24	41	137	9	10	40	40	60	187	197
32	7	45	6	5.5	M10 X 1.25	15	34.5	M26	$\times 1.5$	1/8	27	24	24	41	139	9	10	40	40	60	189	199
40	7	50	8	7	M14 X 1.5	21.5	42.5	M32	$\times 2$	$1 / 4$	29	24	24	41	167	10	11	53	53	77	222.5	233

Integrated Clevis (E)

CLM2E Bore size - Stroke \square

Fine Lock Cylinder/Double Acting Single Rod Series CLG1 ${ }^{12}$
 ø20, ø25, ø32, ø40

How to Order

* Solid state switches marked with a "○" are manufactured upon receipt of order.

Series CLG1

Basic/CLG1BN

With rod boot

Bore (mm)	Stroke range	AL	A	B1	BC	BN	BZ	C	D	E	GA	GB	GC	GD	GK	GL	GQ	GR	1	J	K	KA	MM
20	to 200	15.5	18	13	38	91	57.5	14	8	12	84	10	19	54	3.5	5.5	4	4	26	M4 X 0.7 depth7	5	6	M8 X 1.25
25	to 300	19.5	22	17	45	101	69	16.5	10	14	94	10	20	62	4	9	7	7	31	M5 X 0.8 depth7.5	5.5	8	M10 X 1.25
32	to 300	19.5	22	17	45	102	69	20	12	18	95	10	21	62	4	9	7	7	38	M5 X 0.8 depth8	5.5	10	M10 X 1.25
40	to 300	27	30	19	52	111	76	26	16	25	103	10	23	67	4	11	8	8	47	M6 X 1 depth12	6	14	M14 X 1.5

Bore (mm)	Stroke range	H_{1}	NA	P	PG	PH	PL	PW	S	TA	TB	TC	Without rod boot		With rod boot				
													H	ZZ	e	f	h	ℓ	ZZ
20	to 200	5	24	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	33	19.5	20	38	141	11	11	M5 X 0.8	35	178	30	16	55		198
25	to 300	6	29	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	38	24	24	41	151	11	11	M6 X 0.75	40	193	30	17	62	0.25	215
32	to 300	6	35.5	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	39	24	24	41	154	11	10	M8 X 1	40	196	35	17	62	Stroke	218
40	to 300	8	44	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	44	24	24	41	169	12	10	M10 X 1.25	50	221	35	17	70		241

Refer to p.3.1-30 for long stroke dimensions.

Rubber bumper basic style SCLG1 Bore size, \#1 (\#1+\#11)
Air cushion basic style SCLG1 Bore size, \#2 (\#2+\#11)
Axial direction foot style SCLG1 Bore size, \#3 (\#1+\#3+\#11)
Front flange style SCLG1 Bore size, \#4 (\#1+\#4+\#11)
Rear flange stye SCLG1 Bore size, \#5 (\#1+\#5+\#11)
Front trunnion style SCLG1 Bore size, \#6 (\#6+\#11+\#13)
Rear trunnion style SCLG1 Bore size, \#7 (\#7+\#11+\#13)
Clevis style
SCLG1 Bore size, \#8 (\#1+\#8+\#11)
Accessory SCLG1 Bore size, \#9
Rod boot SCLG1 Bore size, \#10

Fine Lock Cylinder/Double Acting Single Rod Series CLG1

Bore (mm)	20	25	32	40
Allowable kinetic energy J	0.26	0.42	0.67	1.19

(1) In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5 MPa , and a piston speed of $300 \mathrm{~mm} / \mathrm{sec}$. Therefore, if the conditions are below these values, calculations are unnecessary.
(2) Apply the following formula to obtain the kinetic energy of the load. Ek: Load kinetic energy (J)
$\mathrm{Ek}=\frac{1}{2} m v^{2}$ m: Load weight (kg)
v : Piston speed (m/s) (Average speed X 1.2 times)
(3) The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of the load, use 1.2 times the average speed as a guide.
(4) The relationship between the speed and the load of the respective tube bores is indicated in the diagram below. Use the cylinder in the range below the line.
(5) During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Holding Force of Spring Lock (Max. static load)

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Holding force N	196	313	443	784

Note) Holding force at piston rod extended side decreases approx. 15\%.

Holding Force of Spring Lock (Max. static load)

\triangle Caution

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
- Do not use the cylinder in the locked state to sustain a load that involves impact.

Stopping Accuracy (Not including tolerance of control system) Unit:mm

	Piston speed (mm/s)			
Lock	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	$\mathbf{5 0 0}$
Spring lock (Exhaust lock)	± 0.4	± 0.5	± 1.0	± 2.0
Pneumatic lock (Pressurized lock) Spring and pneumatic lock	± 0.2	± 0.3	± 0.5	± 1.5

Condition/load: 25% of thrust force at 0.5 MPa
Solenoid valve: mounted to the lock port

Weight					(kg)
Bore size (mm)		20	25	32	40
$\begin{aligned} & \stackrel{7}{0} \\ & \stackrel{0}{0} \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Basic	0.61	0.97	1.06	1.35
	Axial foot	0.72	1.10	1.22	1.57
	Flange	0.73	1.15	1.23	1.58
	Trunnion	0.62	0.99	1.09	1.40
	Clevis	0.66	1.05	1.21	1.58
Front pivot bracket		0.11	0.13	0.20	0.27
Rear pivot bracket		0.08	0.09	0.17	0.25
Single knuckle joint		0.05	0.09	0.09	0.10
Double knuckle joint (With pin)		0.05	0.09	0.09	0.13
Additional weight per 50 mm stroke		0.05	0.07	0.09	0.15
Additional weight of air cushion		0.01	0.01	0.02	0.02
Additional weight of long stroke		0.01	0.01	0.02	0.03

Example: CLG1LA20-100(Foot, ø20, 100 ${ }^{\text {st }}$)

> -Basic weight................................ 0.72
> -Additional weight...............05/50 stroke
> -Air cylinder stroke..................... 100 stroke -Addditional weight of air cushion...0.01kg $0.72+0.05 \times 100 / 5+0.01=0.83 \mathrm{~kg}$

Caution

Recommended Pneumatic Circuit/Cautions on Handling
 l cylinder CLG1 series.

Fine Lock Cylinder with Auto Switch
Refer to p.1.6-13 for auto switch setting position and mounting height because it is same as those of air cylinder CDG1 series (double acting single rod style).
Auto Switch Mounting Bracket (Band)/Part No.

Auto switch model	Bore size (Part No.)			
	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
D-B5, B6 D-G5, K5	BA-01	BA-02	BA-32	BA-04
D-C7, C8 D-H7	BMA2-020	BMA2-025	BMA2-032	BMA2-040

*Stainless steel mounting bolt set

The set of stainless steel mounting screws described below is available and can be used depending on the operating environment.
(The band for auto switches must be ordered separately, as they are not included.) BBA3: For D-B5/B6/G5
BBA4: For D-C7/C8/H7
The stainless steel bolts described above are used when the D- H7BA type switch is shipped mounted on a cylinder. When the switches are shipped as individual parts, the BBA4 set are included.
Mounting Bracket Part No.
MY1

Series CLG1

Provided with a compact

 locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.
Locks in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Model

Series	Style	Action	Cushion	Piston seal	Bore (mm)	Lock operation
CLG1 \square N	Non-lube style	Double acting	Rubber bumper	Special seal	20, 25	Spring lock (Exhaust lock), Pneumatic lock (Pressurized lock) Spring and pneumatic lock
CLG1 \square A			Air cushion		32, 40	

Specifications

Fluid	Air
Proof pressure	1.5 MPa
Max. operating pressure	1 MPa
Min. operating pressure	0.08 MPa
Ambient and fluid temperature	Without auto switch: $-10^{\circ} \mathrm{C} \mathrm{to}+70^{\circ} \mathrm{C}$ (No freezing) With auto switch: $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{sec}^{*}$
Thread tolerance	JIS Class 2
Stroke length tolerance	to 800st ${ }_{0}^{+1.4 \mathrm{~mm}}$
Mounting ${ }^{* *}$	Basic, Axial foot, Front flange, Rear flange, Front trunnion, Rear trunnion, Clevis (Used when port position is changed to $\left.90^{\circ}.\right)$

* Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked. To lock the piston in the stationary state for the purpose of drop prevention, the piston can be locked up to a maximum speed of $1000 \mathrm{~mm} / \mathrm{s}$.
** The long stroke style is applicable to the basic style, the axial foot style, and the front flange style.
Fine Lock Specifications

Lock operation	Spring lock (Exhaust lock)	Spring/ pneumatic lock	Pneumatic lock (Pressurized lock)
Fluid	Air		
Max. operating press.	0.5 MPa		
Lock release press.	0.3 MPa or more	0.1 MPa or more	
Lock starting press.	0.25 MPa or less		
Lock direction	Both directions		

Accessories

Mounting		Basic	Axial foot	Front flange	Rear flange	Front trunnion	Rear trunnion	Clevis
Standard	Rod end nut	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet
	Clevis pin	-	-	-	-	-	-	\bullet
Option	Single knuckle joint	\bullet	-	\bullet	\bullet	-	\bullet	\bullet
	Double knuckle joint (With pin)	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet
	Pivot bracket	-	-	-	-	-	\bullet	-
	Rod boot	\bullet	\bullet	-	\bullet	-	-	-

Standard Stroke

Bore (mm)	Standard stroke (mm)	Long stroke (mm)
$\mathbf{2 0}$	$25,50,75,100$, $125,150,200$	201 to 350
$\mathbf{2 5}$	$25,50,75,100$,	301 to 400
$\mathbf{3 2}$	$125,150,200$, $\mathbf{4 0}$ $\mathbf{2 5 0 , 3 0 0}$	301 to 450
		301 to 800

* Intermediate strokes are available.

Minimum Strokes for Auto Switch Mounting
Due to the space requirements for installing auto switches, the minimum cylinder strokes are as shown in the table below.

Model	Number of auto switches	
	1	2
D-B5/B6 D-C7/C8 D-H7	10 mm	15 mm
D-G5/K5		
D-B59W	15 mm	20 mm
D-H7LF	10 mm	20 mm

Rod Boot Material

Symbol	Material	Max. ambient temp.
\mathbf{J}	Nylon tarpaulin	$60^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}^{*}$
* Max. ambient temperature for rod boot		

Fine Lock Cylinder/Double Acting Single Rod Series CLG1

With Mounting Bracket

Foot/CLG1LN

Foot

Bore (mm)	BZ	M	W	X	Y	LC	LD	LH	LS	LT	LX	LZ	Without rod boot ZZ	With boot
$\mathbf{2 0}$	63.5	3	10	15	7	4	6	25	117	3	50	62	182	202
$\mathbf{2 5}$	74.5	3.5	10	15	7	4	6	28	127	3	57	70	197.5	219.5
$\mathbf{3 2}$	74.5	3.5	10	16	8	4	6.6	28	128	3	60	74	200.5	222.5
$\mathbf{4 0}$	83	4	10	16.5	8.5	4	6.6	33	142	3	68	84	226	246

*Refer to p. $3.1-30$ for long strok dimensions.
*Refer to p.3.1-30 for long stroke dimensions.

Front flange/CLG1FN
Rear flange/CLG1GN

Front flange

Bore $(\mathbf{m m})$	B	BZ	FD	FT	FX	FY	FZ
$\mathbf{2 0}$	38	57.5	5.5	6	52	25	65
$\mathbf{2 5}$	45	69	5.5	7	60	30	75
$\mathbf{3 2}$	45	69	6.6	7	60	30	75
$\mathbf{4 0}$	52	76	6.6	8	66	36	82

*Refer to p.3.1-30 for long stroke dimensions.

Rear flange

Bore (mm)	Without rod boot	With rod boot
	ZZ	ZZ
$\mathbf{2 0}$	182	202
$\mathbf{2 5}$	198	220
$\mathbf{3 2}$	201	223
$\mathbf{4 0}$	227	247

Front trunnion

Bore	BZ	TDe8	TE	TF	TH	TR	TS	TT	TV	TW	TX	TY	TZ	Without rod boot	$\begin{gathered} \text { With } \\ \text { rod boot } \end{gathered}$
														Z	Z
20	69.5	$8{ }_{-0.047}^{-0.025}$	10	5.5	31	51	40	3.2	47.8	42	26	28	59.6	46	66
25	83.5	$10^{-0.0025}$	10	5.5	37	58	47	3.2	54.8	42	28	28	68	51	73
32	85	$12^{-0.059}$	10	6.6	38.5	62.5	47	4.5	57.4	48	28	28	75.7	51	73
40	92.5	$14^{-0.0059}$	10	6.6	42.5	72.5	54	4.5	65.4	56	36	30	85.7	62	82

CL MLGC CNA

Clevis/CLG1DN

Clevis

Series CLG1

With Air Cushion/Basic: CLG1BA
*Refer to p.3.1-29 for mounting bracket since dimensions except GA, P, WA, WB, WH, WW, W θ are same.

With rod boot

Bore (mm)	Stroke range	AL	A	B1	BC	BN	BZ	C	D	E	GA	GB	GC	GD	GK	GL	GQ	GR	1	J	K	KA	MM	NA
20	to 200	15.5	18	13	38	91	57.5	14	8	12	85	10	19	54	3.5	5.5	4	4	26	M4 $\times 0.7$ depth 7	5	6	M8 X 1.25	24
25	to 300	19.5	22	17	45	101	69	16.5	10	14	95	10	20	62	4	9	7	7	31	M5 $\times 0.8$ depth 5	5.5	8	M10 X 1.25	29
32	to 300	19.5	22	17	45	102	69	20	12	18	95	10	21	62	4	9	7	7	38	M5 $\times 0.8$ depth 8	5.5	10	M10 X 1.25	35.5
40	to 300	27	30	19	52	111	76	26	16	25	103	10	23	67	4	11	8	8	47	M6 X 1 depth 12	6	14	M14 X 1.5	44

Bore (mm)	Stroke range	H1	P	PG	PH	PL	PW	S	TA	TB	TC	WA	WW	WB	WH	W θ	Without rod boot		With rod boot				
																	H	ZZ	e	f	h	ℓ	ZZ
20	to 200	5	M5 X 0.8	33	19.5	20	38	141	11	11	M5 X 0.8	86	5.5	15	23	30°	35	178	30	16	55		198
25	to 300	6	M5 X 0.8	38	24	24	41	151	11	11	M6 X 0.75	96	7	15	25	30°	40	193	30	17	62	0.25	215
32	to 300	6	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	39	24	24	41	154	11	10	M8 X 1	97	7	15	28.5	25°	40	196	35	17	62	Stro	218
40	to 300	8	$\mathrm{Rc}(\mathrm{PT})^{1 / 8}$	44	24	24	41	169	12	10	M10 X 1.25	105.5	9	15	33	20°	50	221	35	17	70		241

Long stroke/Refer to p.3.1-28 and 3.1-29 for mounting dimensions except table below.

