

Platform Cylinder XT Series ø12, ø16, ø20, ø25, ø32, ø40

							_				
A hig	hly rig	id and	d highly a	ccurate slide t	able ii	ntegra	ated w	vith an	acutu	lator.	CL
■ Two : Slide I	styles o bearing—	of guide -for heav	e rod bearin vy loads	gs to accommod	late you	ır appl	ication				MLGC
Ball b	ushing b	earing-	for highly accu	irate and smooth ope	eration						CNA
											СВ
					9			- Auto	o switcl	hes can	
					20 3			De II	nstalled	1.	
					1			A shock	c absor	ber can	CXW
						$\langle \rangle$	k	be insta	illed (op	ption).	CXS
		-					C	an be i	mounte	ed on	СХТ
				120			_ c	wo side	es.		
			ALC GULUGE				М	ounting from	m Mou	unting from	MX
		and and a second se		2			up	oper side	bott	om side	MXU
			6				ji -	!			MXS
					■ Guid	e of hi	‴∜ ah riaic	 ditv			мхо
Adius	stment	bolt wi	th bumper is	s standard.		Max	CXTM (Slie	de bearing)	CXTL (Ball bu	ushing bearing)	
Perform	s the functio	n of a cush	nion and adjusts the	e stroke 5mm on each	Series	movable	Table displacement	Allowable static weight	Table displacement	Allowable static weight	MXF
side, or		oth sides.			CXT□12	3	(mm) 0.002	(kg) 350	(mm) 0.015	(Kg) 60	MXW
For moving a	and transporti	ng Form	oving the receptacle	For using as a P&P unit in	CXTD16	7	0.004	500	0.019	70	MYD
workpieces.		stamp	bing or press-fitting	actuators.	CXTD20	12 20	0.007	900	0.044	125	
		proce	SSES.		CXTD32	30	0.032	1100	0.123	140	MG
1 and a start			\square		CXT□40	50	0.025	1900	0.109	170	MGP
	\mathcal{D}				Note 1) Ta	ble displace	ement Note	1) "Table dis of deflection	placement" is on of the guid	s the amount de rod that	MGQ
		I				_;-}_ L		is placed	on the maxim	num stroke	MCC
			e a la companya de la		Note 2) All	owable stat	ic load	of the strol	ke (the amour uded).	nt of looseness	MGG
			\checkmark				Note	2) An "allowa the allowa	able stationar	ry weight" is of stationary	MGC
■ Varia	tions					H		weight that to the wor	at can be app kpiece moun	lied vertically iting surface	MGF
Bea	aring Ball bushing	Bore size (mm)	15 25 50 75	Stroke (mm)	0			of the tabl stroke end	e while the ta d.	able is at the	CY1
CXTM12	CXTL12	12			_						MV1
CXTM16	CXTL16	16			_						
CYTM20	CXTI 20	20			_						
		20	╡╽╹╹	ĬĬĬĬĬ							
CXTM25	CXTL25	25	╞┼┿┿┝	$\begin{array}{c} \uparrow \\ \uparrow $							
CXTM32	CXTL32	32	├ ┼∲ ∲	┿ ╺┝╺┝╺┝╺┝╺┝							
CXTM40	CXTL40	40	│ │ 	$\bullet \diamond \diamond$	<u> </u>						

Υ

ĭ

Y

•-----Standard stroke O -----Long stroke

T

Y

Platform Cylinder Series CXT ø12, ø16, ø20, ø25, ø32, ø40

How to Order

Standard stroke O----Long stroke

* Refer to p.3.8-10 for minimum strokes for auto switch equipped style.

Applicable auto switches/Refer to p.5.3-2 for further information on auto switch.

