

Clamp Cylinder with Lock Series CLK1

M aintains a clamped or unclamped state when air supply pressure drops or residual pressure is released

Clamp Cyllindler witith Lock M aintains a Series CLK1 supply press

Clamped locking

Can be locked at any position within the entire stroke

Locking is possible at any desired position.
Able to easily accommodate changes in work piece thickness.

Clamped locking or unclamped locking can be selected

Holding a clamped state
Prevents work piece slippage and dropping
due to work piece weight

Holding an unclamped state
Prevents dislocation of home position due to weight of clamp arm

Compact lock mechanism minimizes extension of length dimension

Series CLK1 clamp cylinder with lock

Series CK1 clamp cylinder (without lock)

Extended dimension mm

Bore size (mm)	\mathbf{E}
$\varnothing 40$	34
$\varnothing 50$	38.5
$\varnothing 63$	42

Operating Principle

- For clamped locking
 lock ring stands up because of back pressure from the unclamping port. However, when the piston stops at the stroke end, the back pressure is completely exhausted and the lock ring is tilted by the spring force, thereby locking the piston rod.

When compressed air is supplied to the unclamping port A, the lock ring stands up perpendicular to the rod (unlocks), and unclamping operation takes place.

- For unclamped locking

Air can be supplied to or exhausted from the cylinder head side by providing by-pass piping.

rlamped or unclamped state when air re drops or residual pressure is released.

Piping is not required for unlocking

Since a dedicated solenoid valve is not required for unlocking, reduction of initial costs and replacement of existing equipment can be easily accomplished.
Clamp cylinder with lock

Able to maintain an unlocked state Assembly and maintenance simplified

Port positions can be selected to accommodate mounting conditions

Positions of ports, by-pass piping and auto switch rails can be changed. (Refer to ordering instructions on pages 1 and 7 for details.)

Series expanded to include sizes $\varnothing 32$ to $\varnothing 63$
Two series, four sizes and three types of clevis width standardized.

Clamp Cylinder with Lock/Standard Type Series CLK1 ø32, ø40, ø50, ø63

How to Order

* Solid state switches marked with a "O" symbol are produced upon receipt of order.
* Do not use symbol "N" for no lead wire specification with types D-A3■A, A44A, G39A, and K39A.

Cylinder Specifications

Symbols

Clamp side locking type

Unclamp side locking type

Accessories (Options)

Description		Series CLK1A			Series CLK1B
		ø32	$\varnothing 40$	ø50, ø63	ø50, ø63
Single knuckle joint*		CL1K32-17-R5004	CLIK40-17-R5006	CKA40-17-101B	CKB40-17-102B
Double knuckle joint*		CL1K32-18-55004	CL1K40-18-R5006	CKA40-18-206C	CKB40-18-207B
Limit switch mounting base		-	CKM040-48-16070A		
Dog fitting		-	CKM040-42-16070		
	75 mm stroke	-	CKA40-40-209A		-
	100 mm stroke	-	CKA40-40-210A		-
	150 mm stroke	-	CKA40-40-211A		-

Auto Switch Mounting Bracket Part Nos.

Auto switch model		Auto switch mounting bracket part no.			
		32	40	50	63
Reed swich	$\begin{array}{\|l} \mathrm{D}-\mathrm{C73}, \mathrm{C} 76, \mathrm{C8O} \\ \mathrm{D}-\mathrm{C73C}, ~ C 80 C \end{array}$	BMA2-032	BMA2-040	BMA2-050	BMA2-063
$\begin{gathered} \text { Solids state } \\ \text { swich } \end{gathered}$	D-H7A1, H7A2, H7B, H7C D-H7NW, H7PW, H7BW D-H7LF, H7NF				
Reed swich	D-B53, B54, B64, B59W	BA-32	BA-04	BA-05	BA-06
$\begin{array}{\|c} \hline \begin{array}{c} \text { Solid state } \\ \text { switch } \end{array} \\ \hline \end{array}$	D-G5NTL				
Reed swich	D-A33, A34, A44	-	BD1-04M	BD1-05M	BD1-06M
$\begin{array}{\|c\|} \hline \text { Solide } \\ \text { state switch } \\ \hline \end{array}$	D-G39, K39				

Fluid		Air	
Proof pressure		1.5 MPa	
Maximum operating pressure		1.0 MPa	
Minimum operating pressure		0.2 MPa	
Ambient and fluid temperature		Without auto switch: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, With auto switch: -10 to $60^{\circ} \mathrm{C}$	
Piston speed		50 to $500 \mathrm{~mm} / \mathrm{s}$	
Cushion		Unclamp side (head side): Air cushion, Clamp side (rod side): Without cushion	
Lubrication		Non-lube	
Thread tolerance		JIS class 2	
Stroke length tolerance		${ }^{+1.0}$	
Mounting		Double clevis*	
* With pin and cotter pin			
Clevis width	12 mm	CLK1A, CLK1GA	ø32
	16.5 mm	CLK1A, CLK1GA	ø40, ø50, ø63
	19.5 mm	CLK1B, CLK1GB	ø50, ø63

Lock Specifications

Bore size (mm)	32	40	50	63
Locking action	Spring lock			
Unlocking pressure	0.2 MPa or more			
Locking pressure	0.05 MPa or less			
Locking direction	One direction (Clamp side, Unclamp side)			
Lock holding force \mathbf{N} (Max. static load)	Equivalent to 0.5 MPa			
	402	629	982	1559
Lock application	Drop prevention, Position holding			

Standard Strokes

Bore size (mm)	Standard stroke (mm)
$\mathbf{3 2 , 4 0 , 5 0 , 6 3}$	$50,75,100,125,150$

Weights (Basic weight is for a 0 mm stroke.)

					Unit: kg
Bore size (mm)		32	40	50	63
Cylinder	Basic weight	F: $0.53, \mathrm{~B}: 0.51$	F: 1.04, B: 0.98	F: 1.48, B: 1.42	F: 2.13, B: 2.07
	Additional weight per 25mm of stroke	0.05	0.08	0.11	0.13
Single knuckle joint		0.12	0.25	0.2	
Double knuckle joint (includes pin)		0.17	0.33	0.28	
Limit switch mounting base		-	0.22		
Dog fitting		-	0.12		
Pedestal		-	2.2		
Calculation - Basic weight 1.42 ($\varnothing 50$) (Example) CLK1B50-100Y-B - Additional weight $. .0 .11 / 25 \mathrm{~mm}$ - Cylinder stroke.... .100 mm			- Double knuckle joint... 0.28 (Y)$1.42+0.11 \times 100 / 25+0.28=2.14 \mathrm{~kg}$		

Theoretical Output

Series CLK1

Construction CLK1 \square 32/Standard Type
Clamp side lock (B)

Unclamp side lock (F)

(9) (22) (23) (21)

Parts list

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum alloy	Hard anodized
$\mathbf{2}$	Cover	Aluminum alloy	Hard anodized
$\mathbf{3}$	Cylinder tube	Aluminum alloy	Hard anodized
$\mathbf{4}$	Head cover	Aluminum alloy	Chromated
$\mathbf{5}$	Piston rod	Carbon steel	Hard chromium electro plated
$\mathbf{6}$	Piston	Aluminum alloy	
$\mathbf{7}$	Bushing	Lead-bronze casting	
$\mathbf{8}$	Bushing	Oil-impregnated sintered alloy	
$\mathbf{9}$	Clevis bushing	Carbon steel	Heattreated, Electroless nickel plated
$\mathbf{1 0}$	Pivot	Carbon steel	Heat treated
$\mathbf{1 1}$	Lock ring	Stainless steel	
$\mathbf{1 2}$	Dust cover	Steel wire	Zinc chromated
$\mathbf{1 3}$	Brake spring	Chrome molybdenum steel	Nickel plated
$\mathbf{1 4}$	Hexagon socket head cap screw	Chrem	
$\mathbf{1 5}$	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
$\mathbf{1 6}$	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
$\mathbf{1 7}$	Hexagon socket head plug	Carbon steel	Rc1/8
$\mathbf{1 8}$	Cushion valve	Free-cutting steel	Electroless nickel plated