Basic

Foot

Front flange

Bore $(\mathbf{m m})$	Stroke range	GB	S	Wor rod boot	W/ rod boot	TB	WB
$\mathbf{2 0}$	201 to 350	12	149	186	206	11	16
$\mathbf{2 5}$	301 to 400	12	159	201	223	11	16
$\mathbf{3 2}$	301 to 450	12	162	204	226	11	16
$\mathbf{4 0}$	301 to 800	13	178	230	250	12	16

Bore $(\mathbf{m m})$	Stroke range	GB	S	LS	W/o rod boot	W/ rod boot
	201 to 350	12	149	125	ZZ	ZZ
$\mathbf{2 0}$	201 to 400	210				
$\mathbf{2 5}$	301 to 400	12	159	135	205.5	227.5
$\mathbf{3 2}$	301 to 450	12	162	136	208.5	230.5
$\mathbf{4 0}$	301 to 800	13	178	151	235	255

Bore (mm)	Stroke range	GB	S	Wo rod boot $W /$ rod boot	
	201 to 350	12	149	186	206
$\mathbf{2 0}$	20	ZZ			
$\mathbf{2 5}$	301 to 400	12	159	201	223
$\mathbf{3 2}$	301 to 450	12	162	204	226
$\mathbf{4 0}$	301 to 800	13	178	230	250

Series CLG1

Accessory Dimensions

Single Knuckle Joint

I-G02, G03
Material: Rolled steel

I-G04

Material: Casting steel

art No.	Tube dia. (mm)	A	A_{1}	E1	L1	MM	${ }^{\mathrm{R}} \mathrm{R}_{1}$	U_{1}	NDн10	NX
I-G02	20	34	8.5	16	25	M8	10.3	11.5	$8{ }^{+0.058}$	
I-G03	25, 32	41	10.5	$\square 20$	30	M1	12.8	14	$10^{+0.058}$	10-0.4
									$10^{+0.055}$	

Front Side Pivot Bracket
O20 to $\boldsymbol{0} \mathbf{4 0}$
Material: Rolled steel

Double Knuckle Joint (*Knuckle pin and snap ring are packed.)
Y-G02, G03 Y-G04
Material: Rolled steel oNDH10(Hole da)

Material: Casting steel

Part No.	$\begin{array}{c}\text { Tube dia. } \\ (\mathrm{mm})\end{array}$	A	A_{1}	E_{1}	$\mathrm{~L}_{1}$	MM	${ }^{\mathrm{R}} \mathrm{R}_{1}$	U_{1}	NDH10	NX	NZ	L	$\begin{array}{c}\text { Pin } \\ \text { part no. }\end{array}$
Y-G02	20	34	8.5	$\square 16$	25	M8X.25	10.3	11.5	$8^{+0.0 .058}$	$8_{+0.2}^{+0.4}$	16	21	IY-G02
Y-G03	25,32	41	10.5	$\square 20$	30	M10X 1.25	12.8	14	$10_{0}^{+0.058}$	$10_{+0.2}^{+0.2}$	20	25.6	Y-G03
Y-G04	40	42	16	$\varnothing 22$	30	M14X1.5	12	14	$10_{0}^{+0.058}$	$18_{+0.3}^{+0.5}$	36	41.6	IY-G04

Rear Side Pivot Bracket

Part No.	Tube dia. (mm)	TB	Td	TE	TF	TH	TN
CG-020-24A	20	36	8	10	5.5	25	(29.3)
CG-025-24A	25	43	10	10	5.5	30	(33.1)
CG-032-24A	32	50	12	10	6.6	35	(40.4)
CG-040-24A	40	58	14	10	6.6	40	(49.2)

Part No.	Tube dia.(mm)	TR	TT	TU	TV	TW	TX	TY	TZ
CG-020-24A	20	13	3.2	18.1	35.8	42	16	28	38.3
CG-025-24A	25	15	3.2	20.7	39.8	42	20	28	42.1
CG-032-24A	32	17	4.5	23.6	49.4	48	22	28	53.8
CG-040-24A	40	21	4.5	27.3	58.4	56	30	30	64.6

Knuckle Pin
Material: Carbon steel

Part No.	Tube dia. (mm)	Dd9	L	d	e	m	t	$\begin{array}{\|c} \hline \begin{array}{c} \text { Used snap } \\ \text { ring } \end{array} \\ \hline \end{array}$
IY-G02	20	$8_{-0.076}^{-0.040}$	21	7.6	16.2	1.5	0.9	C shape 8 for axis
IY-G03	25, 32	$10_{-0.076}^{-0.040}$	25.6	9.6	20.21	1.55	1.15	C shape 10 for axis
IY-G04	40	$10^{-0.040}$	41.6	9.6	36.21	55	1.15	C shape 10 for axis

Clevis Pin

Material: Carbon steel

Part No.	Tuia. (mm)	Dd9	L	d	e	m	t	Used snap ring
CD-G02	20	$8_{-0.076}^{-0.040}$	43.4	7.6	38.6	1.5	0.9	C shape 8 for axis
CD-G25	25	$10_{-0.076}^{-0.040}$	48	9.6	42.6	1.55	1.15	C shape 10
for axis								

Rod End Nut
Material: Carbon steel

Part No.	Tube dia. (mm)	B	C	D	d	H
NT-02	20	13	15.0	12.5	M8 X 1.25	5
NT-03	25,32	17	19.6	16.5	M10 X 1.25	6
NT-G04	40	19	21.9	18	M14 X 1.5	8

Fine Lock Cylinder/Double Acting Single Rod Series CLG1

Construction

CL
MLGC
CNA
With air cushion

Component Parts

No.	Description	Material	Note
(1)	Rod cover	Aluminum alloy	White hard anodized
(2)	Tube cover	Aluminum alloy	White hard anodized
(3)	Cover	Carbon steel	Nitrided, chrome plated
(4)	Middle cover	Aluminum alloy	White hard anodized
(5)	Piston rod	Carbon steel*	Hard chrome plated
(6)	Piston	Aluminum alloy	Chromated, Hard anodized (With air cushion)
(7)	Brake piston	Carbon steel	Nitrided
(8)	Brake arm	Carbon steel	Nitrided
(9)	Brake shoe	Special friction material	
(10)	Roller	Carbon steel	Nitrided
(11)	Pin	Carbon steel	Heat treated
(12)	Snap ring	Carbon tool steel	Nickel plated
(13)	Brake spring	Spring steel wire	Dacrodized
(14)	Bushing	Oil impregnated sintered alloy	
(15)	Bushing	Oil impregnated sintered alloy	
(16)	Manual lock release cam	Chrome molybdrenum steel	Nickel plated
(17)	Cam guide	Carbon steel	Nitrided, coated

*In the ø20 and ø25 cylinders with auto switches, the piston rod is made of stainless steel.

Component Parts

No.	Description	Material
(41)	Piston seal	NBR
(42)	Rod seal A	NBR
(43)	Rod seal B	NBR
(44)	Brake piston seal	NBR
(45)	Middle cover gasket	NBR
(46)	Cam gasket	NBR
(47)	Cushion seal A	NBR
(48)	Cushion seal B	NBR
(49)	Piston gasket	NBR
(50)	Cushion ring gasket A	NBR
(51)	Cushion ring gasket B	NBR
(5)	Valve seal A	NBR
(53)	Valve seal B	NBR
(54)	Gasket for valve retainer	NBR
(55)	Cylinder tube gasket	NBR

[^2]
Fine Lock Cylinder/Double Acting Single Rod Series CLA
 ø40, ø50, ø63, ø80, ø100

How to order

Series CLA

Provided with a compact

 locking mechanism，it is suitable for intermediate stops，for emergency stops， and for drop prevention．

\triangle Caution

Recommended Pneumatic CircuitCaution on Handling
「Refer to p．3．1－2 to 3．1－5 for details of
ICLA series specifications mentioned above．I

Style

Series	Style	Action	Bore size（mm）	Lock style
CLA $\square \mathbf{N}$	Non－lube style	Double acting	$40,50,63,80,100$	Spring lock， Pneumatic lock， Spring and pneumatic lock
$\mathbf{C L A} \square \mathbf{H}$	Air－hydro style			

Specifications

Style	Non－lube	Air－hydro
Fluid	Air	Turbine oil（Lock portion is air）
Proof pressure	1.5 MPa	
Max．operating pressure	1．0MPa	
Min．operating pressure	0.08 MPa	0.2 MPa
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}^{*}$	15 to $300 \mathrm{~mm} / \mathrm{s}^{*}$
Ambient and fluid temperature	Without auto switch： With auto switch：-10	$\begin{aligned} & { }^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \text { (No freezing) } \\ & \text { to } 60^{\circ} \mathrm{C} \end{aligned}$
Cushion	Air cushion	None
Thread tolerance	JIS class 2	
Stroke length tolerance	to 250：${ }_{0}^{+1.0}, 251$ to 1000：${ }_{0}^{+1.4}, 1001$ to $1500:{ }_{0}^{+1.8}$	
Mounting	Basic，Axial direction foot，Front flange，Rear flange， Single clevis，Double clevis，Center trunnion	

Lock Specifications

Lock	Spring lock （Exhaust lock）	Spring／ pneumatic lock	Pneumatic lock （Pressurized lock）
Lock release pressure（MPa）	0.3 or more		0.1 or more
Lock starting pressure（MPa）	0.25 or less		
Max．operating pressure (MPa)	0.5		
Lock direction	Both directions		

Standard Stroke

Bore size（mm）	Standard stroke（mm）	Max．stroke
$\mathbf{4 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500$	800
$\mathbf{5 0}, \mathbf{6 3}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600$	1200
$\mathbf{8 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600,700$	1400
$\mathbf{1 0 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600,700$	1500

Note）Intermediate stroke except stroke mentioned above is also available．Contact SMC．

Minimum Strokes for Auto Switch Mounting

Refer to p．1．9－4 because it is same as air cylinder CDA1 series（Standard／Double acting：
Single Rod）style．

Rod Boot Material

Symbol	Material	Max．ambient temp．
\mathbf{J}	Nylon tarpaulin	$60^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}^{*}$

＊Maximum ambient temperature for the rod boot itself．

Auto Switch Mounting Bracket Part No．

Auto switch model	Bore size				
	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
D－A5／A6／A59W D－F5■／J5 $\square / F 5 W \square / J 59 W ~$ D－F5NT，F5BA，F59F	BT－04	BT－04	BT－06	BT－08	BT－08
D－A3／A44／G39／K39	BD1－04M	BD1－05M	BD1－06M	BD1－08M	BD1－10M
D－B5／B6／B59W D－G5 $\square / K 59 / G 5 . W W / K 59 W ~$ D－G5BA／G59F／G5NTL	BA－04	BA－05	BA－06	BA－08	BA－10
D－A3 \square C／A44C／G39C／K39C	BA3－040	BA3－050	BA3－063	BA3－080	BA3－100

＊Mounting brackets are provided with D－A3■C，A44C，G39C，and K39C．
When ordering，indicate as described below，in accordance with the cylinder size．
Example）ø40－D－A3ロC－4，ø50－D－A3 CC－5，ø63－D－A3ロC－6，
ø80－D－A3■C－8，$\varnothing 100-D-A 3 \square C-10$
To order the mounting brackets separately，use the part number shown above．

Fine Lock Cylinder/Double Acting Single Rod Series CLA

Weight/(): Value at steel tubing

Bore size (mm)			40	50	63	80	100
Basic weight	Basic		$\begin{gathered} 1.82 \\ (1.87) \end{gathered}$	$\begin{array}{r} 2.79 \\ (2.83) \end{array}$	$\begin{gathered} 4.41 \\ (4.45) \end{gathered}$	$\begin{gathered} 7.20 \\ (7.36) \end{gathered}$	$\begin{array}{r} 10.29 \\ (10.50) \end{array}$
	Foot		$\begin{array}{r} 2.01 \\ (2.06) \\ \hline \end{array}$	$\begin{array}{r} 3.01 \\ (3.05) \\ \hline \end{array}$	$\begin{array}{r} 4.75 \\ (4.79) \\ \hline \end{array}$	$\begin{array}{r} 7.87 \\ (8.03) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11.28 \\ \text { (11.49) } \\ \hline \end{array}$
	Flange		$\begin{array}{r} 2.19 \\ (2.24) \\ \hline \end{array}$	$\begin{array}{r} 3.24 \\ (3.28) \\ \hline \end{array}$	$\begin{array}{r} 5.20 \\ (5.24) \\ \hline \end{array}$	$\begin{array}{r} 8.65 \\ (8.81) \\ \hline \end{array}$	$\begin{array}{r} 12.21 \\ (12.42) \\ \hline \end{array}$
	Single clevis		$\begin{aligned} & 2.05 \\ & (2.10) \\ & \hline \end{aligned}$	$\begin{array}{r} 3.13 \\ (3.17) \\ \hline \end{array}$	$\begin{array}{r} 5.04 \\ (5.08) \\ \hline \end{array}$	$\begin{array}{r} 8.31 \\ (8.47) \\ \hline \end{array}$	$\begin{array}{r} 12.07 \\ (12.28) \\ \hline \end{array}$
	Double clevis		$\begin{array}{r} 2.09 \\ (2.14) \\ \hline \end{array}$	$\begin{array}{r} 3.22 \\ (3.26) \\ \hline \end{array}$	$\begin{array}{r} 5.20 \\ (5.24) \\ \hline \end{array}$	$\begin{array}{r} 8.60 \\ (8.76) \\ \hline \end{array}$	$\begin{array}{r} 12.59 \\ (12.80) \\ \hline \end{array}$
	Trunnion		$\begin{aligned} & 2.27 \\ & (2.37) \end{aligned}$	$\begin{gathered} 3.32 \\ (3.42) \end{gathered}$	$\begin{array}{r} 5.30 \\ (5.50) \end{array}$	$\begin{array}{r} 8.90 \\ (9.19) \end{array}$	$\begin{array}{r} 12.69 \\ (13.08) \end{array}$
Additional weight per 50 mm stroke	Aluminum tubing	All brackets	0.22	0.28	0.37	0.52	0.65
	Steel tubing	Mounting bracket except trunnion	0.28	0.35	0.43	0.70	0.87
		Trunnion	0.36	0.46	0.65	0.86	1.07
Accessory	Single knuckle joint		0.23	0.26	0.26	0.60	0.83
	Double knuckle joint		0.32	0.38	0.38	0.73	1.08
	Knuckle pin		0.05	0.05	0.05	0.14	0.19