				-	L	oad volta	age	Direct m	ounting	Rail mo	ounting	W	ire len	gth (1) (m)								
Style	Special function	Electrical	Indicator	Wiring (Output)			4.0	ø12 to	o ø40	ø32, ø	ø40	0.5	3	5	_	Applic	able load						
		entry		(Output)	L		AC	Perpendicular	In-line	Perpendicular	In-line	()	(L)	(Z)	(N)								
				3 wire (Equivalent to NPN)	_	5V	_	A96V	A96	_	A76H	٠		—		IC	—						
			Vaa		_	_	200V	—	—	A72	A72H			—	-								
tch		Grommet	res				—	—	A73	A73H					_								
ŝ	—					120	1000	A93V	A93	_	_			—	_		Relay						
pé			No	2 wire	2 wire 24V	5V, 12V	≤100V	A90V	A90	A80	A80H		•	—	—	IC	PLC						
Rec		Connector	Yes			12V	—	—	—	A73C	—				•	—							
		Connector No			5V, 12V	≤24V	—	—	A80C	—				\bullet	IC								
	Diagnosis indicator (2 color)	Grommet	Yes			—	_	—	_	A79W	_			—	—	—							
				3 wire (NPN)	3 wire (NPN)		5V, 12V		—	_	F7NV	F79			0	—	IC						
				3 WIE (INFIN)		12V		F9NV	F9N	_	_	•	•	_	_	_							
		Grommet		3 wire (PNP)		5V, 12V		—	_	F7PV	F7P	٠		0	_	IC							
	—	Gronniet						F9PV	F9P	—	_			—	—								
ء								—	_	F7BV	J79	٠		0	—								
itc				2 wire	12	12V		F9BV	F9B	—	_			—	—	—							
SW		Connector							—	_	J79C	_				\bullet							
ate						2 wire (NDN) 0.41/	2 wire (NDNI)	2 wire (NDN)						F9NWV	F9NW	F7NWV	_			0	—		Relay
st	Diagnosis		103	5 WIE (N N)	24 V	51/ 121/	_	—	_	—	F79W	٠		0	—		PLC						
olic	indicator			3 wire (PNP)		50, 120		—	_	—	F7PW			0	_								
Ň	(2 color)			5 Wile (1117)				F9PWV	F9PW	—	_			0	—								
		Grommet		2 wire		12V		F9BWV	F9BW	F7BWV	J79W			0	—	—							
	Water resistant (2 color)			2 WIE)			—	F9BA	—	F7BA	—		0	—								
	With timer			3 wire (NPN)		5V 12V		—	_	—	F7NT	—		0	_	10							
	With diagnosis output (2 color)					50, 120		—	_	—	F79F			0	—								
	Latch with diagnosis output (2 color)			4 wire (NPN)		_		_	—	_	F7LF	•	•	0	_	—							
\bigcirc	Note 1) Symbols for	r wire lengtl	n 0.5m	E	x.) A80C	: N	Note 2) Sc	lid switche	s marked	with "O" are	e manufac	utured	upon r	eceipt	of orde	r.							

-----g...

5m ------ X A80CL 5m ------ X A80CZ --------- N A80CN ite 3) To operate a relay as the load on the D-F7BV, J79(C)(W), F9B(V), F7NWV, F79W, F98W(V), F7BWV, F7BA, F7LF, or F9BA, use 24V DC because, the operation could become unstable due to an internal voltage drop if 12V DC is used.

Fluid	Air				
Action	Double acting				
Proof pressure	1.5MPa				
Max. operating pressure	0.7MPa ⁽¹⁾				
Min. operating pressure	0.15MPa	I			
Ambient and fluid temperature	-10 to 60 °C (No freezing)	CL			
Piston speed	50 to 500mm/s				
Cushion	Bumper (Both sides/Standard), Shock absorber (Option)	MLGC			
Lubrication	Not required (Non-lube)	CNA			
Stroke adjustable range	-10mm (Forward end, Backward end: -5mm each)				
Note 1) Maximum operating	pressure for this product with the bumper ability and the else concerned.	СВ			
) ong Adjusting B	NI4	CV/MVG			
For Made to Order Specificatins (add "-x138" to the end of the part number) adjustment bolt with					
a longer overall length can be u Refer to the table below for the	used to further extend the adjustment range of the stroke. adjustable range.	CXS			

	CXT⊡12, 16	CXT□20, 25	CXT□32	CXT□40	
Stroke	–26mm	–28mm	–44mm	-42mm	
adjustable range	(One side –13mm)	(One side –14mm)	(One side –22mm)	(One side –21mm)	

Shock Absorber Specifications/Refer to p.5.1-1 for the detailed specifications of schock absorber.