No.	Description	Material	Note
$\mathbf{1 9}$	Plug	Free-cutting steel	
20	Wear ring	Resin	
21	Pin	Carbon steel	
22	Flat washer	Rolled steel	
23	Cotter pin		KRL06-01S
24	FR One-touch fitting		KR-06C
25	Spatter cover		TRB0604W
26	FR double layer tube		
27	Rod seal	NBR	
28	Piston seal	NBR	
29	Tube gasket	NBR	
30	Cushion seal	NBR	
31	Valve seal	NBR	
32	Plug seal	NBR	
33	Lock ring seal	NBR	
34	O-ring	NBR	
35	Coil scraper	Phosphor bronze	

Clamp Cylinder with Lock
 Series CLK1

Construction CLK1 $\square 40,50,63 /$ Standard Type

Clamp side lock (B)

Unclamp side lock (F)

Parts list

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum alloy	Hard anodized
$\mathbf{2}$	Cover	Aluminum alloy	Hard anodized
$\mathbf{3}$	Tube cover	Aluminum alloy	Hard anodized
$\mathbf{4}$	Piston rod	Carbon steel	Hard chromium electro plated
$\mathbf{5}$	Piston	Lead-bronze casting	
$\mathbf{6}$	Bushing	Lead-bronze casting	
$\mathbf{7}$	Bushing	Cil-impregnated sintered alloy	
$\mathbf{8}$	Clevis bushing	Carbon steel	Heat treated, Zinc chromated
$\mathbf{9}$	Pivot	Carbon steel	Heat treated
$\mathbf{1 0}$	Lock ring	Carbon steel	Steel wire
$\mathbf{1 1}$	Dust cover plated		
$\mathbf{1 2}$	Brake spring	Zinc chromated	
$\mathbf{1 3}$	Retainer plate	Aluminum alloy	Clear anodized
$\mathbf{1 4}$	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
$\mathbf{1 5}$	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
$\mathbf{1 6}$	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
$\mathbf{1 7}$	Cushion seal retainer	Rolled steel	Zinc chromated
$\mathbf{1 8}$	Hexagon socket head plug	Carbon steel	Rc1/4
$\mathbf{1 9}$	Cushion valve	Free-cutting steel	Zinc chromated

No.	Description	Material	Note
$\mathbf{2 0}$	Valve retainer	Carbon steel	Zinc chromated
$\mathbf{2 1}$	Lock nut	Carbon steel	Zinc chromated
$\mathbf{2 2}$	Plug	Free-cutting steel	
$\mathbf{2 3}$	Wear ring	Resin	
$\mathbf{2 4}$	Pin	Rolled steel	
25	Flat washer	Low carbon steel wire rod	
$\mathbf{2 6}$	Cotter pin		KRL08-02S
$\mathbf{2 7}$	FR One-touch fitting		KR-08C
28	Spatter cover	NBR	
29	FR double layer tube	NBR	
$\mathbf{3 0}$	Rod seal	NBR	
$\mathbf{3 1}$	Piston seal	NBR	
$\mathbf{3 2}$	Tube gasket	NBR	
33	Cushion seal B	NBR	
$\mathbf{3 4}$	Valve seal	NBR	
$\mathbf{3 5}$	Valve gasket	NBR	
36	Lock ring seal	Phosphor bronze	
37	O-ring		
38	Coil scraper		

* The retainer plate (number 13) is used only for unclamp side locking type $\varnothing 50$ and $\varnothing 63$.

Series CLK1

Dimensions CLK1 \square 32/Standard Type

Clamp side lock (B)

Unclamp side lock (F)

[^0]
Clamp Cylinder with Lock Series CLK1

Dimensions CLK1 $\square 40,50,63 /$ Standard Type
Clamp side lock (B)

(mm)																	
Symbol Bore size	BX	BY	D	F	GA	GB	IA	K	L	M	N	S	W	Wc	Ws	Z	ZZ
40	56	54	16	44	77	10	47	14	55	M12 $\times 1.5$	86	112.5	5	39	27.5	114	228
50	64	64	20	55	78.5	10	58	17	58	M16 $\times 1.5$	87.5	117	7	41	33	118.5	232.5
63	74	74	20	69	82	12	72	17	58	M16 $\times 1.5$	91	120.5	5.5	48	39	122	236

Note) Refer to pages 13 and 14 for accessories.

Unclamp side lock (F)

(mm)																		
Symbol Bore size	BX	BY	D	F	GA	GB	IA	K	L	M	N	S	T	W	Wc	Ws	Z	ZZ
40	56	54	16	44	77	10	47	14	55	M12 $\times 1.5$	86	112.5	57	5	39	27.5	114	228
50	64	64	20	55	78.5	10	58	17	58	M16 $\times 1.5$	87.5	117	60	7	41	33	118.5	232.5
63	74	74	20	69	82	12	72	17	58	M16 $\times 1.5$	91	120.5	67	5.5	48	39	122	236

[^1]
Clamp Cylinder with Lock With Magnetic Field Resistant Auto Switch Series CLKIP/CLK1G ø40, ø50, ø63

How to Order

With Magnetic Field Resistant Reed Switch

Clevis width

. ${ }^{840}$ bore size is only available with $\mathrm{A}: 16.5 \mathrm{~mm}$ clevis width.

Bore size	
$\mathbf{4 0}$	40 mm
$\mathbf{5 0}$	50 mm
$\mathbf{6 3}$	63 mm

Cylinder stroke (mm)		
$40,50,63$	$50,75,100,125,150$	

End bracket

Nil	Without fitting
\mathbf{I}	Single knuckle joint
\mathbf{Y}	Double knuckle joint

Locking position -

B	Clamp side lock
F	Unclamp side lock

With Magneitic Fitd Resistant Solid State Swich

Magnetic field resistant auto switch types

Type	Special function	Electrical entry		Wiring (output)	Load voltage			Auto switch model Rail mounting	Lead wire length (m) ${ }^{\text {s }}$			$\begin{aligned} & \text { Applicable } \\ & \text { load } \end{aligned}$
						DC	AC		(Nil)	$\begin{array}{\|c} 3 \\ (\mathrm{~L}) \end{array}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	
Reedswitch	Lights when OFF	Grommet	Yes	2 wire	-	-	100 V	P70	\bullet	\bullet	\bullet	Relay,
	-				24 V	-	100 V	P74	\bullet	\bullet	\bullet	
	Lights when OFF					-	-	P75	\bullet	\bullet	\bullet	PLC
	-		No			48V, 100 V	100V	P80	\bullet	\bullet	-	Relay, PLC
Solid state switch	Diagnostic indication (2 color indicator)	Grommet	Yes	2 wire	24 V	-	-	P5DW	-	\bullet	\bullet	Relay, PLC
	Diagnostic indication (2 color indicator) with spatter resistant cable							P5DWB	-	\bullet	\bullet	

* Lead wire length symbols 0.5 mNil (Example) P70
$3 m \ldots \ldots \ldots$ P
* Type P5DW has a lead wire length of 3 m or 5 m . (0.5 m length is not available.)

- Auto switch type

Nil	Without auto switch	CLK1P
\mathbf{P}	(built-in magnet) with switch rail	CLK1G

* Select applicable auto switch models from the table below.

Built-in magnet cylinder part nos.
In case of built-in magnets without auto switches, the auto switch type symbol is as shown below.
For CLK1P (Example) CLK1PA50-100Y-B
For CLK1G (Example) CLK1GA50-100Y-B-P
-Port and switch rail position

Symbol	Position	Cylinder type	
		$\left(\begin{array}{c} \text { B } \\ \binom{\text { Clamp side }}{\text { lock }} \end{array}\right.$	$\left(\begin{array}{c} \text { F } \\ \binom{\text { Unclamp side }}{\text { lock }} \end{array}\right.$
Nil	Port on top Rail on right		
2	Port on left Rail on right		
3	Port on right Rail on left		
4	Port on top Rail on left		
5	Port on left Rail on top		
6	Port on right Rail on top		
\Rightarrow Port		ch rail	

Cylinder Specifications

Symbols

Clamp side locking type

Unclamp side locking type

Accessories (Options)

Description		Series CLK1PA, CLK1GA		Series CLK1PB, CLK1GB
		$\varnothing 40$	ø50, ø63	$\varnothing 50, \varnothing 63$
Single knuckle joint		CL1K40-17-R5006	CKA40-17-101B	CKB40-17-102B
Double knuckle joint		CL1K40-18-R5006	CKA40-18-206C	CKB40-18-207B
Pedesta	75 mm stroke	CKA40-40-209A		-
	100 mm stroke	CKA40-40-210A		-
	150 mm stroke	CKA40-40-211A		-

Auto Switch Mounting Bracket Part Nos.