\ Caution/Allowable Kinetic Energy when Locking | Bore size (mm) | $\mathbf{4 0}$ | $\mathbf{5 0}$ | $\mathbf{6 3}$ | $\mathbf{8 0}$ | $\mathbf{1 0 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Allowable kinetic energy J | 1.42 | 2.21 | 3.53 | 5.69 | 8.83 |

(1) In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5 MPa , and a piston speed of $300 \mathrm{~mm} / \mathrm{sec}$. Therefore, if the operating conditions are below these values, calculations are unnecessary.
(2) Apply the following formula to obtain the kinetic energy of the load.
$\mathrm{Ek}=\frac{1}{2} \mathrm{mv}$ 2 m : Load kinetic energy (J)
$k=\frac{1}{2} m v^{2} \mathrm{~m}$: Load weight (kg)
(3) The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of the load, use 1.2 times the average speed as a guide.
(4) The relationship between the speed and the load of the respective tube bores is indicated in the diagram below. Use the cylinder in the range below the line.
(5) During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Fine Lock Cylinder with Auto Switch

Refer to p.1.9-4 for auto switch setting position and mounting height since it is same as air cylinder CDA1 series (Double acting single rod) style.

Stopping Accuracy (Not including tolerance of control system.) Unit: mm

Lock style	Piston speed (mm/sec)			
	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	$\mathbf{5 0 0}$
Spring lock	± 0.4	± 0.5	± 1.0	± 2.0
Pneumatic lock Spring and pneumatic lock	± 0.2	± 0.3	± 0.5	± 1.5

Condition/load: 25% of thrust force at 0.5 MPa
Solenoid valve: mounted to the lock port

Holding Force of Spring Lock (Max. static load)					
Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Holding force N	882	1370	2160	3430	5390

Note) Holding force at piston rod retracted side decreases approx. 15\%.

Holding Force of Pneumatic Lock

Holding Force of Spring and Pneumatic Lock

\triangle Caution

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
- Do not use the cylinder in the locked state to sustain a load that involves impact.
3.1-35

Air-hydro style

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Black coated atter hard anodized
(2)	Head cover	Aluminum alloy	Black coated
(3)	Cover	Aluminum alloy	Black coated atter hard anodized
4	Cylinder tube	Aluminum alloy	Hard anodized
(5)	Piston rod	Carbon steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
(7)	Brake piston	Carbon steel	Nitrided
8	Brake arm	Carbon steel	Nitrided
9	Arm holder	Carbon steel	Nitrided
(10)	Brake shoe holder	Nitrided	
(11)	Brake shoe	Chrome molybdenum steel	Nitrided
(12)	Roller	Chrome bearing steel	Heat treated
(13)	Pin	Carbon tool steel	Nickel plated
(14)	Snap ring	Steel wire	Dacrodized
(15)	Brake spring	Rolled steel	Zinc chromated
(16)	Retainer	Rolled steel	Zinc chromated
(17)	Cushion ring A	Rolled steel	Zinc chromated
(18)	Cushion ring B	Lead bronze casting	
(19)	Bushing	Lead bronze casting	
(20)	Bushing	Rolled steel	Electroless nickel plated
(21)	Cushion valve	Carbon steel	Chromated
(22)	Tie rod	Carbon steel	Chromated
(23)	Unit fixing tie rod		

No.	Description	Material	Note
(24)	Piston nut	Rolled steel	Zinc chromated
(25)	Non rotating pin	Carbon steel	Induction hardening
(26)	Pin guide	Carbon steel	Black coated after nitrided
(27)	Hex. socket head pulg	Chrome molybdenum steel	Black zinc chromated
(28)	Elememnt	Bronze	
(29)	Tie rod nut	Rolled steel	Black zinc chromated
(30)	Lock nut	Rolled steel	Nickel plated
(31)	Hex. socket head cap screw	Chrome molybdenum steel	Black zinc chromated
(32)	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
(33)	Spring seat	Steel wire	Black zinc chromated
(34)	Spring seat	Steel wire	Black zinc chromated
(35)	Spring seat	Steel wire	Black zinc chromated
(36)	Spring seat	Steel wire	Black zinc chromated
(37)	Spring seat	Steel wire	Zinc chromated
(38)	Wearing	Resin	
(39)	Exhaust valve	Chrome molybdenum steel	
(40)	Check ball	Chrome bearing steel	

Component Parts

No.	Description	Material
(41)	Piston seal	NBR
(42)	Rod seal A	NBR
(43)	Rod seal B	NBR
(44)	Brake piston seal	NBR
(45)	Cushion seal	NBR
(46)	Piston gasket	NBR
(47)	Tube gasket	NBR
(48)	Cushion valve seal	NBR
(49)	Rod seal C	NBR

Note) Contact SMC if the fine lock unit must be disassembled.

With rod boot

Bore (mm)	Stroke range (mm)		A	AL	B	B1	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GR	H1	J
	Without rod boot	With rod boot																			
40	to 500	20 to 500	30	27	60	22	96	1/4	1/4	44	16	32	10	85	15	26	54	10	10	8	M8 X 1.25
50	to 600	20 to 600	35	32	70	27	108	1/4	1/4	52	20	40	10	95	17	27	59	13	12	11	M8 X 1.25
63	to 600	20 to 600	35	32	86	27	115	1/4	1/4	64	20	40	10	102	17	26	67	18	15	11	M10X1.25
80	to 750	20 to 750	40	37	102	32	129	1/4	1/4	78	25	52	14	113	21	30	72	23	17	13	M12X1.75
100	to 750	20 to 750	40	37	116	41	140	1/4	1/4	92	30	52	14	124	21	31	76	25	19	16	M12X 1.75

Bore (mm)	K	KA	LZ	M	MM	N	P	PG	PH	PL	PW	S	W	Without rod boot		With rod boot				
														H	ZZ	e	f	h	ℓ	ZZ
40	6	14	71	11	M14 X 1.5	27	1/4	42	11	20	45	153	8	51	215	43	11.2	59	1/4 Stroke	223
50	7	18	80	11	M18 X 1.5	30	3/8	46	10	21	50	168	0	58	237	52	11.2	66	1/4 Stroke	245
63	7	18	99	14	M18 X 1.5	31	3/8	48.5	13	23	60	182	0	58	254	52	11.2	66	1/4 Stroke	262
80	11	22	117	17	M 22×1.5	37	1/2	55	15	23	70	208	0	71	296	65	12.5	80	1/4 Stroke	305
100	11	26	131	17	M26 X 1.5	40	1/2	56.5	15	25	80	226	0	72	315	65	14	81	1/4 Stroke	324

[^3]| MGP |
| :--- |
| MGQ |
| MGG |

Long stroke
 (ø50 to ø100)

Long stroke

Bore (mm)	Stroke range (mm)	RT	RY
$\mathbf{4 0}$	501 to 800	-	-
$\mathbf{5 0}$	601 to 1000	-	-
	1001 to 1200	30	76
$\mathbf{6 3}$	601 to 1000	-	-
	1001 to 1200	40	92
$\mathbf{8 0}$	751 to 1000	-	-
$\mathbf{1 0 0 0}$ to 1400	45	112	
	751 to 1000	-	-
	1001 to 1500	50	136

Bore (mm)	Stroke range (mm)				A		AL		B	B1	BN	BP	BQ	C	D	E		F	GA	GB	GC	GD	GL	GR		
	Withou	ut rod boot With	th rod boo																							
40	to 500		20 to 500		30				27		60	22	96	1/4	1/4	44		32		10	85	15	26	54	10	10
50	to 600		20 to 600		35		32		70	27	108	1/4	1/4	52.20		40		10	95	17	27	59	13	12		
63	to 600		20 to 600		35		32		86	27	115	1/4	1/4	64		40		10	102	17	26	67	18	15		
80	to 750		20 to 750		40		37		102	32	129	1/4	1/4	78 25		52		14	113	21	30	72	23	17		
100	to 750		20 to 750		40		37		116	41	140	1/4	1/4	9230	30	52		14	124	21	31	76	25	19		
Bore (mm)	H_{1}	J	K	KA		LD		LH	LS	LT	LX	LY	LZ	MM	N		P	PG	PH	PL	PW	S	W	X		
40	8	M8 X 1.25	6	14		9		40	207	3.2	42	70	81	M14 X 1.5	27		1/4	42	11	20	45	153	8	27		
50	11	M8 X 1.25	7	18		9		45	222	3.2	50	80	90	M18 X 1.5	30		3/8	46	10	21	50	168	0	27		
63	11	M10 X 1.25	7	18		11.5		50	250	3.2	59	93	106	M18 X 1.5	31		3/8	48.5	13	23	60	182	0	34		
80	13	M12 X 1.75	11	22		13.5		65	296	4.5	76	116	131	M22 X 1.5	37		1/2	55	15	23	70	208	0	44		
100	16	M12 X 1.75	11	26		13.5		75	312	6	92	133	148	M26 X 1.5	40		1/2	56.5	15	25	80	226	0	43		

Bore (mm)	Y	Without rod boot								With rod boot					
		H	ZZ	e	f	h	\boldsymbol{e}	ZZ							
$\mathbf{4 0}$	13	51	244	43	11.2	59	$1 / 4$ Stroke	252							
$\mathbf{5 0}$	13	58	266	52	11.2	66	$1 / 4$ Stroke	274							
$\mathbf{6 3}$	16	58	290	52	11.2	66	$1 / 4$ Stroke	298							
$\mathbf{8 0}$	16	71	339	65	12.5	80	$1 / 4$ Stroke	348							
$\mathbf{1 0 0}$	17	72	358	65	14.0	81	$1 / 4$ Stroke	367							

[^4]

Bore (mm)	Stroke range (mm)		A	AL	B	B1	BF	BN	BP	BQ	C	D	E	F	FV	FD	FT	FX	FY	FZ	G	GB	GC	GD	GL
	W/o rod boot	W/ rod boot																							
40	to 500	20 to 500	30	27	60	22	71	96	1/4	1/4	44	16	32	10	60	9	12	80	42	100	85	15	26	54	10
50	to 600	20 to 600	35	32	70	27	81	108	$1 / 4$	1/4	52	20	40	10	70	9	12	90	50	110	95	17	27	59	13
63	to 600	20 to 600	35	32	86	27	101	115	$1 / 4$	1/4	64	20	40	10	86	11.5	15	105	59	130	102	17	26	67	18
80	to 750	20 to 750	40	37	102	32	119	129	1/4	1/4	78	25	52	14	102	13.5	18	130	76	160	113	21	30	72	23
100	to 750	20 to 750	40	37	116	41	133	140	1/4	1/4	92	30	52	14	116	13.5	18	150	92	180	124	21	31	76	25

Bore (mm)	GR	H_{1}	J	K	KA	LY	MM	N	P	PG	PH	PL	PW	S	W	W/o rod boot		W/ rod boot				
																H	ZZ	e	f	h	ℓ	ZZ
40	10	8	M8 X 1.25	6	14	76.5	M14 X 1.5	27	1/4	42	11	20	45	153	8	51	216	43	11.2	59	1/4 Stroke	224
50	12	11	M8 X 1.25	7	18	85.5	M18 X 1.5	30	3/8	46	10	21	50	168	0	58	238	52	11.2	66	1/4 Stroke	246
63	15	11	M10 X 1.25	7	18	106.5	M18 X 1.5	31	3/8	48.5	13	23	60	182	0	58	255	52	11.2	66	1/4 Stroke	263
80	17	13	M12 X 1.75	11	22	125.5	M22 X 1.5	37	1/2	55	15	23	70	208	0	71	297	65	12.5	80	1/4 Stroke	306
100	19	16	M12 X 1.75	11	26	139.5	M26 x 1.5	40	1/2	56.5	15	25	80	226	0	72	316	65	14.0	81	1/4 Stroke	325

Single Clevis/CLAC

CLAC40….....SCLA40, \#5 (\#1+\#5+\#11) CLAC80.........SCLA80, \#5 (\#1+\#5+\#11) CLAC50……SCLA50, \#5 (\#1+\#5+\#11) CLAC100…....SCLA100, \#5 (\#1+\#5+\#11)

Series CLA

Accessory Dimensions

I type single knuckle joint

Material: Sulfur free-cutting steel

Part No.	Tube I.D. (mm)	A	A_{1}	$\varnothing \mathrm{E}_{1}$	$\mathrm{~L}_{1}$	MM	R_{1}	U_{1}	$\varnothing \mathrm{ND}^{H 10}$	NX
$\mathbf{I - 0 4}$	$\mathbf{4 0}$	69	22	24	55	$\mathrm{M} 14 \times 1.515 .5$	20	$12_{0}^{+0.070}$	$16_{-0.3}^{-0.1}$	
$\mathbf{I - 0 5}$	$\mathbf{5 0} / \mathbf{6 3}$	74	27	28	60	$\mathrm{M} 18 \times 1.5$	15.5	20	$12_{0}^{+0.070}$	$16_{-0.3}^{-0.1}$
$\mathbf{I}-\mathbf{0 8}$	$\mathbf{8 0}$	91	37	36	71	$\mathrm{M} 22 \times 1.5$	22.5	26	$18^{+0.070}$	$28_{-0.3}^{-0.1}$
$\mathbf{l - 1 0}$	$\mathbf{1 0 0}$	105	37	40	83	$\mathrm{M} 26 \times 1.5$	24.5	28	$20_{0}^{+0.084}$	$30_{-0.0}^{-0.1}$

Clevis pin/Knuckle pin

Material: Carbon steel

Part No.	Tube I.D.		Dd9	L	ℓ	m	$\begin{array}{\|c} \hline \text { d } \\ \text { Cut } \\ \text { through } \end{array}$	$\begin{aligned} & \text { Used } \\ & \text { cotter } \\ & \text { pin } \end{aligned}$	$\begin{gathered} \text { Used } \\ \text { flat } \\ \text { washer } \end{gathered}$
	Clevis	Knuckle							
CDP-2A	40	-	$10{ }_{-0.076}^{-0.040}$	46	38	4	3	$63 \times 18 \ell$	"MIGAKMARU"
CDP-3A	50	40/50/63	$12{ }_{-0.093}^{-0.050}$	55.5	47.5	4	3	${ }_{6} 6 \times 18 \ell$	"MGAKIMARU"
CDP-4A	63	-	$16^{-0.0093}$	71	61	5	4	¢4X25	"MGAKIMARU"
CDP-5A	-	80	$18{ }_{-0.093}^{-0.050}$	76.5	66.5	5	4	$04 \times 25 \ell$	"MIGAKIMARU"
CDP-6A	80	100	$20{ }_{-0.117}^{-0.065}$	83	73	5	4	¢4 X 30ℓ	"MGAKKIMAR
CDP-7A	100	-	$25^{-0.0 .065}$	88	78	5	4	¢ $6 \times 36 \ell$	

Y type double knuckle joint * Knuckle pin, cotter pin and flat washer are packed.