Model		СХТ□ <mark>12</mark> 16	CXT□20	CXT□25	CXT□ ³² 40			
Shock absor	ber	RB0806	RB1007	RB1411	RB2015			
Max. absorbed	energy (J)	2.94	5.88	14.7	58.8			
Absorbed stro	oke (mm)	6	7	11	15			
Collision spee	d	0.05 to 5m/s						
Max. operating fre	quency * (cyc/min)	80	70	45	25			
Ambient tem	perature		-10 to	80°C				
Spring force	Expanded	1.96	4.22	6.86	8.34			
(N)	Compressed	4.22	6.86	15.30	20.50			
Weight (g)		15	25	65	150			

The value shown is for when the absorption energy per cycle is at a maximum level.
Accordingly, the operating frequency can be increased in accordance with the absorption energy.

+ IN

Theoretical Force

				(N)	
Operating	Piston area	Operatin	g pressui	e (MPa)	OUT 🚽
direction	(mm²)	0.3	0.5	0.7	- F
IN	84.8	25	42	59	
OUT	113	34	57	79	
IN	151	45	75	106	
OUT	201	60	101	141	
IN	236	71	118	165	
OUT	314	94	157	220	
IN	378	113	189	264	
OUT	491	147	245	344	
IN	603	181	302	422	
OUT	804	241	402	563	
IN	1056	317	528	739	
OUT	1257	377	628	880	
	Operating direction IN OUT IN OUT IN OUT IN OUT IN OUT	Operating direction Piston area (mm ²) IN 84.8 OUT 113 IN 151 OUT 201 IN 236 OUT 314 IN 378 OUT 491 IN 603 OUT 804 IN 1056 OUT 1257	Operating direction Piston area (mm ²) Operatin (mm ²) IN 84.8 25 OUT 113 34 IN 151 45 OUT 201 60 IN 236 71 OUT 314 94 IN 378 113 OUT 491 147 IN 603 181 OUT 804 241 IN 1056 317 OUT 1257 377	Operating direction Piston area (mm ²) Operating pressure (mm ²) IN 84.8 25 42 OUT 113 34 57 IN 151 45 75 OUT 201 60 101 IN 236 71 118 OUT 314 94 157 IN 378 113 189 OUT 491 147 245 IN 603 181 302 OUT 804 241 402 IN 1056 317 528 OUT 1257 377 628	Operating direction Piston area (mm ²) Operating pressure (MPa) 0.3 0.5 0.7 IN 84.8 25 42 59 OUT 113 34 57 79 IN 151 45 75 106 OUT 201 60 101 141 IN 236 71 118 165 OUT 314 94 157 220 IN 378 113 189 264 OUT 491 147 245 344 IN 603 181 302 422 OUT 804 241 402 563 IN 1056 317 528 739 OUT 1257 377 628 880

Theoretical force (N) = Pressure (MPa) X Piston area (mm²)

CL
MLGC
CNA
СВ
CV/MVG
CXW
CXS
СХТ
МХ
MXU
MXS
MXQ
MXF
MXW
MXP
MG
MGP
MGQ
MGG
MGC
MGF
CY1
MY1

Series CXT

Weight

TM (Slide bearing)