Auto switch model	Auto switch mounting bracket part no.			
	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	
Reed switch	D-P70, P74, P75, P80	BAP1-063		
Solid state switch	D-P5DW, P5DWB	BAP2-063		

Auto Switch Unit Weights

Auto switch model	Lead wire length		
	0.5 m	3 m	5 m
D-P7 D-P8	0.05	0.19	0.32
D-P5DW D-P5DWB	-	0.15	0.24

Auto Switch Mounting Bracket Unit Weight
Unit: kg

Part no.	Weight
BAP1-063	0.03

Fluid		Air	
Proof pressure		1.5 MPa	
Maximum operating pressure		1.0 MPa	
Minimum operating pressure		0.2 MPa	
Ambient and fluid temperature		Without auto switch: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, With auto switch: -10 to $60^{\circ} \mathrm{C}$	
Piston speed		50 to $500 \mathrm{~mm} / \mathrm{s}$	
Cushion		Unclamp side (head side): Air cushion, Clamp side (rod side):Without cushion	
Lubrication		Non-lube	
Thread tolerance		JIS class 2	
Stroke length tolerance		${ }_{0}^{+1.0}$	
Mounting		Double clevis*	
* With pin and cotter pin			
Clevis width	16.5 mm	CLK1A, CLK1GA	ø40, ø50, ø63
	19.5 mm	CLK1B, CLK1GB	ø50, ø63

Lock Specifications

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	63
Locking action	Spring lock		
Unlocking pressure	0.2 MPa or more		
Locking pressure	0.05 MPa or less		
Locking direction	One direction (Clamp side, Unclamp side)		
Lock holding force N (Max. static load)	Equivalent to 0.5MPa		
	629	982	

Standard Strokes

Bore size (mm)	Standard stroke (mm)
$\mathbf{4 0 , 5 0 , 6 3}$	$50,75,100,125,150$

Weights (Basic weight is for a 0 mm stroke.)

Bore size (mm)		$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$
Cylinder	Basic weight	F: 1.08, B: 1.02	F: 1.56, B: 1.50	F: 2.31, B: 2.25
	Additional weight per 25mm of stroke	0.09	0.12	0.14
Single knuckle joint	0.25	0.2		
Double knuckle joint (includes pin)		0.33	0.28	

Note) Above values do not include the weight of auto switch or bracket.
Calculation \quad - Basic weight 1.50 ($\varnothing 50$) • Double knuckle joint...0.28 (Y)
(Example) CLK1PB50-100Y-B • Additional weight $\ldots .0 .12 / 25 \mathrm{~mm} \quad 1.50+0.12 \times 100 / 25+0.28=2.26 \mathrm{~kg}$

- Cylinder stroke 100mm

Theoretical Output

Bore size (mm)	Rod size (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)			
				0.3	0.4	0.5	0.6
40	16	OUT	1260	378	504	630	756
		IN	1060	318	424	530	636
50	20	OUT	1960	588	784	980	1180
		IN	1650	495	660	825	990
63	20	OUT	3120	934	1250	1560	1870
		IN	2800	840	1120	1400	1680

Series CLK1P/CLK1G

Construction CLK1P $\square 40,50$, 63/With Magnetic Field Resistant Auto Switch Types D-P7, D-P8
Clamp side lock (B)

Unclamp side lock (F)

Parts list

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Hard anodized
2	Cover	Aluminum alloy	Hard anodized
3	Tube cover	Aluminum alloy	Hard anodized
4	Piston rod	Carbon steel	Hard chromium electro plated
5	Piston	Aluminum alloy	Chromated
6	Bushing	Lead-bronze casting	
7	Bushing	Lead-bronze casting	
8	Clevis bushing	Oil-impregnated sintered alloy	
9	Pivot	Carbon steel	Heat treated, Electroless nickel plated
10	Lock ring	Carbon steel	Heat treated
11	Dust cover	Stainless steel	
12	Brake spring	Steel wire	Zinc chromated
13	Retainer plate	Aluminum alloy	Clear anodized
14	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
15	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
16	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
17	Cushion seal retainer	Rolled steel	Zinc chromated
18	Hexagon socket head plug	Carbon steel	Rc 1/4
19	Cushion valve	Free-cutting steel	Zinc chromated
20	Valve retainer	Carbon steel	Zinc chromated
21	Lock nut	Carbon steel	Zinc chromated
22	Plug	Free-cutting steel	
23	Magnetic field resistant auto switch		
24	Magnet	Rare earth	Nickel plated
25	Magnet holder	Aluminum alloy	Chromated

No.	Description	Material	Note
$\mathbf{2 6}$	Switch mounting plug R	Free-cutting steel	
$\mathbf{2 7}$	Switch mounting plug H	Free-cutting steel	
$\mathbf{2 8}$	Switch mounting rod	Carbon steel	Chromated
$\mathbf{2 9}$	Switch mounting bracket B	Aluminum alloy	
$\mathbf{3 0}$	Hexagon socket head cap screw	Chrome molybdenum steel	Zinc chromated
$\mathbf{3 1}$	Flat washer	Steel wire	Zinc chromated
$\mathbf{3 2}$	Hexagon socket head set screw	Chrome molybdenum steel	Zinc chromated
33	Round head Phillips screw	Chrome molybdenum steel	Black zinc chromated
34	Wear ring	Resin	
35	Pin	Carbon steel	
$\mathbf{3 6}$	Flat washer	Rolled steel	
$\mathbf{3 7}$	Cotter pin	Low carbon steel wire rod	
38	FR One-touch fitting		KRL08-02S
39	Spatter cover		KR-08C
40	FR double layer tube		TRB0806W
41	Rod seal	NBR	
42	Piston seal	NBR	
43	Tube gasket	NBR	
44	Cushion seal B	NBR	
45	Valve seal	NBR	
46	Valve gasket	NBR	
47	Lock ring seal	NBR	
48	O-ring	NBR	
49	Coil scraper		

Construction CLK1G $\square 40,50$, 63/With Magnetic Field Resistant Auto Switch Type D-P5

Clamp side lock (B)

Unclamp side lock (F)

Parts list

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Hard anodized
2	Cover	Aluminum alloy	Hard anodized
3	Tube cover	Aluminum alloy	Hard anodized
4	Piston rod	Carbon steel	Hard chromium electro plated
5	Piston	Aluminum alloy	Chromated
6	Bushing	Lead-bronze casting	
7	Bushing	Lead-bronze casting	
8	Clevis bushing	Oil-impregnated sintered alloy	
9	Pivot	Carbon steel	Heat treated, Zinc plated
10	Lock ring	Carbon steel	Heat treated
11	Dust cover	Stainless steel	
12	Brake spring	Steel wire	Zinc chromated
13	Retainer plate	Aluminum alloy	Clear anodized
14	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
15	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
16	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
17	Cushion seal retainer	Rolled steel	Zinc chromated
18	Hexagon socket head plug	Carbon steel	Rc 1/4
19	Cushion valve	Free-cutting steel	Zinc chromated
20	Valve retainer	Carbon steel	Zinc chromated
21	Lock nut	Carbon steel	Zinc chromated
22	Plug	Free-cutting steel	
23	Magnetic field resistant auto switch		
24	Magnet	Rare earth	Nickel plated