Rod end nut

Material: Rolled steel

Part No.	Tube I.D. (mm)	d	H	B	C	D
NT-04	$\mathbf{4 0}$	$\mathrm{M} 14 \times 1.5$	8	22	25.4	21
NT-05	$\mathbf{5 0} / 63$	$\mathrm{M} 18 \times 1.5$	11	27	31.2	26
NT-08	$\mathbf{8 0}$	$\mathrm{M} 22 \times 1.5$	13	32	37.0	31
NT-10	$\mathbf{1 0 0}$	$\mathrm{M} 26 \times 1.5$	16	41	47.3	39

\triangle Caution

Caution on Handling

(1) After mounting and adjusting, follow the procedures for changing the lock to the locked state shown on p.3.1-5. Rotate the pin, and put the cylinder into the locked state before using.
(2) Precautions for using the basic body or replacing the support bracket:
The lock unit and the cylinder rod cover are assembled as shown in the diagram below. Therefore, unlike the ordinary air cylinder that uses the basic type, it is not possible to mount it directly by screwing the cylinder tie rods into a machine. Furthermore, the tie rods for securing the unit could become loosened when the support bracket is replaced. If this occurs, make sure to retighten the tie rods.
Use a socket wrench when replacing the support bracket or to retighten the tie rods for securing the unit.

Bore (mm)	Mounting bracket nut			Unit fixing tie rod	
	Used nut	Width across flats	Used socket	Width across flats	Used socket
$\mathbf{4 0}$	JIS B1181 Class 3				
M8 X 1.25					

Fine Lock Cylinder/Double Acting Double Rod Series CLAW
 Non-lube Style/ø40, ø50, ø63, ø80, ø100

How to Order

[^5]
Series CLAW

Provided with a compact
locking mechanism, it is
suitable for intermediate
stops, for emergency stops,
and for drop prevention.

\triangle Caution

Recommended Pneumatic CircuitCaution on Handling

FRefer to p.3.1-2 to 3.1-5 for CLA series I

Ispecifications.

Specifications

Bore size (mm)	40	50	63	80	100
Action	Double acting double rod				
Lock action	Spring lock, Pneumatic lock, Spring and pneumatic lock				
Style	Non-lube				
Proof pressure	1.5 MPa				
Max. operating pressure	1.0MPa				
Min. operating pressure	0.1 MPa				
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{sec}^{*}$				
Ambient and fluid temperature	Without auto switch: $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (No freezing) With auto switch: $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$				
Cushion	Air cushion				
Thread tolerance	JIS class 2				
Stroke length tolerance	to 250: ${ }_{0}^{+1.0}, 251$ to 750: ${ }_{0}^{+1.4}$				
Mounting	Basic, Foot, Flange, Center trunnion				

*Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked.

Lock Specifications

Lock style	Spring lock (Exhaust lock)	Spring/ pneumatic lock	Pneumatic lock (Pressurized lock)
Lock release pressure (MPa)	0.3 or more		0.1 or more
Lock starting pressure (MPa)	0.25 or less		
Max. operating pressure (MPa)	0.5		
Lock direction	Both directions		

Accessories/Refer to p.3.1-42 for details.

Mounting		Basic	Foot	Flange	Center trunnion
Standard	Rod end nut	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Option	Single knuckle joint	\bigcirc	-	\bigcirc	\bigcirc
	Double knuckle joint (with pin)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Rod boot	-	-	\bigcirc	\bigcirc

* Dimensions are same as CLA series (standard). Refer to p.3.1-42.

Standard Stroke
(mm)

Bore size (mm)	Standard stroke (mm)
$\mathbf{4 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500$
$\mathbf{5 0 , 6 3}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600$
$\mathbf{8 0}, \mathbf{1 0 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600,700$

Note) Intermediate strokes are also available. Contact SMC.

Minimum Strokes for Auto Switch Mounting

Refer to p.1.9-4 for minimum strokes for auto switch mounting because it is same as air cylinder CA1 series (Standard/Double acting: Single rod style).

Fine Lock Cylinder with Auto Switch

Refer to p.1.9-14 for auto switch setting position and mounting height because it is same as air cylinder CDA1 series (Double acting single rod style).

Rod Boot Material

Symbol	Material	Max. ambient temp.
\mathbf{J}	Nylon tarpaulin	$60^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}^{*}$

* Maximum ambient temp. for the rod boot itself.

Auto Switch Mounting Bracket

Refer to p.3.1-46 for auto switch mounting bracket (Band) when auto switch is mounted.

Mounting Bracket

Refer to p.3.1-46 for part no. of mounting bracket except basic style.

Fine Lock Cylinder/Double Acting Double Rod Series CLAW

Weight/ (): Value at steel tubing

Bore size (mm)			40	50	63	80	100
Basic weight	Basic		$\begin{gathered} 1.96 \\ (2.01) \\ \hline \end{gathered}$	$\begin{gathered} 3.02 \\ (3.07) \\ \hline \end{gathered}$	$\begin{gathered} 4.67 \\ (4.71) \\ \hline \end{gathered}$	$\begin{gathered} 7.66 \\ (7.82) \\ \hline \end{gathered}$	$\begin{array}{\|c} 10.99 \\ (11.21) \\ \hline \end{array}$
	Foot		$\begin{gathered} 2.15 \\ (2.20) \end{gathered}$	$\begin{gathered} 3.24 \\ (3.29) \end{gathered}$	$\begin{gathered} 5.01 \\ (5.05) \end{gathered}$	$\begin{gathered} 8.33 \\ (8.49) \end{gathered}$	$\begin{array}{\|c\|} \hline 11.98 \\ (12.20) \end{array}$
	Flange		$\begin{gathered} 2.33 \\ (2.38) \end{gathered}$	$\begin{gathered} 3.49 \\ (3.52) \end{gathered}$	$\begin{gathered} 5.46 \\ (5.50) \end{gathered}$	$\begin{gathered} 9.11 \\ (9.28) \end{gathered}$	$\begin{gathered} 12.91 \\ (13.13) \end{gathered}$
	Trunnion		$\begin{gathered} 2.41 \\ (2.51) \end{gathered}$	$\begin{gathered} 3.55 \\ (3.66) \\ \hline \end{gathered}$	$\begin{gathered} 5.56 \\ (5.76) \\ \hline \end{gathered}$	$\begin{gathered} 9.36 \\ (9.65) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 13.39 \\ (13.78) \end{array}$
Additional weight per 50 mm stroke	Al tubing	All brackets	0.30	0.40	0.50	0.71	0.92
	Steel tubing	Mounting bracket except trunnion	0.35	0.47	0.55	0.89	1.15
		Trunnion	0.44	0.58	0.77	1.06	1.35
Accessory	Single knuckle joint		0.23	0.26	0.26	0.60	0.83
	Double knuckle joint (with pin)		0.37	0.43	0.43	0.87	1.27

Calculation Example: WeightCLAWL40-100-E

- Basic weight....................2.15(Foot, 100stroke)
- Additional weight.............30 0.50 stroke
- Cylinder stroke..........100 stroke
$2.15+0.30 \times 100 / 50=2.75 \mathrm{~kg}$

$2.15+0.30 \times 100 / 50=2.75 \mathrm{~kg}$

\triangle Caution/Allowable Kinetic Energy when Locking

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Allowable kinetic energy J	1.42	2.21	3.53	5.69	8.83

(1) In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5 MPa , and a piston speed of $300 \mathrm{~mm} / \mathrm{sec}$. Therefore, if the operating conditions are below these values, calculations are unnecessary.
(2) Apply the following formula to obtain the kinetic energy of the load.
$\mathrm{k}=\frac{1}{2} \mathrm{mv}^{2}$ Ek: Load kinetic energy (J)
m : Load weight (kg)
v : Piston speed (m / s)
(3) The piston speed will exceed the average speed immediately before locking. To determine the piston speed, use 1.2 times the average speed as a guide.
(4) The relationship between the speed and the load is indicated in the diagram below. Use the cylinder in the range below the line.
(5) During locking, the lock mechanism must sustain the thrust of the cylinder, in addition to absorbing the energy of the load. Therefore, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Stopping Accuracy (Not including tolerance of control system.) Unit: mm

Lock style	Piston speed mm/sec			
	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	$\mathbf{5 0 0}$
Spring lock	± 0.4	± 0.5	± 1.0	± 2.0
Pneumatic lock, Spring and pneumatic lock	± 0.2	± 0.3	± 0.5	± 1.5

Condition/load: 25% of output force at 0.5 MPa
Solenoid valve: mounted to the lock port

Holding Force of Spring Lock (Max. Static Load)

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Holding force N	882	1370	2160	3430	5390

Note) Holding force at piston rod retracted side decreases approx. 15%.
Holding Force of Pneumatic Lock

CVMVG
CXW
CXS
CXT
MX

Holding Force of Spring and Pneumatic Lock
 involve vibrations or impacts, when it is locked without a load. Therefore when normally using the cylinder near the upper limit of the holding force,

\triangle Caution

Cautions when Locking

The holding force is the lock's ability to hold a static load that does not

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
-To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
\bullet Do not use the cylinder in the locked state to sustain a load that involves impact.

Series CLAW

Construction

Component Parts

No.	Description	Material	Note
(1)	Rod cover A	Aluminum alloy	Black coated after hard anodized
(2)	Rod cover B	Aluminum alloy	Black coated
(3)	Cover	Aluminum alloy	Black coated after hard anodized
(4)	Cylinder tube	Aluminum alloy	Hard anodized
(5)	Piston rod A	Carbon steel	Hard chrome plated
(6)	Piston	Aluminum alloy	Chromated
(7)	Brake piston	Carbon steel	Nitrided
(8)	Brake arm	Carbon steel	Nitrided
(9)	Arm holder	Carbon steel	Nitrided
(10)	Brake shoe holder	Carbon steel	Nitrided
(11)	Brake shoe	Special friction material	
(12)	Roller	Chrome molybdenum steel	Nitrided
(13)	Pin	Chrome bearing steel	Heat treated
(14)	Snap ring	Carbon tool steel	Nickel plated
(15)	Brake spring	Steel wire	Dacrodized
(16)	Retainer	Rolled steel	Zinc chromated
(17)	Cushion ring B	Rolled steel	Zinc chromated
(18)	Piston rod B	Carbon steel	Hard chrome plated

No.	Description	Material	Note
(19)	Bushing	Lead bronze casting	
(20)	Bushing	Lead bronze casting	
(21)	Cushion valve	Rolled steel	Electroless nickel plated
(22)	Tie rod	Carbon steel	Chromated
(23)	Unit fixing tie rod	Carbon steel	Chromated
(24)	Non rotating pin	Carbon steel	Induction hardening
(25)	Pin guide	Carbon steel	Black coated after nitrided
(26)	Hex. socket head plug	Chrome molybdenum steel	Black zinc chromated
(27)	Element	Bronze	
(28)	Tie rod nut	Carbon steel	Black zinc chromated
(29)	Lock nut	Carbon steel	Nickel plated
(30)	Hex. socket head cap screw	Chrome molybdenum steel	Black zinc chromated
(31)	Hex. socket head cap screw	Chrome molybdenum steel	Nickel plated
(32)	Spring seat	Steel wire	Black zinc chromated
(33)	Spring seat	Steel wire	Black zinc chromated
(34)	Spring seat	Steel wire	Black zinc chromated
(35)	Spring seat	Steel wire	Black zinc chromated

Component Parts

No.	Description	Material
(36)	Piston seal	NBR
(37)	Rod seal A	NBR
(38)	Rod seal B	NBR
(39)	Brake piston seal	NBR
(40)	Cushion seal	NBR
(41)	Tube gasket	NBR
(42)	Cushion valve seal	NBR
(43)	Piston gasket	NBR

Note) Contact SMC if the fine lock unit must be disassembled.

Mounting Bracket Part No.

Bore (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Foot*	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10
* When ordering foot brackets, 2 2ps. should be ordered for each cylinder.					