CXTW (Sinde	bearing)									(kg)
Stroke (mm)	15	25	50	75	100	125	150	175	200	250	300
12	0.85 (0.35)	0.90 (0.35)	1.02 (0.35)	1.13 (0.36)	1.25 (0.37)	_	_	_	_	_	_
16	1.18 (0.50)	1.24 (0.50)	1.39 (0.51)	1.54 (0.52)	1.68 (0.53)			_		_	_
20		2.35 (0.85)	2.61 (0.87)	2.89 (0.88)	3.15 (0.90)	3.41 (0.91)	3.66 (0.93)	3.92 (0.94)	4.18 (0.96)	_	_
25		2.76 (1.09)	3.03 (1.11)	3.34 (1.14)	3.62 (1.16)	3.89 (1.18)	4.16 (1.21)	4.43 (1.23)	4.70 (1.25)	5.25 (1.30)	5.79 (1.34)
32		4.62 (2.06)	4.98 (2.10)	5.34 (2.14)	5.70 (2.17)	6.00 (2.21)	6.35 (2.25)	6.69 (2.29)	7.04 (2.33)	7.73 (2.41)	8.43 (2.49)
40		8.30 (3.71)	8.82 (3.75)	9.32 (3.79)	9.83 (3.83)	10.40 (3.87)	10.91 (3.91)	11.43 (3.95)	11.95 (3.99)	12.98 (4.07)	14.02 (4.15)
CXTL (Ball b	ushing I	pearing)									(kg)
Stroke (mm) Bore size (mm)	15	25	50	75	100	125	150	175	200	250	300
12	0.75 (0.41)	0.78 (0.42)	0.85 (0.42)	0.92 (0.42)	0.98 (0.43)	_	_		_	_	—
16	1.05 (0.57)	1.08 (0.57)	1.18 (0.58)	1.27 (0.59)	1.35 (0.60)						_
20		2.00 (1.02)	2.15 (1.04)	2.32 (1.05)	2.46 (1.07)	2.60 (1.08)	2.75 (1.10)	2.89 (1.11)	3.03 (1.13)	_	_

2.92

(1.33)

4.95

(2.38)

8.46

(4.43)

(4.35)Note 1) Factors in parentheses are weight of movable parts (weight of movable parts of the cylinder is included.)

2.57

(1.28)

4.47

(2.30)

7.86

2.77

(1.30)

4.71

(2.34)

8.16

(4.39)

Note 2) The weight indicated above does not include a shock absorber

Operation

25

32

40

1 Make sure not to apply to the slide block a load that exceeds the value that has been calculated in the selection procedure.

2.41

(1.25)

4.23

(2.26)

7.55

(4.31)

- Operate the cylinder securing it by its plates, not by securing it by its (2) slide block.
- 3 The clearance between the slide block and the plate at the stroke end is approximately 1mm to 6mm. It could be extremely dangerous, as there is the risk of getting your fingers caught. Install a cover as necessary
- ④ At both stroke ends, adjust the damper portion at the end of the adjustment bolt so that it comes in contact with the slide block. (The clearance between the slide block and the plate must be 1mm or more.)

If it is operated without making any contact, the piston rod of the actuating cylinder or the connecting hardware (adapter) could become damaged by an excessive impact, or the slide block could collide with the plate and create an abnormal noise.

- The load weight or operating speed will be limited if only the adjustment bolt is used. Refer to the section on "Allowable load when only the adjustment bolt is used" on p.3.8-5.
- (6) Contact SMC if this product will be used in an environment in which the piston rod and the guide shaft surfaces will be exposed to water (hot water), coolant, cutting chips, or dust.
- (7) The slide block bearings must be greased periodically. Inject grease (Class 1 or 2 lithium soap grease consistency) through the grease inlet

Note) On those with a cylinder bore of ø12, apply grease to the guide shaft.

8 To operate the cylinder, use a non-lubricating air supply. To lubricate, use Class 1 turbine oil (ISOVG32). (Never use machine oil or spindle oil.)