No.	Description	Material	Note
$\mathbf{2 5}$	Switch mounting plug R	Free-cutting steel	
$\mathbf{2 6}$	Switch mounting plug H	Free-cutting steel	
$\mathbf{2 7}$	Switch mounting rod	Carbon steel	Chromated
$\mathbf{2 8}$	Switch mounting bracket B	Aluminum alloy	
$\mathbf{2 9}$	Hexagon socket head cap screw	Chrome molybdenum steel	Zinc chromated
$\mathbf{3 0}$	Flat washer	Steel wire	Zinc chromated
$\mathbf{3 1}$	Hexagon socket head set screw	Chrome molybdenum steel	Zinc chromated
$\mathbf{3 2}$	Round head Phillips screw	Chrome molybdenum steel	Black zinc chromated
$\mathbf{3 3}$	Wear ring	Resin	
$\mathbf{3 4}$	Pin	Carbon steel	
$\mathbf{3 5}$	Flat washer	Rolled steel	
$\mathbf{3 6}$	Cotter pin	Low carbon steel wire rod	
$\mathbf{3 7}$	FR One-touch fitting		KRL08-02S
$\mathbf{3 8}$	Spatter cover		KR-08C
$\mathbf{3 9}$	FR double layer tube		TRB0806W
$\mathbf{4 0}$	Rod seal	NBR	
$\mathbf{4 1}$	Piston seal	NBR	
$\mathbf{4 2}$	Tube gasket	NBR	
43	Cushion seal B	NBR	
44	Valve seal	NBR	
45	Valve gasket	NBR	
46	Lock ring seal	NBR	
47	O-ring	NBR	
48	Coil scraper	Phosphor bronze	

Series CLK1P/CLK1G

Dimensions CLK1P $\square 40,50$, 63/With Magnetic Field Resistant Reed Switch (D-P7, D-P8)
Clamp side lock (B)

Bore size	BX	BY	D	F	GA	GB	IA	K	L	M	N	S	W	Wc	Ws	Z	ZZ	Hs	Ht
40	56	54	16	44	77	10	47	14	65	M12 $\times 1.5$	86	122.5	5	39	27.5	124	238	45	28
50	64	64	20	55	78.5	10	58	17	58	M16 $\times 1.5$	87.5	117	7	41	33	118.5	232.5	49	28
63	74	74	20	69	82	12	72	17	58	M16 $\times 1.5$	91	120.5	5.5	48	39	122	236	54.5	28

Unclamp side lock (F)

\qquad	BX	BY	D	F	GA	GB	IA	K	L	M	N	S	T	W	Wc	Ws	Z	ZZ	Hs	Ht
40	56	54	16	44	77	10	47	14	65	M12 $\times 1.5$	86	122.5	57	5	39	27.5	124	238	45	28
50	64	64	20	55	78.5	10	58	17	58	M16 $\times 1.5$	87.5	117	60	7	41	33	118.5	232.5	49	28
63	74	74	20	69	82	12	72	17	58	M16 $\times 1.5$	91	120.5	67	5.5	48	39	122	236	54.5	28

Dimensions CLK1G $\square 40$, 50, 63/With Magnetic Field Resistant Solid State Switch (Type D-P5)

Unclamp side lock (F)

\qquad	BX	BY	D	F	GA	GB	IA	K	L	M	N	S	T	W	Wc	Ws	Z	ZZ	Hs
40	56	54	16	44	77	10	47	14	55	M12 $\times 1.5$	86	112.5	57	5	39	27.5	114	228	46
50	64	64	20	55	78.5	10	58	17	58	M16 $\times 1.5$	87.5	117	60	7	41	33	118.5	232.5	50
63	74	74	20	69	82	12	72	17	58	M16 $\times 1.5$	91	120.5	67	5.5	48	39	122	236	56

Series CLK1

Accessory Dimensions

Single Knuckle Joint

For $\varnothing 32$

CL1K32-17-R5004
For ø40, ø50, ø63

Part no.	\mathbf{A}	Applicable clamp cylinder
CL1K40-17-R5006	$16.5_{0}^{+0.3}$	Series CLK1A ($\varnothing 40)$
CKA40-17-101B	$16.5_{0}^{+0.3}$	Series CLK1A ($\varnothing 50, \varnothing 63)$
CKB40-17-102B	$19.5_{+0.3}^{+0.7}$	Series CLK1B ($\varnothing 50, \varnothing 63)$

Pin

Part no.	D	L	Applicable double knuckle joint
CDP-2	$10^{-0.0070}$	41.2	For $\varnothing 32$
C1K040-23-54806	$12^{-0.0093}$	57	For $\varnothing 40, \varnothing 50, \varnothing 63$

Double Knuckle Joint
For $\varnothing 32$

CL1K32-18-R5004
For $\varnothing 40, \varnothing 50, \varnothing 63$

Part no.	A	Applicable clamp cylinder
CL1K40-18-R5006	$16.5_{0}^{+0.3}$	Series CLK1A ($\varnothing 40)$
CKA40-18-206C	$16.5_{0}^{+0.3}$	Series CLK1A (ø50, ø63)
CKB40-18-207B	$19.5_{+0.3}^{+0.7}$	Series CLK1B (ø50, $\varnothing 63)$

[^2]
Series CLK1P/CLK1G Accessory Dimensions

Limit Switch Mounting Base/Dog Fitting

CKM040-48-16070A

Note 1) Limit switch mounting base and dog fitting can be repositioned by removing the hexagon socket head cap screw.
Note 2) Dog fitting can be used when the mounting hole size is 97 mm .
Pedestal

Type	KL1	KL2	KX	KZ	KY	KS	KQ	KC	KZZ			Applicable cylinder
									Bore size			
									40	50	63	
CKA40-40-209A	167	75	132	222	35	70	$69^{\circ} 59^{\prime}$	0	398	402.5	406	CLK1A40-75Y, CLK1A50-75Y, CLK1A63-75Y
CKA40-40-210A	177	75	142	232	45	90	$83^{\circ} 58^{\prime}$	0	433	437.5	441	CLK1A40-100Y, CLKA50-100Y, CLK1A63-100Y
CKA40-40-211A	202	85	167	267	70	140	$108^{\circ} 55^{\prime}$	10	518	522.5	526	CLK1A40-150Y, CLK1A50-150Y, CLK1A63-150Y

Series CLK1P/CLK1G

Auto Switches/Proper Mounting Position and Height for Stroke End Detection

Minimum Strokes for Auto Switch Mounting

Minimum strokes are as follows based on the space required for mountin					
Model	Auto switch quantity				
	2 pcs.		"n" pcs.		1 pc.
	Different sides	$\begin{aligned} & \text { Same } \\ & \text { side } \end{aligned}$	Different sides	Same side	
D-C7, D-C8	15	50	$\begin{aligned} & 15+45\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \ldots) \end{aligned}$	$50+45(n-2)$	10
D-C73C	15	65	$\begin{aligned} & 15+50\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \ldots) \\ & \hline \end{aligned}$	$65+50$ (n-2)	
$\begin{aligned} & \text { D-H7, D-H7 } \square \mathrm{W} \\ & \text { D-H7 } \square \mathrm{F} \end{aligned}$	15	60	$\begin{aligned} & 15+45\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \ldots) \end{aligned}$	$65+45(n-2)$	
D-H7C	15	65	$\begin{aligned} & 15+50\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \ldots) \end{aligned}$	$65+50(n-2)$	
D-G5NTL	15	75	$\begin{aligned} & 15+50\left(\frac{n-2}{2}\right) \\ & (n=2,4,6 \ldots) \end{aligned}$	$75+50(n-2)$	
$\begin{aligned} & \text { D-A3 } \\ & \text { D-G3, D-K3 } \end{aligned}$	35	100	$35+30$ (n-2)	$100+100(n-2)$	
D-A4	35	55	$35+30$ (n-2)	$50+50(n-2)$	

Auto switch part no.	Symbol	Auto switch positioning and mounting			
		32	40	50	63
D-C7, D-C8	A	4	6.5	8	8
	B	31.5	29.5	31	31
	Approx. Hs	30.5	35	40.5	40.5
D-C73C	A	4	6.5	8	8
	B	31.5	29.5	31	31
	Approx. Hs	33	37.5	43	43
$\begin{aligned} & \text { D-H7, D-H7 } \square \mathrm{W} \\ & \text { D-H7 } \square \mathrm{F} \end{aligned}$	A	3	5.5	7	7
	B	30.5	28.5	30	30
	Approx. Hs	30.5	35	40.5	47.5
D-H7C	A	3	5.5	7	7
	B	31.5	28.5	30	30
	Approx. Hs	30.5	38	43	50
D-B5, D-B6	A	0 (1)	0.5	2	2
	B	33.5	23.5	25	25
	Approx. Hs	25.5 (28.5)	38	43.5	50.5
D-G5NTL	A	0	2	3.5	3.5
	B	27	25	26.5	26.5
	Approx. Hs	33.5	38	43.5	50.5
$\begin{aligned} & \text { D-A3 } \\ & \text { D-G3, D-K3 } \end{aligned}$	A	-	0	1.5	1.5
	B	-	23	24.5	24.5
	Approx. Hs	-	71.5	77	84
D-A4	A	-	0	1.5	1.5
	B	-	23	24.5	24.5
	Approx. Hs	-	82.5	88	95
* Values inside () are for type D-B59W.					