Auto Switch Mounting Bracket Part No. (Band Mounting)

Auto switch model	Bore size				
	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
D-A5/A6/A59W D-F5 \square J5 D-F5NTL, F5BAL, F59F	BT-04	BT-04	BT-06	BT-08	BT-08
D-A3/A44/G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M
D-B5/B6/B59W D-G5 $/ K 59 / G 5 ~$ D-G/K5AL/G59F/G5NTL	BA-04	BA-05	BA-06	BA-08	BA-10
D-A3 \square C/A44C/G39C/K39C*	BA3-040	BA3-050	BA3-063	BA3-080	BA3-100

* Mounting brackets are provided with D-A3 \square C, A44C, G39C, and K39C. When ordering, indicate as described below, in accordance with the cylinder size. To order the mounting brackets separately, use the part number shown above.
(Example) $\varnothing 40 / \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-4,50 / \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-5$

$$
\varnothing 63 / D-A 3 \square C-6, \varnothing 80 / D-A 3 \square C-8, \varnothing 100 / D-A 3 \square C-10
$$

[Stainless steel mounting bolt set]
The set of stainless steel mounting screws (with set screw) described below is available and can be used depending on the operating environment. (The mounting
bracket and band for auto switches must be ordered separately, as they are not included.)
BBA1: For D-A5/A6/F5/J5
BBA3: For D-B5/B6/G5/K5
The stainless steel bolts described above are used when the D-F5BAL/G5BAL type
switch is shipped mounted on a cylinder. When the switches are shipped as
individual parts, the BBA1 and BBA3 set are included.

Fine Lock Cylinder/Double Acting Double Rod Seríes CLAM

Basic/CLAWB

Bore (mm)	LH	LS	LT	LX	LY	LZ	MM	N	P	PG	PH	PL	PW	S	W	X	Y	W/o rod boot		W/ rod boot (One side)					(Both sides)
																		H	ZZ	e	f	h	l	ZZ	ZZ
40	40	207	3.2	42	70	81	M14 X 1.5	27	1/4	42	11	20	45	153	8	27	13	51	255	43	11.2	59	1/4 Stroke	263	271
50	45	222	3.2	50	80	90	M18 X 1.5	30	3/8	46	10	21	50	168	0	27	13	58	284	52	11.2	66	1/4 Stroke	292	300
63	50	250	3.2	59	93	106	M18 X 1.5	31	3/8	48.5	13	23	60	182	0	34	16	58	298	52	11.2	66	1/4 Stroke	306	314
80	65	296	4.5	76	116	131	M 22×1.5	37	1/2	55	15	23	70	208	0	44	16	71	350	65	12.5	80	1/4 Stroke	359	368
100	75	312	6	92	133	148	M26 X 1.5	40	$1 / 2$	56.5	15	25	80	226	0	43	17	72	370	65	14.0	81	1/4 Stroke	379	388

Series CLAW

Flange/CLAWF

Trunnion/CLAWT

One side rod boot

Bore (mm)	Stroke range				A	AL	B	B1	BN	BP	BQ	C	D	E	F	GA	GB	GC	GD	GL	GR	H1	J		K	KA	LZ	
	W/o rod boot	W/																										
40	25×500	25×500			30	27	60	22	96	$1 / 4$	1/4	44	16	32	10	85	15	26	54	10	10	8	M8 X 1.25		6	14	71	
50	25×600	25×600			35	32	70	27	108	1/4	$1 / 4$	52	20	40	10	95	17	27	59	13	12	11	M8 X	1.25	7	18	80	
63	32×600	32×600			35	32	86	27	115	$1 / 4$	$1 / 4$	64	20	40	10	102	17	26	67	18	15	11	M10 ${ }^{\text {d }}$	1.25	7	18	99	
80	41×750	41×750			40	37	102	32	129	$1 / 4$	$1 / 4$	78	25	52	14	113	21	30	72	23	17	13	M12 X	1.75	11	22	117	
100	45×750	45×750			40	37	116	41	140	$1 / 4$	$1 / 4$	92	30	52	14	124	21	31	76	25	19	16	M12 X	1.75	11	26	131	
	MM	N	P	PG	PH	PL	PW	S	TDe8		TT	TX	TY	TZ	W	W/o out rod boot			W/ rod boot (One side)							(Both sides)		
(mm)											H					Z	ZZ	e	f	h			Z	ZZ	Z	ZZ		
40	M14 X 1.5	27	1/4	42	11	20	45	153		-0.059		22	85	62	117	8	51	162	255	43	11.2	59	$1 / 4 \mathrm{~S}$	roke	170	263	178	271
50	M18 X 1.5	30	3/8	46	10	21	50	168		$5_{-0.059}^{-0.032}$	22	95	74	127	0	58	181	284	52	11.2	66	1/4 S	roke	189	292	197	300	
63	M18 X 1.5	31	3/8	48.5	13	23	60	182		8-0.059	28	110	90	148	0	58	191	298	52	11.2	66	1/4 S	roke	199	306	207	314	
80	M22 X 1.5	37	1/2	55	15	23	70	208		$5_{-0.073}^{-0.040}$	34	140	110	192	0	71	221	350	65	12.5	80	1/4 S	roke	230	359	239	368	
100	M26 X 1.5	40	$1 / 2$	56.5	15	25	80	226		$5_{-0.073}^{-0.040}$	40	162	130	214	0	72	235	370	65	14.0	81	1/4 S	roke	244	379	253	388	

Lock-up Cylinder/Double Acting Single Rod Series CL1

ø40, ø50, ø63, ఠ80, ฮ100, ø125, ø140, ø160
The CL1 series lock-up cylinder is a self-locking style that contains a ring that is tilted by a spring force, which is further tilted by the load that is applied to the cylinder, thus locking the piston rod. This cylinder is suitable for intermediate stops, emergency stops, or for drop prevention.

How to Order

Applicable Auto Switches/Refer to p.5.3-2 for further information on auto switch.

Style	Special function	Electrical entry		Wiring (Output)		Load vo	oltage		Auto swi	tch mode			d wir	e(m)		Applicable load			
			-		DC		AC	Tie rod m	$\begin{gathered} \text { mounting } \\ \hline \text { Bore } \end{gathered}$	Band mounting		$\begin{aligned} & 0.5 \\ & (-) \end{aligned}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$					
		Grommet ${ }^{\text {Y }}$	(NPN equiv.) 2 wire		-	5 V	-	A56		-		\bullet	\bullet	-	-	IC	-		
					24 V	12 V	-	A53	¢ 40	B53	¢40	-	-	-	-		PLC		
					12 V	100V, 200 V	A54	to	B54	to	-	\bullet	-	-		Relay, PLC			
					$5 \mathrm{~V}, 12 \mathrm{~V}$	-	A67	$\varnothing 160$	-	¢100	-	\bullet	-	-	IC	PLC			
					12V	200 V or less	A64		B64		\bigcirc	\bullet	-	-	-	Relay, PLC			
		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Terminal } \\ \text { conduit } \end{array} \\ \hline \end{array}$			12 V	-	A33C	$\begin{gathered} \varnothing 40 \\ \text { to } \\ \text { o100 } \end{gathered}$	A33	$\begin{gathered} \varnothing 40 \\ \text { to } \\ \varnothing 160 \end{gathered}$	-	-	-	\bullet		PLC			
					100V, 200V	A34C	A34		-		-	-	\bullet	Relay, PLC					
					A44C	A44	-		-		-	\bullet							
	Diagnostic indication (2 color)	Grommet			-	-	A59W	$\begin{aligned} & \varnothing 40 \text { to } \\ & \varnothing 160 \end{aligned}$	B59W	$\begin{aligned} & \varnothing 40 \text { to } \\ & \varnothing 100 \end{aligned}$	-	-	-			-			
		Grommet		3 wire (NPN)		24 V	5V, 12V	-	F59	$\begin{gathered} \varnothing 40 \\ \text { to } \\ \varnothing 160 \end{gathered}$	G59	$\begin{gathered} \varnothing 40 \\ \text { to } \\ \varnothing 100 \end{gathered}$	-	\bullet	\bigcirc	-	IC		
				3 wire (PNP)	F5P				G5P		-		-	\bigcirc	-				
				2 wire	-	-	100V, 200 V	J51	-		-		-	\bigcirc	-	-			
				2 wire	24 V	12 V		J59	K59		-		\bullet	\bigcirc	-				
		Terminalconduit		3 wire(NPN)		5V, 12V		G39C	G39		$\begin{gathered} \varnothing 40 \text { to } \\ \varnothing 160 \end{gathered}$	-	-	-	\bullet	IC			
				2 wire		12V		K39C	K39			-	-	-	\bullet	-			
		Grommet		3 wire(NPN)		5V, 12 V		F59W	G59W		$\begin{gathered} \varnothing 40 \\ \text { to } \\ \varnothing 100 \end{gathered}$	-	\bullet	\bigcirc	-	IC			
	Diagnostic indication			3 wire(PNP)				F5PW	G5PW			-	-	\bigcirc	-		Relay, PLC		
			2 wire			12V		J59W	K59W			-	\bullet	\bigcirc	-				
	Water resistant (2 color)				F5BA			G5BA	-			-	\bigcirc	-					
	With timer			3 wire(NPN)		5V, 12V		F5NT	G5NT			-	\bullet	\bigcirc	-	IC			
	With diagnostic output (2 color)			$\begin{aligned} & 4 \text { wire } \\ & \text { (NPN) } \end{aligned}$				F59F	G59F			-	-	\bigcirc	-	IC			
	Latch with diagnostic output (2 color)					-		F5LF	-			-	-	O	-	-			

[^6]* Solid state switches marked with a " \bigcirc " are manufactured upon receipt of order.

Provided with a compact

 locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Model

Series	Applicable air cylinder	Bore size (mm)	Action	Lock style
CL1	CA1 $\square \mathrm{N}$	$40,50,63,80,100$	Double acting	Spring lock
	CS1 $\square \mathrm{N}$	$125,140,160$		

Specifications

Bore size (mm)	$\varnothing 40$ to ø100	$\varnothing 125$ to ø160
Fluid	Air	
Proof pressure	1.5 MPa	1.57 MPa
Max. operating pressure	1.0MPa	0.97 MPa
Min. operating pressure	0.08 MPa	
Piston speed	50 to $200 \mathrm{~mm} / \mathrm{s}^{*}$	
Ambient and fluid temperature	Without auto switch -10 to $+70^{\circ} \mathrm{C}$ With auto switch -10 to $+60^{\circ} \mathrm{C}$ (No condensation)	Without auto switch 0 to $+70^{\circ} \mathrm{C}$ With auto switch 0 to $+60^{\circ} \mathrm{C}$ (No condensation)
Lubrication	Non-lube	
Cushion	Air cushion	
Thread tolerance	JIS Class 2	
Stroke length tolerance	to $2500_{0}^{+1.0}$, 251 to $1000{ }_{0}^{+1.0}$, 1001 to $1500{ }_{0}^{+1.0}, 1501$ to $1600^{+1.0}{ }_{0}$	
Mounting	Basic, Axial foot, Front flange, Rear flange, Single clevis, Double clevis, Center trunnion	

(1)*Make sure to operate the cylinder in such a way that the piston speed does not exceed $200 \mathrm{~mm} / \mathrm{s}$ during locking The maximum speed of $500 \mathrm{~mm} / \mathrm{s}$ can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

Max. Load and Lock Holding Force (Max. Static Load)

Bore size (mm)		40	50	63	80	100	125	140	160	
Max. load N	Horizontal mounting	588	981	1470	2450	3820	6010	7540	9850	
	Vertical mounting	294	490	735	1230	1910	3000	3770	4920	
	Holding force (N)*		1230	1920	3060	4930	7700	12100	15100	19700

* The cylinder can be used to $1 / 2$ or less of its holding force, if only a static load is applied, such as for drop prevention.

Lock-up Unit Specifications

Lock-up release pressure	0.2 MPa (at no load)
Lock-up start pressure	0.05 MPa or less
Lock-up direction	One direction (Lock direction can be changed.)

Stopping Accuracy
(Not including tolerance of control system)

Piston speed	Bore size (mm)	
	$\mathbf{4 0}$ to $\mathbf{1 0 0}$	$\mathbf{1 2 5}$ to $\mathbf{1 6 0}$
$50 \mathrm{~mm} / \mathrm{s}$	$\pm 0.6 \mathrm{~mm}$	$\pm 1 \mathrm{~mm}$
$100 \mathrm{~mm} / \mathrm{s}$	$\pm 1.2 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$
$200 \mathrm{~mm} / \mathrm{s}$	$\pm 2.3 \mathrm{~mm}$	$\pm 3 \mathrm{~mm}$

Lock-up Unit Style

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Lock up unit part No.	CL-40	CL-50	CL-63	CL-80	CL-100

Standard Stroke

Bore size (mm)	Standard stroke (mm)
$\mathbf{4 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500$
$\mathbf{5 0 , 6 3}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600$
$\mathbf{8 0 , 1 0 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600,700$

Max. Stroke

Refer to p.1.9-3 for maximum stroke of
CA1 series $\varnothing 40$ to $\varnothing 100$ and p.1.10-3 for
maximum stroke of CS1 series $\varnothing 120$ to $\varnothing 160$.

Minimum Strokes for Auto Switch Mounting

[^7]
Provided with a compact

 locking mechanism, it is suitable for intermediate stops, for emergency stops, and for drop prevention.

Model

Series	Applicable air cylinder	Bore size (mm)	Action	Lock style
CL1	CA1 $\square \mathrm{N}$	$40,50,63,80,100$	Double acting	Spring lock
	CS1 $\square \mathrm{N}$	$125,140,160$		

Specifications

Bore size (mm)	$\varnothing 40$ to ø100	$\varnothing 125$ to ø160
Fluid	Air	
Proof pressure	1.5 MPa	1.57 MPa
Max. operating pressure	1.0MPa	0.97 MPa
Min. operating pressure	0.08 MPa	
Piston speed	50 to $200 \mathrm{~mm} / \mathrm{s}^{*}$	
Ambient and fluid temperature	Without auto switch -10 to $+70^{\circ} \mathrm{C}$ With auto switch -10 to $+60^{\circ} \mathrm{C}$ (No condensation)	Without auto switch 0 to $+70^{\circ} \mathrm{C}$ With auto switch 0 to $+60^{\circ} \mathrm{C}$ (No condensation)
Lubrication	Non-lube	
Cushion	Air cushion	
Thread tolerance	JIS Class 2	
Stroke length tolerance	to $2500_{0}^{+1.0}$, 251 to $1000{ }_{0}^{+1.0}$, 1001 to $1500{ }_{0}^{+1.0}, 1501$ to $1600^{+1.0}{ }_{0}$	
Mounting	Basic, Axial foot, Front flange, Rear flange, Single clevis, Double clevis, Center trunnion	

(1)*Make sure to operate the cylinder in such a way that the piston speed does not exceed $200 \mathrm{~mm} / \mathrm{s}$ during locking The maximum speed of $500 \mathrm{~mm} / \mathrm{s}$ can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

Max. Load and Lock Holding Force (Max. Static Load)

Bore size (mm)		40	50	63	80	100	125	140	160	
Max. load N	Horizontal mounting	588	981	1470	2450	3820	6010	7540	9850	
	Vertical mounting	294	490	735	1230	1910	3000	3770	4920	
	Holding force (N)*		1230	1920	3060	4930	7700	12100	15100	19700

* The cylinder can be used to $1 / 2$ or less of its holding force, if only a static load is applied, such as for drop prevention.

Lock-up Unit Specifications

Lock-up release pressure	0.2 MPa (at no load)
Lock-up start pressure	0.05 MPa or less
Lock-up direction	One direction (Lock direction can be changed.)

Stopping Accuracy
(Not including tolerance of control system)

Piston speed	Bore size (mm)	
	$\mathbf{4 0}$ to $\mathbf{1 0 0}$	$\mathbf{1 2 5}$ to $\mathbf{1 6 0}$
$50 \mathrm{~mm} / \mathrm{s}$	$\pm 0.6 \mathrm{~mm}$	$\pm 1 \mathrm{~mm}$
$100 \mathrm{~mm} / \mathrm{s}$	$\pm 1.2 \mathrm{~mm}$	$\pm 2 \mathrm{~mm}$
$200 \mathrm{~mm} / \mathrm{s}$	$\pm 2.3 \mathrm{~mm}$	$\pm 3 \mathrm{~mm}$

Lock-up Unit Style

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Lock up unit part No.	CL-40	CL-50	CL-63	CL-80	CL-100

Standard Stroke

Bore size (mm)	Standard stroke (mm)
$\mathbf{4 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500$
$\mathbf{5 0 , 6 3}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600$
$\mathbf{8 0 , 1 0 0}$	$25,50,75,100,125,150,175,200,250,300,350,400,450,500,600,700$

Max. Stroke

Refer to p.1.9-3 for maximum stroke of
CA1 series $\varnothing 40$ to $\varnothing 100$ and p.1.10-3 for
maximum stroke of CS1 series $\varnothing 120$ to $\varnothing 160$.

Minimum Strokes for Auto Switch Mounting

[^8]
Lock－up Cylinder／Double Acting Single Rod Series CL1

Accessories

Mounting bracket		Basic	Foot	Front flange	Rear flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut＊	－	－	\bigcirc	\bigcirc	－	\bigcirc	－
	Clevis pin	－	－	－	－	－		－
Option	Single knuckle joint	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
	Double knuckle joint （with pin）	\bigcirc						
	Rod boot	\bigcirc						

＊$\varnothing 125$ to $\varnothing 160$ ：Option

Weight

	Tube material	Aluminum tubing							
Bore size（mm）		40	50	63	80	100	125	140	160
Lock－up unit weight		0.76	1.23	2.05	3.04	4.40	16.93	21.46	32.31
$\begin{aligned} & \text { U } \\ & \tilde{\sim} \\ & \end{aligned}$	Basic	1.66	2.55	4.12	6.56	9.49	30.88	38.25	55.72
	Foot	1.83	2.75	4.42	7.36	10.43	32.21	40.83	59.09
	Front flange	2.06	3.15	5.08	8.40	11.81	33.65	43.28	60.95
	Rear flange	2.09	3.29	5.16	8.51	12.06	34.35	44.32	62.98
	Single clevis	1.93	3.00	4.88	7.94	11.80	36.02	45.46	65.45
	Double clevis	1.92	2.98	4.90	7.94	11.82	35.83	45.17	64.28
	Trunnion	2.26	3.30	5.47	8.90	13.02	35.77	46.09	63.86
Additional weight per 100 mm stroke		0.44	0.56	0.74	1.04	1.30	1.77	1.90	2.39
	Single knuckle joint	0.23	0.26	0.26	0.66	0.83	0.91	1.16	1.56
	Double knuckle joint （with pin）	0.37	0.43	0.43	0.87	1.27	1.37	1.81	2.48

Rod Boot Material

Symbol	Material	Max．ambient temp．
\mathbf{J}	Nylon tarpaulin	$60^{\circ} \mathrm{C}$
\mathbf{K}	Heat resistant tarpaulin	$110^{\circ} \mathrm{C}^{*}$

＊Maximum ambient temperature for the itself
Lock－up Cylinder with Auto Switch
Refer to following pages for auto switch setting position and mounting height．
－Bore size／ø40 to ø100：p．1．9－14
－Bore size／ø125 to ø160：p．1．10－20

Calculation Example：CL1L125－500F
－Basic weight…32．21（ø125，Foot style）
－Additional weight $\cdots 1.77 / 100$ stroke $32.21+1.77 / 100 \times 100 / 50=41.06 \mathrm{~kg}$ ＊When steel tubes measuring $\varnothing 40$ to $\varnothing 100$ ，and $\varnothing 125$ to $\varnothing 160$ are used，the lock－up unit weight must be added to the respective cylinder weight as in the individual cylinder weight tables on p．1．9－4 and 1．10－4．

Mounting Bracket Part No．

Bore size（mm）		$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 4 0}$	$\mathbf{1 6 0}$
Foot＊	Rod side	CA－L04	CA－L05	CA－L06	CA－L08	CA－L10			
	CS1－L12	CS1－L14	CS1－L16						

Front flange＊＊${ }^{\text {CA－F04 }}$ CA－F05 | CA－F06 | CA－F08 | CA－F10 | CS1－F12 | CS1－F14 | CS1－F16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Single clevis | CA1－C04 | CA1－C05 | CA1－C06 | CA1－C08 | CA1－C10 | CS1－C12 | CS1－C14 | CS1－C16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Double clevis＊＊＊${ }^{*}$ CA1－D04 \mid CA1－D05 CA1－D06 $^{\text {CA1－D08 }}$ CA1－D10 \mid CS1－D12 2 CS1－D14 \mid CS1－D16

＊To order foot brackets for 1 cylinder，order 1 foot bracket each for the rod side and the
head side for cylinders $\varnothing 40$ to $\varnothing 100$ ，and 2 foot brackets for cylinders $\varnothing 125$ to $\varnothing 160$ ．
＊＊The $\varnothing 125$ to $\varnothing 160$ front flange styles use the long stroke flanges of the CS1 series．
＊＊＊Clevis pin，flat washer and cotter pin are packed with the double clevis style．
＊Mounting brackets are provided with D－A3ロC，A44C，G39C，and K39C．When
＊Mounting brackets are provided weth D－A3 ac，A44C，G39C，and K39C．Wher
Example）ø40－D－A3ロC－4， $850-\mathrm{D}-\mathrm{A} \square \square \mathrm{C}-5, \varnothing 663-\mathrm{D}-\mathrm{A} \square \square \mathrm{C}-6$ ，
¢80－D－A3ロC－8，8100－D－A3ロC－10
To order the mounting brackets separately，use the part number shown above．
［Stainless steel mounting bolt set］
The set of stainless steel mounting screws（with set screw） described below is available and can be used depending on the operating environment．（The mounting bracket and band for auto switches must be ordered separately，as they are not included．）
BBA1：For D－A5／A6／F5／J5
BBA3：For D－B5／B6／G5／K5
The stainless steel bolts described above are used when the D－F5BAL／G5BAL type switch is shipped mounted on a cylinder． When the switches are shipped as individual parts，the BBA1 and BBA3 set are included．

MXQ
MXF

MXP
MG
MGP
MGQ
MGG
MGC
MGF

Series CL1

Construction

Lock released condition

Locked condition

\triangle Caution

Precautions for Changing The Lock-up Direction

ø40 to ø100

The lock-up is unidirectional. However, the lock-up direction can be changed easily. To change the direction, pay particular attention to the following precautions:
Loosening the tie-rods for the purpose of changing the direction could also loosen the nuts on the cylinder side. Therefore, before assembling the unit, make sure to verify that the nuts on the cylinder are not loose. Retighten the nuts if they are loose, and while turning the piston rod, apply a low pressure of 0.08 MPa to make sure that it operates smoothly in both the extending and retracting directions.
(1) Loosen the tie-rod nuts and pull out the four tie-rods.

(2) Open the rubber cap and screw in the unlocking bolt, which is provided as an accessory part. At this time, apply air pressure of 0.2 MPa to 0.3 MPa to disengage the lock and insert the bolt. (The operation to follow can be performed properly and easily with the application of air pressure.) After verifying that the bolt has been inserted properly, pull out the unit from the rod. Then, loosen the three screws in the scraper presser plate to remove the presser plate and the scraper. Install the scraper and the presser plate, in that order, on the opposite side.

\triangle Caution

When the lock-up unit is not secured by the tie-rods, the air pressure applied to the lockup port should be between 0.2MPa and 0.3 MPa . Never supply a higher air pressure as it could lead to equipment damage.
(3) Turn the unit to the opposite end so that the end without the scraper is facing the cylinder rod cover. Then, securely insert the unit into the end boss portion of the rod cover.
(4) Install the four tie-rods, with their shorter threaded portion oriented towards the rod cover, and tighten them with uniform torque. Until the installation and adjustment have been completed, never pull out the unlocking bolt (or release the air pressure).

The processes described above complete the changing of the lock-up direction. Before using the cylinder, make sure that the lockup operates properly.

$\varnothing 125$ to ø160

(1) Loosen the tie-rod nuts and pull out the four tie-rods.

(2) Apply air pressure of 0.2 MPa to 0.3 MPa to disengage the lock and pull out the lock-up unit from the piston rod.

(3) Remove the retainer plate from the lockup unit and install the retainer plate on the opposite end. Reapply the air pressure, and with the end on which the retainer plate had, until now, been facing towards the cylinder, insert the lock-up unit into the piston rod and fit it into the end boss portion of the rod cover.

(4) Install the four tie-rods, with their shorter threaded portion oriented towards the rod cover, and tighten them with uniform torque. Maintain the application of air pressure until the installation and adjustment have been completed, and never actuate the lock in the meantime.

Manual Lock Release (ø40 to ø100)

To manually disengage the lock, perform the following steps:
(1) Open the rubber cap.
(2) Apply 0.2 MPa to 0.3 MPa of air pressure to the locking port, and bring the tilted ring upright.
(3) Screw a bolt of an appropriate length into the ring tap.
The bolt size is M5 for $\varnothing 40$ and $\varnothing 50$, and M6 for $\varnothing 63, \varnothing 80$, and $\varnothing 100$.

ø40 to $\boldsymbol{\varnothing} 100$
(On cylinders $\varnothing 125$ to $\varnothing 160$, the lock
cannot be disengaged manually.)

Caution

During installation adjustment, perform the operation by applying air pressure only to the lock-up port.

. Caution Recommended Pneumatic Circuit/Caution on Handling

I Refer to p.3.1-4 to 3.1-5 for recommended pneumatic circuits, stopping accuracy and cautions on handling.

\triangle Caution

Stopping Accuracy
(1) Load fluctuations during the reciprocal movement of the piston could cause the piston speed to change. A change in the piston speed could greatly increase the variance in the piston's stopping position. Therefore, perform the installation and adjustment operations so as not to create any load fluctuations during the piston's reciprocal movement, particularly just before stopping.
(2) During a cushioning stroke, or when the piston is in the acceleration region following the start of its travel, there is a large change in speed. Thus, the variance in the stopping position will also be large. Therefore, to effect a step movement in which the stroke from the start of the operation to the next position is short (approximately 30 mm , although it could vary according to conditions) be aware of the possibility of being unable to attain the level of accuracy shown in the specifications column.
(3) Precautions regarding lock-up after the piston has been stopped with an external stopper:
To apply the lock-up after the piston has been stopped by an external stopper other than the lock-up mechanism, including stoppage by the stroke end of the cylinder, be aware of the matters described below.
Due to the nature of the lock-up mechanism, there is an axial play of about 0.5 to 1.0 mm . Furthermore, due to pipe routing conditions, if it takes longer for the air to discharge through the lockup port than for the balance pressure to stabilize, causing a delay in locking, the piston rod will move for an amount that is equivalent to the "play+delay".

Piston speed over $200 \mathrm{~mm} / \mathrm{s}$

 (When locking)(4) Immediately before a lock stop, drop the piston speed to $200 \mathrm{~mm} / \mathrm{s}$ or lower by switching the speed controller (to the bypass circuit). Then, operate the lockup.

Construction

CL1ø40 to ø100

CL1ø125 to ø160

Component Parts/CL1ه40 to $\boldsymbol{\circ} 100$

No.	Description	Material	Note
(1)	Body	Aluminum alloy	Black coated
(2)	Cover	Aluminum alloy	Black coated
(3)	Lock up ring	Carbon steel	Heat treated
(4)	Release piston	Rolled steel	Zinc chromated
(5)	Pivot	Carbon steel	Heat treated, zinc chromated
(6)	Spring	Steel wire	Zinc chromated
(7)	Stopper	Stainless steel	Heat treated
(8)	Retainer	Rolled steel	Black zinc chromated
(9)	Bushing	Lead bronze casting	
(10)	Spring pin	Carbon steel	JIS B2808
(11)	Spring pin for non-rotating	Carbon steel	JIS B2808
(12)	Long nut	Rolled steel	Black zinc chromated
(13)	Unit fixing hex. socket head cap screw	Chrome molybdenum steel	
(14)	Retainer machine screw	Rolled steel	
(15)	Hex. socket counter sunk head screw	Chrome molybdenum steel	
(16)	Non lube air cylinder		CA1DN series
(17)	Cap	Nylon	
(18)	Cap screw	Rolled steel	
(19)	Release bolt	Chrome molybdenum steel	
(20)	Spacer	Aluminum alloy	Black coated
(21)	Unit fixing tie rod	Carbon steel	Chromated
(22)	Scraper	NBR	
(23)	O ring	NBR	
(24)	O ring	NBR	
(25)	Rod seal	NBR	

Note) Contact SMC if the fine lock-up unit must be disassembled.