Minimum Strokes for Auto Switch Mounting

Minimum strokes are as follows based on the space required for mounting auto switches.

Model	Auto switch quantity		
	2 pcs.	"n" pcs.	1 pc.$$
	Same side	Same side	
D-P7, D-P8	50	$50+65(\mathrm{n}-2)$	50
D-P5			

Auto switch part no.	Symbol	Auto switch positioning and mounting		
		$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$
D-P7, D-P8	\mathbf{A}	8	0	0
	\mathbf{B}	25	25	25
	Approx. $\mathbf{H s}$	45	49	54.5
	Approx. Ht	28	28	28
D-P5	\mathbf{A}	3	4.5	4.5
	\mathbf{B}	26	27.5	27.5
	Approx. $\mathbf{H s}$	46	50	56
	Approx. Ht	26	26	26

Series CLK1

Auto Switch Specifications

Contact Protection Boxes/CD-P11, CD-P12

<Applicable switch models>
D-C7/C8, D-C73C/C80C, D-B53, D-P75
The above auto switches do not have internal contact protection circuits.

1. The operating load is an induction load.
2. The length of wiring to the load is 5 m or more.
3. The load voltage is 100VAC.

A contact protection box should be used in any of the above situations.
Otherwise, the life of the contacts may be reduced. (They may stay on continuously.)
Further, even in the case of types having an internal contact protection circuit (D-B54, D-B64, D-B59W, D-P70, D-P74), if the length of the wiring to the load is extremely long (30 m or more) and a PLC having a large rush current is used, confirm whether a contact protection box may be necessary.

Contact protection box specifications

Part no.	CD-P11		CD-P12
Load voltage	100 VAC	200 VAC	24 VDC
Maximum load current	25 mA	12.5 mA	50 mA

* Lead wire length Switch connection side 0.5 m

Load connection side 0.5 m

Contact protection box internal circuits
Lead wire colors inside [] are those prior to conformity with IEC standards.

Contact protection box dimensions

Contact protection box connection

To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit.
Moreover, the switch unit should be kept as close as possible to the contact protection box, with a lead wire length of no more than 1 m .

Lead wire colors inside [] are those prior to conformity with Auto Switch Internal Circuits $\begin{gathered}\text { those pior ito } \\ \text { ELC sinandards. }\end{gathered}$

D-C76

D-C80, D-C80C

D-C73C

D-B53, D-A33

D-B54, D-A34, D-A44

D-B64

D-B59W

Refer to pages 20 and 21 for magnetic field resistant auto switches.

Series CLK1
 Auto Switch Specifications

Refer to pages 20 and 21 for magnetic field resistant auto switches.

Series CLK1

Auto Switch Connections and Examples

Basic Wiring

Lead wire colors inside [] are those prior to conformity with IEC standards.

Solid state 3 wire, NPN

Solid state 3 wire, PNP
2 wire
<Solid state>

2 wire
<Reed switch> Brown [Red]

(Power supplies for switch and load

Examples of Connection to PLC

Sink input specifications

2 wire

Source input specifications

2 wire

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Lead wire colors inside () are for types D-P7 and D-P8.

Connection Examples for AND (Series) and OR (Parallel)

3 wire
AND connection for NPN output

2 wire with 2 switch AND connection

When two switches are connected in series, a load may malfunction because
\oplus the load voltage will decline when in the ON state.
The indicator lights will light up if both of the switches are in the ON state. (Except D-P70 and D-P75.)

$$
=24 \mathrm{~V}-4 \mathrm{~V} \times 2 \mathrm{pcs}
$$

$$
=16 \mathrm{~V}
$$

Example: Power supply is 24VDC
Internal voltage drop in switch is 4 V

The indicator lights will light up when both switches are turned ON.

2 wire with $\mathbf{2}$ switch OR connection

Load voltage at $O F F=\begin{gathered}\text { Leakage } \\ \text { current }\end{gathered} \times 2$ pcs. $\times \begin{gathered}\text { Limpedan }\end{gathered}$

$$
=1 \mathrm{~mA} \times 2 \mathrm{pcs} \times 3 \mathrm{k} \Omega
$$

$$
=6 \mathrm{~V}
$$

Example: Load impedance is $3 \mathrm{k} \Omega$
Leakage current from switch is 1 mA
<Solid state *> When two switches are connected in parallel, malfunction may occur because the load voltage will increase when in the OFF state.

* (Because their indicator light lights up in the OFF condition, reed switch types D P70 and D-P75 are included.)
<Reed switch>
Except for D-P70 and DP75, the load voltage will not increase when turned OFF because there is no current leakage. However, due to the number of switches in the ON state, the indicator lights will sometimes dim or not light up, because of dispersion and reduction of the current flowing to the switches.

Magnet Field Resistant 2 Color Indication Auto Switches Rail Mount Type
 D-P5DWL

Grommet

For use in environments with magnetic field disturbance (AC magnetic field).

\triangle Caution

Usage Precautions
For use with single-phase AC welders. Cannot be used with DC inverter welders (includes rectifying type), arc welders, or condenser type welders.

Auto Switch Internal Circuits

Lead wire colors inside [] are those prior to conformity with IEC standards.

Auto Switch Specifications

D-P5DW (with indicator light)	
Auto switch part no.	D-P5DWL
Wiring	2 wire (non-polar)
Applicable load	24VDC relay, PLC
Load voltage	24VDC (20m to 28VDC)
Load current	6 to 40mA or less
Internal voltage drop	5 V or less
Leakage current	1mA or less at 24VDC
Operating time	40 ms or less
Indicator light	Actuated position............... Red LED lights up Optimum operating position.... Green LED lights up

\cdot Lead wire ——Oil resistant heavy duty vinyl cord, $\varnothing 6,0.5 \mathrm{~mm}^{2}$, 2 wire (Brown, Blue [Red, Black]), 3m

- Impact resistance - $1000 \mathrm{~m} / \mathrm{s}^{2}$
- Insulation resistance - $50 \mathrm{M} \Omega$ or more at 500 VAC (between lead wire and case)
-Withstand voltage -
- Ambient temperature - -10 to $60^{\circ} \mathrm{C}$ 1000VDC for 1 min . (between lead wire and case)
. Enclosure - IEC529 standard IP67, watertight construction (JIS 0920)

Magnetic Field Resistance

When the AC welding current is 16000A or less, the operational distance between the welding conductor (welding gun or cable) and the cylinder or auto switch is 0 mm .
Consult SMC when exceeding 16000A.

Auto Switch Weights

Unit: g		
Model	3 m	Lead wire length
	150	$5 \mathrm{~m}^{*}$
D-P5DWL	240	

* Indicate "Z" at the end of the model number for 5 m lead wire.

Dimensions

Operating range (Dimension I)

Cylinder series	Applicable bore size (mm)		
	40	50	63
CLK1G \square	4	4	4.5

Magnetic Field Resistant Reed Switches D-P70/P74/P75/P80

Grommet

\triangle Caution

Refer to "Magnetic Field Resistant Reed Switches/Specific Product Precautions" (pages 31 and 32).