Component Parts/CL1ه125 to ه160

No.	Description	Material	Note
(1)	Body	Rolled steel	Black coated
(2)	Cover	Rolled steel	Black coated
(3)	Lock up ring	Carbon steel	Heat treated
(4)	Release piston	Rolled steel	Zinc chromated
(5)	Pivot	Carbon steel	Heat treated
(6)	Spring	Steel wire	Zinc chromated
(7)	Stopper	Stainless steel	Heat treated
(8)	Retainer	Casting steel	Black coated
(9)	Bushing	Lead bronze casting	
(10)	Spring pin	Carbon steel	JIS B2808
(11)	Spring pin	Carbon steel	JIS B2808
(12)	Long nut	Rolled steel	Black zinc chromated
(13)	Unit fixing hex. socket head cap screw	Chrome molybdenum steel	Zinc chromated
(14)	Hex. socket head cap screw	Chrome molybdenum steel	Black zinc chromated
(15)	Hex. socket counter sunk head screw	Chrome molybdenum steel	Zinc chromated
(16)	Non lube air cylinder	-	CA1]N series
(17)	Brake tube	Carbon steel piping	Inside: Hard chrome plated
(18)	Sleeve	Rolled steel	Zinc chromated
(19)	Unit fixing tie rod	Carbon steel	Chromated
(20)	Spacer	Rolled steel	Black coated
(21)	Hexagon socket head plug	Rolled steel	Black zinc chromated
(22)	Retainer	Casting steel	Black coated
(23)	Element	Sintered metal BC	
(24)	Wiper ring	NBR	
(25)	Retainer gasket	NBR	
(26)	O ring	NBR	
(27)	O ring	NBR	
(28)	Rod seal	NBR	

Note) Contact SMC if the fine lock-up unit must be disassembled.

Lock-up Cylinder/Double Acting Single Rod Series CL1

Basic/(B)
ø40 to ø100
(A) Lock-up at piston forward (B) Lock-up at piston backward

Bore (mm)	M	MM	N	P	S	W	W/o rod boot		W/ rod boot				
							H	ZZ	e	f	h	ℓ	ZZ
40	11	M14 X 1.5	27	1/4	84	8	51	215	36	16.5	59	1/4 Stroke	223
50	11	M18 X 1.5	30	3/8	90	0	58	237	45	16.0	66	1/4 Stroke	245
63	14	M18 X 1.5	31	3/8	98	0	58	254	45	16.0	66	1/4 Stroke	262
80	17	M22 X 1.5	37	1/2	116	0	71	296	60	18.0	80	1/4 Stroke	305
100	17	M26 X 1.5	40	1/2	126	0	72	315	60	18.0	81	1/4 Stroke	324
125	27	M30 X 1.5	35	1/2	98	-	110	376.5	75	40	133	1/5 Stroke	399.5
140	27	M30 X 1.5	35	1/2	98	-	110	385	75	40	133	1/5 Stroke	408
160	30.5	M36 X 1.5	39	3/4	106	-	120	423.5	75	40	141	1/5 Stroke	444.5

* In installing an air cylinder, if a hole must be made to accommodate the rod portion, make sure to machine a hole that is larger than the boot outer diameter "øe"

Series CL1

Axial Foot/(L)

ø125 to ø160

With rod boot

$Z Z+\ell+$ Stroke

Bore (mm)	Stroke range (mm)		A	AL	B	B1	BX	BY	BP	C	D	EA	EB	F	FA	GA	GB	GC	H_{1}	J	K	KA	LD	LH
	Without rod boo	With rod boot																						
40	to 500	20 to 500	30	27	60	22	59	69	1/4	44	16	40	32	6.5	-	15	15	11	8	M8 X 1.25	6	14	9	40
50	to 600	20 to 600	35	32	70	27	67	78	1/4	52	20	50	40	6.0	-	17	17	11	11	M8 X 1.25	7	18	9	45
63	to 600	20 to 600	35	32	86	27	73	84	1/4	64	20	55	40	6.0	-	17	17	11	11	M10 X 1.25	7	18	11.5	50
80	to 750	20 to 750	40	37	102	32	77	92	$1 / 4$	78	25	65	52	8.0	-	21	21	11	13	M12 X 1.75	11	22	13.5	65
100	to 750	20 to 750	40	37	116	41	85	100	$1 / 4$	92	30	80	52	8.0	-	21	21	11	16	M12 X 1.75	11	26	13.5	75
125	to 1400	30 to1400	50	47	145	-	112.5	141.5	$1 / 2$	115	36	90	-	43	14	16	16	16	-	M14 X 1.5	15	31	19	85
140	to 1400	30 to 1400	50	47	161	-	121	150	1/2	128	36	90	-	43	14	16	16	16	-	M14 X 1.5	15	31	19	100
160	to 1400	30 to 1400	56	53	182	-	133	167	$3 / 4$	144	40	90	-	43	14	18.5	18.5	18.5	-	M16 X 1.5	17	36	19	106

Bore (mm)	LS	LT	LX	LY	MM	N	P	S	W	X	YA	YB	Without rod boot		With rod boot				
													H	ZZ	e	f	h	ℓ	ZZ
40	207	3.2	42	70	M14 X 1.5	27	1/4	84	8	27	13	13	51	244	36	16.5	59	1/4 Stroke	25
50	222	3.2	50	80	M18 X 1.5	30	3/8	90	0	27	13	13	58	266	45	16.0	66	1/4 Stroke	274
63	250	3.2	59	93	M18 X 1.5	31	3/8	98	0	34	16	16	58	290	45	16.0	66	1/4 Stroke	298
80	296	4.5	76	116	M22 X 1.5	37	1/2	116	0	44	21	16	71	339	60	18.0	80	1/4 Stroke	348
100	312	6.0	92	133	M26 X 1.5	40	1/2	126	0	43	22	17	72	358	60	18.0	81	1/4 Stroke	367
125	329.5	8	100	157.5	M 30×1.5	35	1/2	98		45	20	20	110	414.5	75	40	133	1/4 Stroke	47.5
140	338	9	112	180.5	M30 X 1.5	35	1/2	98	-	45	30	30	110	433	75	40	133	1/4 Stroke	456
160	373	9	118	197	M36 X 1.5	39	$3 / 4$	106		50	25	25	120	468	75	40	141	1/4 Stroke	489

Lock-up Cylinder/Double Acting Single Rod Series CL1

Rear Flange/(G)

ø40 to 100

(A) Lock-up at piston forward (B) Lock-up at piston backward

Series CL1

Front Flange/(F)

ø40 to ø100

(A) Lock-up at piston forward (B) Lock-up at piston backward

With rod boot

ø120 to ø160

With rod boot

(mm)

Bore (mm)	Stroke range (mm)		Long stroke range (mm)	A	AL	B	B1	BF	BP	BX	BY	C	D	EA	EB	F	FD	FT	FX	FY	FZ
	W/o rod boot	W/ rod boot																			
40	to 500	20 to 500	501 to 800	30	27	60	22	71	1/4	59	69	44	16	40	32	-	9.0	12	80	42	100
50	to 600	20 to 600	601 to 1000	35	32	70	27	81	$1 / 4$	67	78	52	20	50	40	-	9.0	12	90	50	110
63	to 600	20 to 600	601 to 1000	35	32	86	27	101	1/4	73	84	64	20	55	40	-	11.5	15	105	59	130
80	to 750	20 to 750	751 to 1000	40	37	102	32	119	$1 / 4$	77	92	78	25	65	52	-	13.5	18	130	76	160
100	to 750	20 to 750	751 to 1000	40	37	116	41	133	$1 / 4$	85	100	92	30	80	52	-	13.5	18	150	92	180
125	to 1400	30 to 1400		50	47	145	-	145	$1 / 2$	112.5	141.5	115	36	90	59	43	19	14	190	100	230
140	to 1400	30 to 1400		50	47	161	-	160	$1 / 2$	121	150	128	36	90	59	43	19	20	212	112	255
160	to 1400	30 to 1400		56	53	182	-	180	$3 / 4$	133	167	144	40	90	59	43	19	20	236	118	275

Bore (mm)	FV	GA	GB	GC	H_{1}	J	K	KA	M	M1	MM	N	P	S	W	W/o rod boot		W/ rod boot				
																H	ZZ	e	f	h	ℓ	ZZ
40	60	15	15	11	8	M8 X 1.25	6	14	11	-	M14 X 1.5	27	1/4	84	8	51	215	36	16.5	59	1/4 Stroke	223
50	70	17	17	11	11	M8 X 1.25	7	18	11	-	M18 X 1.5	30	3/8	90	0	58	237	45	16.0	66	1/4 Stroke	245
63	86	17	17	11	11	M10 X 1.25	7	18	14	-	M18 X 1.5	31	3/8	98	0	58	254	45	16.0	66	1/4 Stroke	262
80	102	21	21	11	13	M12 X 1.75	11	22	17	-	M 22×1.5	37	1/2	116	0	71	296	60	18.0	80	1/4 Stroke	305
100	116	21	21	11	16	M12 X 1.75	11	26	17	-	M26 X 1.5	40	1/2	126	0	72	315	60	18.0	81	1/4 Stroke	324
125	-	16	16	16	-	M14 X 1.5	15	31	30	22	M30 X 1.5	35	1/2	98	-	110	379.5	75	40	133	1/4 Stroke	402.5
140	-	16	16	16	-	M14 X 1.5	15	31	24	19	M30 X 1.5	35	$1 / 2$	98	-	110	382	75	40	133	1/4 Stroke	405
160	-	18.5	18.5	18.5	-	M16 X 1.5	17	36	26	22	M36 X 1.5	39	$3 / 4$	106	-	120	419	75	40	141	1/4 Stroke	440

Series CL1

Front Flange/(F)

ø40 to ø100

(A) Lock-up at piston forward (B) Lock-up at piston backward

With rod boot

ø120 to ø160

With rod boot

(mm)

Bore (mm)	Stroke range (mm)		Long stroke range (mm)	A	AL	B	B1	BF	BP	BX	BY	C	D	EA	EB	F	FD	FT	FX	FY	FZ
	W/o rod boot	W/ rod boot																			
40	to 500	20 to 500	501 to 800	30	27	60	22	71	1/4	59	69	44	16	40	32	-	9.0	12	80	42	100
50	to 600	20 to 600	601 to 1000	35	32	70	27	81	$1 / 4$	67	78	52	20	50	40	-	9.0	12	90	50	110
63	to 600	20 to 600	601 to 1000	35	32	86	27	101	1/4	73	84	64	20	55	40	-	11.5	15	105	59	130
80	to 750	20 to 750	751 to 1000	40	37	102	32	119	$1 / 4$	77	92	78	25	65	52	-	13.5	18	130	76	160
100	to 750	20 to 750	751 to 1000	40	37	116	41	133	$1 / 4$	85	100	92	30	80	52	-	13.5	18	150	92	180
125	to 1400	30 to 1400		50	47	145	-	145	$1 / 2$	112.5	141.5	115	36	90	59	43	19	14	190	100	230
140	to 1400	30 to 1400		50	47	161	-	160	$1 / 2$	121	150	128	36	90	59	43	19	20	212	112	255
160	to 1400	30 to 1400		56	53	182	-	180	$3 / 4$	133	167	144	40	90	59	43	19	20	236	118	275

Bore (mm)	FV	GA	GB	GC	H_{1}	J	K	KA	M	M1	MM	N	P	S	W	W/o rod boot		W/ rod boot				
																H	ZZ	e	f	h	ℓ	ZZ
40	60	15	15	11	8	M8 X 1.25	6	14	11	-	M14 X 1.5	27	1/4	84	8	51	215	36	16.5	59	1/4 Stroke	223
50	70	17	17	11	11	M8 X 1.25	7	18	11	-	M18 X 1.5	30	3/8	90	0	58	237	45	16.0	66	1/4 Stroke	245
63	86	17	17	11	11	M10 X 1.25	7	18	14	-	M18 X 1.5	31	3/8	98	0	58	254	45	16.0	66	1/4 Stroke	262
80	102	21	21	11	13	M12 X 1.75	11	22	17	-	M 22×1.5	37	1/2	116	0	71	296	60	18.0	80	1/4 Stroke	305
100	116	21	21	11	16	M12 X 1.75	11	26	17	-	M26 X 1.5	40	1/2	126	0	72	315	60	18.0	81	1/4 Stroke	324
125	-	16	16	16	-	M14 X 1.5	15	31	30	22	M30 X 1.5	35	1/2	98	-	110	379.5	75	40	133	1/4 Stroke	402.5
140	-	16	16	16	-	M14 X 1.5	15	31	24	19	M30 X 1.5	35	$1 / 2$	98	-	110	382	75	40	133	1/4 Stroke	405
160	-	18.5	18.5	18.5	-	M16 X 1.5	17	36	26	22	M36 X 1.5	39	$3 / 4$	106	-	120	419	75	40	141	1/4 Stroke	440

Lock-up Cylinder/Double Acting Single Rod Series CL1

Front Flange (F)/Long Stroke
(A) Lock-up at piston forward

Series CL1

Single Clevis/(C)
(A) Lock-up at piston forward (B) Lock-up at piston backward
ø40 to $\boldsymbol{\sigma 1 0 0}$