Auto Switch Internal Circuits

Auto Switch Specifications

D-P70, D-P74, D-P75 (with indicator light)				
Auto switch part no.	D-P70	D-P74		
Electrical entry	Grommet			
Application	Relay, PLC			D-P75
Load voltage	100 VAC	24 VDC	100 VDC	24 VDC
Max. load voltage/Load current range	20 mA	5 to 40 mA	5 to 20 mA	40 mA
Contact protection circuit	Yes			No
Internal voltage drop (internal resistance)	$(10 \Omega$ or less)	2.4 V or less	(0)	
Leakage current	1.8 mA	0	1.2 mA	
Indicator light	Red LED lights up when OFF	Red LED lights up when ON	Red LED lights up when OFF	

D-P80 (without indicator light)		D-P80		
Auto switch part no.	Grommet			
Electrical entry	Relay, PLC			
Application	$24 V_{D C}^{A C}$ or less	$48 V_{D C}^{A C}$	$100 V_{D C}^{A C}$	
Load voltage	50 mA	40 mA	20 mA	
Maximum load voltage	No			
Contact protection circuit	0			
Internal resistance				

- Operating time - 1.2 ms
- Lead wire —— Oil resistant, fire resistant heavy duty cord, $\varnothing 6.8,0.75 \mathrm{~mm}^{2}, 2$ wire (Brown, Blue [White, Black]), 0.5 m * - Impact resistance - $300 \mathrm{~m} / \mathrm{s}^{2}$
- Insulation resistance - $50 \mathrm{M} \Omega$ or more at 500 VAC (between lead wire and case
- Ambient temperature --10 to $60^{\circ} \mathrm{C}$
- Enclosure - IEC standard IP67, watertight (JISCO920), oil proof construction
* Indicate "L" for 3 m lead wire and "Z" for 5 m lead wire at the end of an auto switch part number

Auto Switch Dimensions

Operating range (Dimension \|)

Cylinder series	Applicable bore sizes (mm)		
	40	50	63
CLK1P \square	7	8	8

Effective operating range:
The range with enough magnetic force to resist malfunction due to the outside magnetic field when the switch is ON .
** Operating range:
The range within which the switch turns ON .

Series CLK1

 Safety InstructionsThese safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

Ⓒaution : operator erroc could result in iniuy or equipment damage.
Warning : operator error could result in serious injuy or loss of ilie.
© Danger: In exteme conditions, there is apossible resulto t seriuus iniury or oss of tie.

Note 1) ISO 4414 : Pneumatic fluid power - Recommendations for the application of equipment to transmission and control systems
Note 2) JIS B 8370 : General Rules for Pneumatic Equipment

© Warning

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements.
2. Only trained personnel should operate pneumatically operated machinery and equipment.
Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.
3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
4. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
5. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
6. Before machinery/equipment is restarted, take measures to prevent shooting-out of cylinder piston rod, etc. (Bleed air into the system gradually to create back pressure.)
7. Contact SMC if the product is to be used in any of the following conditions:
8. Conditions and environments beyond the given specifications, or if product is used outdoors.
9. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, press applications, or safety equipment.
10. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

Precautions on design
 Warning

1. There is a possibility of dangerous sudden action by air cylinders if sliding parts of machinery are twisted due to external forces, etc.
In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed to avoid such dangers.
2. A protective cover is recommended to minimize the risk of personal injury.
If a stationary object and moving parts of a cylinder are in close proximity, personal injury may occur. Design the structure to avoid contact with the human body.
3. Securely tighten all stationary parts and connected parts so that they will not become loose.

When a cylinder operates with high frequency or is installed where there is a lot of vibration, ensure that all parts remain secure.
4. A deceleration circuit or shock absorber, etc., may be required.
When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the shock. Install a deceleration circuit to reduce the speed before cushioning, or install an external shock absorber to relieve the shock. In this case, the rigidity of the machinery should also be examined.
5. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.
6. Consider the action when operation is restarted after an emergency stop or abnormal stop.
Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder has to be reset at the starting position, install safe manual control equipment.

Selection
 \triangle Warning

1. Check the specifications.

The products advertised in this catalog are designed according to use in industrial compressed air systems. If the products are used in conditions where pressure, temperature, etc., are out of specification, damage and/or malfunction may be caused. Do not use in these conditions.
Consult SMC if you use a fluid other than compressed air.

\triangle Caution

1. Operate within the limits of the maximum usable stroke.
The piston rod will be damaged if operated beyond the maximum stroke.
Refer to the air cylinder model selection procedures for the maximum usable stroke.
2. Operate the piston within a range such that collision damage will not occur at the stroke end.
Operate within a range such that damage will not occur when the piston having inertial force stops by striking the cover at the stroke end. Refer to the cylinder model selection procedure for the range within which damage will not occur.
3. Use a speed controller to adjust the cylinder drive speed, gradually increasing from a low speed to the desired speed setting.

Mounting
 \triangle Caution

1. Be certain to match the rod shaft center with the load and direction of movement when connecting.
When not properly matched, problems may arise with the rod and tubing, and damage may be caused due to friction on areas such as the inner tube surface, bushings, rod surface and seals.
2. Do not scratch or dent the sliding parts of the cylinder tube or piston rod, etc., by striking or grasping them with other objects.
Cylinder bores are manufactured to precise tolerances, so that even a slight deformation may cause faulty operation. Moreover, scratches or dents, etc., in the piston rod may lead to damaged seals and cause air leakage.
3. Prevent the seizure of rotating parts.
Prevent the seizure of rotating parts (pins, etc.) by applying grease.
4. Do not use until you verify that the equipment can operate properly.
After mounting, repair or modification, etc., connect the air supply and electric power, and then confirm proper mounting by means of appropriate function and leak inspections.
5. Instruction manual.

The product should be mounted and operated after thoroughly reading the manual and understanding its contents.
Keep the instruction manual where it can be referred to as needed.

Series CLK1
Actuator Precautions 2
Be sure to read before handling.

Piping

© Caution

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.
2. Wrapping of pipe tape

When screwing together pipes and fittings, etc., be certain that chips from the pipe threads and sealing material do not get inside the piping.
Also, when pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the pipe.

Cushions

\triangle Caution

1. Readjust using the cushion needle.
Cushions are adjusted at the time of shipment, however, the cushion needle on the cover should be readjusted when the product is put into service, based upon factors such as the size of the load and the operating speed. When the cushion needle is turned clockwise, the cushion contracts and its effectiveness is increased.
2. Do not operate with the cushion needle in a fully closed condition.
This will cause damage to the seals.

Caution

1. Lubrication of cylinder

The cylinder has been lubricated for life at the factory and can be used without any further lubrication.

Air Supply

Warning

1. Use clean air.

If compressed air includes chemicals, synthetic oils containing organic solvents, salt or corrosive gases, etc., it can cause damage or malfunction.

\triangle Caution

1. Install air filters.

Install air filters at the upstream side of valves. The filtration degree should be $5 \mu \mathrm{~m}$ or finer.
2. Install an air dryer, after cooler or water separator, etc.
Air that includes much condensate causes malfunction of valves and other pneumatic equipment. To prevent this, install an air dryer, after cooler or water separator, etc.
3. Use the product within the range of specifications for fluid temperature and ambient temperature.
Take measures to prevent freezing, since moisture in circuits will be frozen under $5^{\circ} \mathrm{C}$, and this may cause damage to seals and lead to malfunction.
Refer to the "Air Cleaning Equipment" catalog for details on compressed air quality.

Operating Environment

\triangle Warning

1. Do not use in environments where there is a danger of corrosion.
Refer to the construction drawings regarding cylinder materials.
2. In dirty locations or where water, oil, etc., splash on the equipment, take suitable measures to protect the rod.

Maintenance

. Warning

1. Maintenance should be done according to the procedure indicated in the instruction manual.

If handled improperly, malfunction and damage of machinery or equipment may occur.
2. Machine maintenance, and supply and exhaust of compressed air.
When machinery is serviced, first check measures to prevent dropping of driven objects and run-away of equipment, etc. Then cut off the supply pressure and electric power, and exhaust all compressed air from the system.
When machinery is restarted, check that operation is normal with actuators in the proper positions.

\triangle Caution

1. Drain flushing.

Remove condensate from air filters regularly. (Refer to specifications.)

\triangle Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications of load current, voltage, temperature or impact.
2. Take precautions when multiple cylinders are used close together.
When multiple auto switch cylinders are used in close proximity, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm .
3. Pay attention to the length of time that a switch is ON at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:
$\mathrm{V}(\mathrm{mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Time load applied }(\mathrm{ms})} \times 1000$
4. Wiring should be kept as short as possible.

<Reed switch>

As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)

1) For an auto switch without a contact protection circuit, use a contact protection box when the wire length is 5 m or longer.
2) Even if an auto switch has a built-in contact protection circuit, when the wiring is more than 30 m long, it is not able to adequately absorb the rush current and its life may be reduced. It is again necessary to connect a contact protection box in order to extend its life. Please contact SMC in this case.
<Solid state switch>
3) Although wire length should not affect switch function, use a wire 100 m or shorter.
5. Take precautions for the internal voltage drop of the switch.
<Reed switch>
1) Switches with an indicator light (Except D-C76)

- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)
[The voltage drop will be " n " times larger when " n " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.

- In the same way, when operating under a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.
Supply Internal voltage_Minimum operating voltage - drop of switch $>$ voltage of load

2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model D-C80).

<Solid state switch>

3) Generally, the internal voltage drop will be greater with a 2 wire solid state auto switch than with a reed switch. Take the same precautions as in 1).
Also, note that a 12VDC relay is not applicable.
6. Pay attention to leakage current.

<Solid state switch>

With a 2 wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.
Operating current of load > Leakage current (OFF condition)

If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3 wire switch if this specification will not be satisfied.
Moreover, leakage current flow to the load will be " n " times larger when " n " auto switches are connected in parallel.
7. Do not use a load that generates surge voltage.
<Reed switch>
If driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or use a contact protection box.

<Solid state switch>

Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid, which generates surge is directly driven, use a type of switch with a builtin surge absorbing element.

8. Cautions for use in an inter-

 lock circuit.When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.
9. Ensure sufficient clearance for maintenance activities.
When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Mounting and Adjustment

\triangle Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts $\left(300 \mathrm{~m} s^{2}\right.$ or more for reed switches and $1000 \mathrm{~m} / \mathrm{s}^{2}$ or more for solid state switches) while handling.
Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
2. Do not carry a cylinder by the auto switch lead wires.

Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper fastening torque.

When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position.
4. Mount a switch at the center of the operating range.

Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON).
(The mounting position shown in a catalog indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.

\triangle Warning

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from applying bending stress or stretching force to the lead wires.

2. Be sure to connect the load before power is applied.

<2 wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.

3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

4. Do not wire with power lines

 or high voltage lines.Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits including auto switches may malfunction due to noise from these other lines.
5. Do not allow short circuit of loads.
<Reed switch>
If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

<Solid state switch>

All models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged.

* Take special care to avoid reverse wiring with the power supply line (brown) and the output line (black) on 3 wire type switches.

6. Avoid incorrect wiring.

<Reed switch>

* A 24VDC switch with indicator light has polarity. The brown lead wire is (+) and the blue lead wire is $(-)$.

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.
Also note that a current greater than that specified will damage a light emitting diode and it will no longer operate.
Applicable models:
D-C73, C73C
D-B53, B54
2) Note however, that in the case of 2 color indicator type auto switches (DB59W), if the wiring is reversed, the switch will be in a normally ON condition.
<Solid state switch>
3) If connections are reversed on a 2 wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
*2) If connections are reversed (power supply line + and power supply line -) on a 3 wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue wire and the power supply line $(-)$ is connected to the black wire, the switch will be damaged.

* Lead wire color changes

Lead wire colors of SMC switches have been changed	2 wire			3 wire		
		Old	New		Old	New
order to meet NECA Stand-	Output (+)	Red	Brown	Power supply (+)	Red	Brown
ard 0402 for production begin-	Output (-)	Black	Blue	GND	Black	Blue
ning September, 1996 and thereafter. Please refer to the				Output	White	Black
Special care should be taken regarding wire polarity during the time that the old colors still coexist with the new colors.	Solid state with diagnostic output			Solid state with latch type diagnostic output		
		Old	New		Old	New
	Power supply (+)	Red	Brown	Power supply (+)	Red	Brown
	GND	Black	Blue	GND	Black	Blue
	Output	White	Black	Output	White	Black
	Diagnostic output	Yellow	Orange	Latch type diagnostic output	Yellow	Orange

Series CLK1
Auto Switch Precautions 3
Be sure to read before handling.

Operating Environment

© Warning

1. Never use in an atmosphere of explosive gases.

The structure of auto switches is not in tended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside cylinders will become demagnetized. (Consult SMC regarding the availability of a magnetic field resistant auto switch.)
3. Do not use in an environment where the auto switch will be continually exposed to water.
Although switches, except for a few mod els, satisfy IEC standard IP67 construc tion (JIS C 0920: watertight construction), do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.

Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be ad versely affected by improper insulation malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult SMC if switches are used where there are temperature cycles other than normal air temperature changes, as they may be adversely affected.
6. Do not use in an environment where there is excessive impact shock.
<Reed switch>
When excessive impact (300m/s ${ }^{2}$ or more) is applied to a reed switch during operation, the contact point will malfunction and generate or cut off a signal momentarily (1 ms or less). Consult SMC regarding the need to use a solid state switch depending upon the environment.
7. Do not use in an area where surges are generated.
<Solid state switch>
When there are units (solenoid type lifter high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around cylinders with solid state auto switches, this may cause deterioration or damage to the switches. Avoid sources of surge generation and disorganized lines.
8. Avoid accumulation of iron waste or close contact with magnetic substances.
When a large amount of ferrous waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause the auto switch to malfunction due to a loss of the magnetic force inside the cylinder.

Maintenance

\triangle Warning

1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
1) Securely tighten switch mounting screws If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires
To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
3) Confirm the lighting of the green light on a 2 color indicator type switch.
Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

Other

\triangle Warning

1. Consult SMC concerning water resistance, elasticity of lead wires, and usage of general purpose auto switches at welding sites, etc.

Selection

© Warning

1. Do not use for intermediate cylinder stops.

This cylinder is designed to lock in either a clamped or unclamped condition. Do not perform intermediate stops while the cylinder is operating, as this will shorten its service life.
2. Select the correct locking position, as this cylinder does not generate holding force opposite to the locking direction.
The clamp side lock does not generate holding force in the cylinder's extending direction, and the unclamp side lock does not generate holding force in the cylinder's retracting direction (free).
3. Even when locked, there may be stroke movement of about 0.5 to 1 mm in the locking direction due to external forces such as the weight of the work piece.
Even when locked, if air pressure drops, stroke movement of about 0.5 to 1 mm may be generated in the locking direction of the lock mechanism due to external forces such as the work piece weight.
4. When locked, do not apply impact loads, strong vibration or rotational force, etc.
This will lead to lock mechanism damage and reduced service life, etc.

Pneumatic Circuits

. Warning

1. Do not use 3 position valves.

The lock may be released due to the inflow of the unlocking pressure.
2. Install speed controllers for meter-out control.

Malfunction may occur if meter-in control is used.
3. Be careful of reverse exhaust pressure flow from a common exhaust type manifold.
Since the lock may be released due to reverse exhaust pressure flow, use an individual exhaust type manifold or single type valve.

Mounting

\triangle Caution

1. Be sure to connect the load to the rod end with the cylinder in an unlocked condition.
If this is done when in a locked condition, it may cause damage to the lock mechanism.

Preparing for Operation

. Warning

1. When shipped from the factory, an unlocked condition is maintained by the unlocking bolt. Be sure to remove this bolt before operating.
Step 1) With no air pressure in the cylinder, clamp side locking operates when the piston rod is retracted, and unclamp side locking operates when it is extended.
Step 2) Remove the dust proof cover 1.
Step 3) Supply air pressure of 0.2 MPa or more to port 2 in the figure below.
Step 4) Remove the unlocking bolt 3 using a hexagon wrench.

Clamp side locking type

Unclamp side locking type
2. Adjust the speed controller and the retraction side air cushion.
If there is excessive impact or collision noise at the stroke end, the connection may become loose and cause damage to machinery.
3. Before restarting operation from the locked position, be sure to restore air pressure to the B port in the figure below.
It is very dangerous to apply pressure to the A port with the B port in an unpressurized state, because the cylinder will move suddenly when unlocked.