ø125 to $\varnothing 160$

Bore (mm)	Stroke range (mm)			A	AL	B	B1	BP	BX	BY	C	CD		CT	CX		D	EA	F	FA	GA	GB	GC	H_{1}	
	W/o rod boot	W/ rod	boot											CT											
40	to 500	20 to	500	30	27	60	22	1/4	59	69	44			-		-0.1	16	40	6.5	-	15	15	11	8	
50	to 600	20 to	600	35	32	70	27	1/4	67	78	52			-		-0.3	20	50	6.0	-	17	17	11	11	
63	to 600	20 to	600	35	32	86	27	1/4	73	84	64			-	25.	- ${ }_{-0.3}^{-0.1}$	20	55	6.0	-	17	17	11	11	
80	to 750	20 to	750	40	37	102	32	1/4	77	92	78			-	31.	$5_{-0.3}^{-0.1}$	25	65	8.0	-	21	21	11	13	
100	to 750	20 to	750	40	37	116	41	1/4	85	100	92			-	35.	${ }_{-0.3}^{-0.1}$	30	80	8.0	-	21	21	11	16	
125	to 1000	30 to	1000	50	47	145	-	1/2	112.5	141.5	115			17	32.	${ }^{-0.1}$	36	90	43	14	16	16	16		
140	to 1000	30 to	1000	50	47	161	-	1/2	121	150	128			17	36.	$0_{0.3}^{-0.1}$	36	90	43	14	16	16	16		
160	to 1200	30 to	1200	56	53	182	-	$3 / 4$	133	167	144			20	40.	-0.1	40	90	43	14	18.5	18.5	18.5		
Bore (mm)	J	K	KA	L	MM		N	P	RR	S	U	W	W/o rod boot			W/ rod boot									
							H						Z	ZZ	e	f	h		ℓ		Z	ZZ			
40	M8 X 1.25	6	14	30	M14	$\times 1.5$		27	1/4	10	84	16	8	51	234	244	36	16.5	59		Strok		242	252	
50	M8 X 1.25	7	18	35	M18	$\times 1.5$	30	3/8	12	90	19	0	58	261	273	45	16.0	66		Strok		269	281		
63	M10 X 1.25	7	18	40	M18	X 1.5	31	3/8	16	98	23	0	58	280	296	45	16.0	66		Strok		288	304		
80	M12 X 1.75	11	22	48	M22	X 1.5	37	1/2	20	116	28	0	71	327	347	60	18.0	80		Strok		336	356		
100	M12 X 1.75	11	26	58	M26	X 1.5	40	1/2	25	126	36	-	72	356	381	60	18.0	81		Strok		365	390		
125	M14 X 1.5	15	31	65	M30	X 1.5	35	1/2	29	98	35	-	110	414.5	443.5	75	40	133		Strok		437.5	466.5		
140	M14 X 1.5	15	31	75	M30	X 1.5	35	1/2	32	98	40	-	110	433	465	75	40	133		Strok		456	488		
160	M16 X 1.5	17	36	80	M36	X 1.5	39	$3 / 4$	36	106	45	-	120	473	509	75	40	141		Strok		494	530		

Lock-up Cylinder/Double Acting Single Rod Series CL1

Double Clevis/(D)
(A) Lock-up at piston forward (B) Lock-up at piston backward
ø40 to $\varnothing 100$

*Clevis pin, flat washer and cotter pin are packed with the double clevis style.

Series CL1

Center Trunnion/(T)
(A) Lock-up at piston forward (B) Lock-up at piston backward

ø40 to $\varnothing 100$

ø125 to ø160

With rod boot

Bore (mm)	Stroke range (mm)				A	AL	B	B1	BP	BX	BY	C	D	EA	EB	F	F	A GA	GB	GC	H_{1}	J	K	KA		
	W/o rod	d boot	W/ rod	boot																						
40	to 500		20 to 500		30	27	60	22	1/4	59	69	44	16	40	32	6.5		15	15	11	8	M8 X 1.25	6	14		
50	to 600		20 to 600		35	32	70	27	1/4	67	78	52	20	50	40	6.0		17	17	11	11	M8 X 1.25	7	18		
63	to 600		20 to 600		35	32	86	27	1/4	73	84	64	20	55	40	6.0		17	17	11	11	M10 X 1.25	7	18		
80	to 750		20 to 750		40	37	102	32	1/4	77	92	78	25	65	52	8.0	0	21	21	11	13	M12 X 1.75	11	22		
100	to 750		20 to 750		40	37	116	41	1/4	85	100	92	30	80	52	8.0	0	21	21	11	16	M12 X 1.75	11	26		
125	25 to 1000		30 to 1000		50	47	145	-	1/2	112.5	141.5	115	36	90	-	43	31	16	16	16	-	M14 X 1.5	15	31		
140	30 to 1000		30 to	1000	50	47	161	-	1/2	121	150	128	36	90	-	43	1 1	16	16	16	-	M14 X 1.5	15	31		
160	35 to 1200		35 to 1200		56	53	182	-	$3 / 4$	133	167	144	40	90	-	43	31	18.5	18.5	18.5	-	M16 X 1.5	17	36		
Bore	M	MM		N	P	R	S	TDe8		TT	TX	TY	TZ	W	W/o rod boot				W/ rod root							
(mm)										H					Z	ZZ	e	f	h	ℓ	Z	ZZ				
40	-	M14	X 1.5		27	1/4	-	84			$5_{-0.059}^{-0.032}$	22	85	62	117	8		51	162	209	36	16.5	59	1/4 Stroke	170	217
50	-	M18	X 1.5	30	3/8	-	90		$5_{-0.059}^{-0.032}$	22	95	74	127	0		58	181	232	45	16.0	66	1/4 Stroke	189	240		
63	-	M18	X 1.5	31	3/8	-	98		$8{ }_{-0.059}^{-0.032}$	28	110	90	148	0		58	191	246	45	16.0	66	1/4 Stroke	199	254		
80	-	M22	X 1.5	37	1/2	-	116		$5_{-0.043}^{-0.040}$	34	140	110	192	0		71	221	286	60	18.0	80	1/4 Stroke	230	295		
100	-	M26	X 1.5	40	1/2	-	126		$5_{-0.073}^{-0.040}$	40	162	130	214	0		72	235	306	60	18.0	81	1/4 Stroke	244	315		
125	19	M30	X 1.5	35	$1 / 2$	1.0	98		$2^{-0.0050}$	50	170	164	234	-		10	300.5	368.5	75	40	133	1/5 Stroke	323.5	391.5		
140	19	M30	X 1.5	35	1/2	1.5	98		$6_{-0.089}^{-0.050}$	55	190	184	262	-		10	309	377	75	40	133	1/5 Stroke	332	400		
160	22	M36	X 1.5	39	$3 / 4$	1.5	106		$0_{-0.089}^{-0.050}$	60	212	204	292	-		20	340	415	75	40	141	1/5 Stroke	361	436		

World Wide SSMC' Support...

North American Branch Offices For a branch office near you call: 1-800-SMC-SMC1 (762-7621)

SMC Pneumatics Inc. (Atlanta)
1440 Lakes Parkway, Suite 600
Lawrenceville, GA 30043
Tel: (770) 624-1940
FAX: (770) 624-1943
SMC Pneumatics Inc. (Austin)
2324-D Ridgepoint Drive
Austin, TX 78754
Tel: (512) 926-2646
FAX: (512) 926-7055
SMC Pneumatics Inc. (Boston)
Zero Centennial Drive
Peabody, MA 01960
Tel: (978) 326-3600
Fax: (978) 326-3700
SMC Pneumatics Inc. (Charlotte) 5029-B West W.T. Harris Blvd.
Charlotte, NC 28269
Tel: (704) 597-9292
FAX: (704) 596-9561
SMC Pneumatics Inc. (Chicago)
27725 Diehl Road
Warrenville, IL 60555
Tel: (630) 393-0080
FAX: (630) 393-0084
SMC Pneumatics Inc. (Cincinnati) 4598 Olympic Blvd. Erlanger, KY 41018
Tel: (606) 647-5600
FAX: (606) 647-5609

SMC Pneumatics Inc. (Cleveland) 2305 East Aurora Rd., Unit A-3 Twinsburg, OH 44087
Tel: (330) 963-2727
FAX: (330) 963-2730
SMC Pneumatics Inc. (Columbus)
3687 Corporate Drive
Columbus, OH 43231
Tel: (614) 895-9765
FAX: (614) 895-9780
SMC Pneumatics Inc. (Dallas)
12801 N. Stemmons Frwy, Ste. 815 Dallas, TX 75234
Tel: (972) 406-0082
FAX: (972) 406-9904
SMC Pneumatics Inc. (Detroit)
2990 Technology Drive
Rochester Hills, MI 48309
Tel: (248) 299-0202
FAX: (248) 293-3333
SMC Pneumatics Inc. (Houston)
9001 Jameel, Suite 180
Houston, TX 77040
Tel: (713) 460-0762
FAX: (713) 460-1510
SMC Pneumatics Inc. (L.A.)
14191 Myford Road
Tustin, CA 92780
Tel: (714) 669-1701
FAX: (714) 669-1715

SMC Pneumatics Inc. (Milwaukee) 16850 W. Victor Road
New Berlin, WI 53151
Tel: (414) 827-0080
FAX: (414) 827-0092
SMC Pneumatics Inc. (Mnpls.) 990 Lone Oak Road, Suite 162
Eagan, MN 55121
Tel: (651) 688-3490
FAX: (651) 688-9013
SMC Pneumatics Inc. (Nashville)
5000 Linbar Drive, Suite 297
Nashville, TN 37211
Tel: (615) 331-0020
FAX: (615) 331-9950
SMC Pneumatics Inc. (Newark)
3434 US Hwy. 22 West, Ste. 110
Somerville, NJ 08876
Tel: (908) 253-3241
FAX: (908) 253-3452
SMC Pneumatics Inc. (Phoenix)
2001 W. Melinda Lane
Phoenix, AZ 85027
Tel: (623) 492-0908
FAX: (623) 492-9493
SMC Pneumatics Inc. (Portland)
14107 N.E. Airport Way
Portland, OR 97230
Tel: (503) 252-9299
FAX: (503) 252-9253

SMC Pneumatics Inc. (Richmond)
5377 Glen Alden Drive
Richmond, VA 23231
Tel: (804) 222-2762
FAX: (804) 222-5221
SMC Pneumatics Inc. (Rochester)
245 Summit Point Drive
Henrietta, NY 14467
Tel: (716) 321-1300
FAX: (716) 321-1865
SMC Pneumatics Inc. (S.F.)
85 Nicholson Lane
San Jose, CA 95134
Tel: (408) 943-9600
FAX: (408) 943-9111
SMC Pneumatics Inc. (St. Louis)
4130 Rider Trail North
Earth City, MO 63045
Tel: (314) 209-0080
FAX: (314) 209-0085
SMC Pneumatics Inc. (Tampa)
8507-H Benjamin Road
Tampa, FL 33634
Tel: (813) 243-8350
FAX: (813) 243-8621
SMC Pneumatics Inc. (Tulsa)
10203 A East 61st Street
Tulsa, OK 74146
Tel: (918) 252-7820
FAX: (918) 252-9511

Europe

ENGLAND
SMC Pneumatics (U.K.) Ltd.
GERMANY
SMC Pneumatik GmbH
ITALY
SMC Italia SpA
FRANCE
SMC Pneumatique SA
HOLLAND
SMC Controls BV
SWEDEN
SMC Pneumatics Sweden AB
SWITZERLAND
SMC Pneumatik AG
AUSTRIA
SMC Pneumatik GmbH
SPAIN
SMC España, S.A.
IRELAND
SMC Pneumatics (Ireland) Ltd.
Asia
JAPAN

SMC Corporation
KOREA
SMC Pneumatics Korea Co., Ltd.
CHINA
SMC (China) Co., Ltd.
HONG KONG
SMC Pneumatics (Hong Kong) Ltd. SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd.
PHILIPPINES
SMC Pneumatics (Philippines), Inc.
MALAYSIA
SMC Pneumatics (S.E.A.) Sdn. Bhd.
TAIWAN
SMC Pneumatics (Taiwan) Co., Ltd.
THAILAND
SMC Thailand Ltd.
INDIA
SMC Pneumatics (India) Pvt., Lid.
North America
CANADA
SMC Pneumatics (Canada) Ltd.
MEXICO
SMC Pneumatics (Mexico) S.A. de C.V.

South America

ARGENTINA
SMC Argentìna S.A.
CHILE
SMC Pneumatics (Chile) Ltda.
Oceania
AUSTRALIA
SMC Pneumatics (Australia) Pty. Ltd.
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

SMC offers the same quality and engineering expertise in many other pneumatic components

Valves	Valves	Cylinders/Actuators	Vacuum	Air Preparation Equipment
Directional Control Valves	Proportional Valves	Compact Cylinders	Vacuum Ejectors	Filters-Regulators-Lubricators
Manual Valves	Mechanical Valves	Miniature Cylinders	Vacuum Accessories	Coalescing Filters
Mufflers	Miniature Valves	Rodless Cylinders	Instrumentation	Micro Mist Separators
Exhaust Cleaners	Fluid Valves	Rotary Actuators	Pneumatic Positioners	Fittings
Quick Exhaust Valves		Pneumatic Grippers	Pneumatic Transducers	Air Fittings

[^0]: *T bracket is applicable to double clevis style (D).

[^1]: \square
 CLM2F20..........SCLM220, \#4 (\#1+4+\#12)
 CLM2F25.........SCLM225, \#4 (\#1+4+\#12)
 CLM2F32..........SCLM232, \#4 (\#1+4+\#12)
 CLM2F40..........SCLM240, \#4 (\#1+4+\#12)

[^2]: Note) Contact SMC if the fine lock unit must be disassembled.

[^3]: \square
 CLAB40….......SCLA40, \#1 (\#1+\#11)
 CLAB50….........SCLA50, \#1 (\#1+\#11)
 CLAB63..........SCLA63, \#1 (\#1+\#11)
 CLAB80........SCLA80, $\# 1(\# 1+\# 11)$
 CLAB80….....SCLA80, \#1 (\#1+\#11)
 CLAB100

[^4]: \square
 CLAL40.........SCLA40, \#2 (\#1+\#2+\#11)
 CLAL50.........SCLA50, \#2 (\#1+\#2+\#11)
 CLAL63 -........SCLA63, \#2 (\#1+\#2+\#11)
 CLAL80….....SCLA80, \#2 (\#1+\#2+\#11)
 CLAL100…....SCLA100, \#2 (\#1+\#2+\#11)

[^5]: * Solid state switches marked with a "○" are manufactured uon receipt of order

[^6]: * Lead wire length symbol $0.5 \mathrm{~m} \cdots \cdots-$ (Example) A53

 3m.........L (Example) A53L
 5m.........Z (Example) A53Z

[^7]: Refer to following pages for minimum strokes for auto switch mounting.

 - Bore size $\varnothing 40$ to $\varnothing 100$: p.1.9-4
 - Bore size ø125 to ø160: p.1.10-8

[^8]: Refer to following pages for minimum strokes for auto switch mounting.

 - Bore size $\varnothing 40$ to $\varnothing 100$: p.1.9-4
 - Bore size ø125 to ø160: p.1.10-8