Clamp side locking type Unclamp side locking type

Maintaining an Unlocked Condition

Warning

1. To maintain an unlocked condition, be sure to follow the steps shown below.
Step 1) After carefully confirming safety, operate a switching valve (solenoid valve, etc.) so that clamp side locking operates when the piston rod is retracted, and unclamp side locking operates when it is extended. Furthermore, air pressure of 0.2 MPa or more is required when this is done.
Step 2) Remove the dust proof cover.
Step 3) Screw in the accessory unlocking bolt (hexagon socket headcap screw ø32: M3 x 8I, ø40: M4 x 8I, ø50: M4 x $8 \mathrm{l}, ~ ø 63: \mathrm{M} 5 \times 101$).

2. When the locking mechanism is to be used again, be sure to remove the unlocking bolt.
The locking mechanism will not work when the unlocking bolt is screwed in. Remove the unlocking bolt following the steps shown in the section on preparing for operation.

Maintenance

\triangle Caution

1. In order to maintain good performance, use with clean unlubricated air.
If lubricated air, compressor oil or drainage, etc., enters the cylinder, there is a danger of sharply reducing the locking performance.
2. Do not apply grease to the piston rod.

There is a danger of sharply reducing the locking performance.
3. Never disassemble the lock unit.

It contains a heavy duty spring which is dangerous. There is also a danger of reducing the locking performance.

Position Change of Piping Port and Switch Rail (by-pass piping)

Warning

1. Piping port position, switch rail position, and by-pass piping position can be selected by the part number. However, if there is an error in ordering and changes to the positions are required, please note the following.
a. Move all the parts that are aligned in a straight line in the stroke direction by 90° or 180° around the circumference of the cylinder.
Never move parts in the stroke direction, as this will cause malfunction.
b. Do not operate with any parts removed. When the cylinder is operated with any part removed, malfunction will occur and it is very dangerous.
c. Although fittings with sealant are used for pipe fittings and switch mounting plugs, wind them with pipe tape to prevent air leakage when reassembling after position changes.
d. Switch rail mounting plugs R and L have different lengths; be sure to use the correct plug when reassembling.
The short plug (mounting plug R) is used on the rod side.

Unclamp side locking type

Magnetic field resistant auto switches D-P7 and D-P8 are specifically for use with magnetic field resistant cylinders and are not compatible with general auto switches or cylinders. Magnetic field resistant cylinders are labeled as follows.

Magnetic field resistant cylinder with built-in magnet (For use with auto switch type D-P7)

Mounting:

1. The minimum stroke for mounting magnetic field resistant auto switches is 45 mm .
2. In order to fully use the capacity of magnetic field resistant auto switches, strictly observe the following precautions.
1) Do not allow the magnetic field to occur when the cylinder piston is moving.
2) When a welding cable or welding gun electrodes are near the cylinder, change the auto switch position to fall within the operational ranges shown in the graphs on page 32, or move the welding cable away from the cylinder.
3) Cannot be used in an environment where welding cables surround the cylinder.
4) Consult SMC when a welding cable and welding gun electrodes (something energized with secondary current) are near multiple switches.
3. In an environment where spatter directly hits the lead wire, cover the lead wire with protective tubing. Use protective tubing with a bore size of $\varnothing 8$ or more that has excellent heat resistance and flexibility.
4. Be careful not to drop objects, make dents, or apply excessive impact force when handling.
5. When operating two or more parallel and closely positioned cylinders with magnetic field resistant auto switches, separate the auto switches from the other cylinder tubes by an additional 30 mm or more.
6. Avoid wiring in a manner in which repeated bending stress or tension is applied to lead wires.
7. Consult SMC regarding use in an environment with constant water and coolant splashing.

Contact capacity:

Never operate a load that exceeds the maximum contact capacity of the auto switch.

Wiring/Current and Voltage

1. Always connect the auto switch to the power supply after the load has been connected.
2. Auto switch type D-P74 has polarity when used at 24VDC. The white lead wire is positive (+), and the black lead wire is negative $(-)$. When the connection is reversed, the switch operates, but the LED will not light up. Furthermore, when more than the standard current is used, the LED will be damaged and will not function.
3. With auto switch types D-P70 and D-P75, the indicator light turns on when the switch is OFF and this causes leakage current. (With type D-P70...Max. 1.8mA, with type DP75...Max. 1.2mA leakage.) This may cause a problem with a control circuit that operates on very low current.
4. Series connection

When switches are connected in series as shown below:

1) With type D-P74...Note that the voltage drop (2.4V) due to the internal resistance of the LED increases.
2) With type D-P70, P75...There is no functional problem except dimming of the indicator light. (Limit the switches connected in series to approximately two pieces.)
3) When the internal resistance of the LED causes a problem, use a switch without indicator light (type D-P8).

$$
\longmapsto-0-\quad \text {-o- Load }
$$

Data/Magnetic Field Resistant Reed Switch (D-P7, D-P8) Safety Distance

Safety distance from side of auto switch

\qquad

Safety distance from top of auto switch

SMC'S GLOBAL MANUFACTURING, DISTRIBUTION AND SERVICE NETWORK

EUROPE

AUSTRIA
SMC Pneumatik GmbH
CZECH
SMC Czech s.r.o.
DENMARK
SMC Pneumatik A/S
FINLAND
SMC Pneumatiikka OY
FRANCE
SMC Pneumatique SA

GERMANY

SMC Pneumatik GmbH
HUNGARY
SMC Hungary Kft.
IRELAND
SMC Pneumatics (Ireland) Ltd.
ITALY
SMC Italia S.p.A.
NETHERLANDS
SMC Pnuematics BV.
NORWAY
SMC Pneumatics Norway A/S

ROMANIA

SMC Romania s.r.I.
RUSSIA
SMC Pneumatik LLC.
SLOVAKIA
SMC Slovakia s.r.o.
SLOVENIA
SMC Slovenia d.o.o.

EUROPE
SPAIN/PORTUGAL
SMC España, S.A.
SWEDEN
SMC Pneumatics Sweden AB
SWITZERLAND
SMC Pneumatik AG.
UK
SMC Pneumatics (U.K.) Ltd.

ASIA

CHINA
SMC (China) Co., Ltd.
HONG KONG
SMC Pneumatics (Hong Kong) Ltd.
INDIA
SMC Pneumatics (India) Pvt. Ltd.
MALAYSIA
SMC Pneumatics (S.E.A.) Sdn. Bhd.
PHILIPPINES
SMC Pneumatics (Philippines), Inc.
SINGAPORE
SMC Pneumatics (S.E.A.) Pte. Ltd
SOUTH KOREA
SMC Pneumatics Korea Co., Ltd.

TAIWAN

SMC Pneumatics (Taiwan) Co., Ltd.
THAILAND
SMC Thailand Ltd.

NORTH AMERICA

CANADA
SMC Pneumatics (Canada) Ltd.

MEXICO

SMC Corporation (Mexico) S.A. de C.V. USA
SMC Pneumatics, Inc.

SOUTH AMERICA

ARGENTINA

SMC Argentina S.A.
BOLIVIA
SMC Pneumatics Bolivia S.R.L.
BRAZIL
SMC Pneumaticos Do Brazil Ltda.
CHILE
SMC Pneumatics (Chile) S.A.
VENEZUELA
SMC Neumatica Venezuela S.A.

OCEANIA

AUSTRALIA
SMC Pneumatics (Australia) Pty. Ltd.
NEW ZEALAND
SMC Pneumatics (N.Z.) Ltd.

SMC CORPORATION

1-16-4 Shimbashi, Minato-ku, Tokyo 105-0004, JAPAN
Tel: 03-3502-2740 Fax: 03-3508-2480
URL http://www.smcworld.com
© 2000 SMC CORPORATION All Rights Reserved

[^0]: Note) Refer to pages 13 and 14 for accessories

[^1]: Note) Refer to pages 13 and 14 for accessories.

[^2]: * Pin, cotter pin, and flat washer are included with double knuckle joint.