Installation

3.08

(1.35)

5.13

(2.42)

8.82

(4.47)

3.24

(1.37)

5.36

(2.46)

9.13

(4.51)

3.40

(1.39)

5.59

(2.50)

9.44

(4.55)

3.56

(1.42)

5.82

(2.54)

9.75

(4.59)

3.78

(1.46)

6.27

(2.62)

10.37

(4.67)

4.19

(1.50)

6.73

(2.70)

10.99

(4.74)

- ① While a high level of flatness is desired for the surface on which the cylinder is to be mounted, if sufficient flatness cannot be attained, use shims to adjust the installation of the cylinder so that the slide block can operate throughout its stroke under the minimum operating pressure.
- 2 Do not scratch or gouge the piston rod of the actuating cylinder, as this could damage the rod seal and lead to air leaks. The same applies to the quide shaft.
- Make sure not to apply shocks or excessive moment to the slide block of the ball bushing style.
- (4) The port direction of the actuating cylinder can be changed in 90° increments by removing the four bolts that secure the cylinder in place. After changing the direction, verify the operation at the minimum operating pressure.
- Before the installation, thoroughly flush out the piping to prevent dust or cutting chips from entering the cylinder.
- The mounting position of the adjustment bolt and the shock absorber cannot be inverted due to the constraints imposed by the locating pin for the shock absorber that is provided on the slide block. To invert the position, contact SMC.

Handling the shock absorber

- ① The RB Series (SMC made) shock absorbers can absorb a wide range of energy without requiring adjustment. (No adjustment screw is provided.)
- The screw at the bottom is not for adjustment. Never turn this screw as (2) it could cause an oil leak (lowered performance).
- 3 Do not scratch the surface of the shock absorber rod because doing so could affect the shock absorber's durability or lead to poor retraction
- * For detailed specifications of the shock absorber, refer to p.5.1-1.

Series CXT How To Select Models

Selection Procedures

		MLGC
		CNA
Guideline for selec	tion of bearing style	СВ
Dearing	Impact load and vibration load are added.	CV/MVG
Slide bearing	•Change in load is large. •Long life span is required.	CXW
Ball bushing bearing	•High accuracy (Little rattle is allowed.) •Smooth operation	CXS
$\sum \alpha n = \frac{Movable}{Max. movable}$	weight[W] + Moment[mn] weight[Wmax] + Allowable moment[Mn]	СХТ
Movable weight [W] a Horizontal mounting:	re as follows in compliance to the mounting way. W	MX
Inclined mounting: W Vertical mounting: 0	cos θ (θ : Angle of inclination, Refer to the diagram below.) (None)	MXU
The moment load rate mu or all types, M1 to M3. As	st be calculated in accordance with the above formula for Wmax and Mn, refer to the maximum laod mass	MXS
and allowable moment tab	le in the next section.	MXQ
Note) Make sure that the o of gravity of the load does given in the table below. (I	distance between the guide shaft center to the center not exeed the distance GP between the guide shafts Refer to the diagram below.) If the distance must be	MXF
exceeded due to unavoida applied to the guide as ind	able circumstances, decrease the load rate that is licated below in order to determine the distance.	MXW
∑αn≦ <mark>_1</mark> (L/GP)²	(provided that L>GP)	MXP
	,	MG
	(mm)	MGP
$\varphi \bullet \varphi$	Cylinder bore size 12 16 20 25 32 40 Distance between guide rods GP 50 65 80 90 110 130	
GP		MGQ
Horizontal mounting:	f=11 X W	MGG
Inclined mounting: f= (Refer to the diagram of	μ X Wcosθ+Wsinθ on the right.)	MGC
Vertical mounting: f= μ=0.3(Slide bearing	w s)	MGF
μ =0.1(Ball bushing	bearings) θ	CY1
)		MY1
Det only	ermine the movable weight WA which can be operated / by adjusting bolts.	

Selection of applicable model With shock absorbers CL

Series CXT

Non-rotating Accuracy of Slide Block

Bore size	CX (Slide b	TM pearing)	CXTL (Ball bushing bearing)			
(mm) 12	θp(=θy)	θr	θp(=θy)	θr		
12	±0.09°	±0.12°	±0.05°	±0.05°		
16	±0.08°	±0.10°	±0.05°	±0.04°		
20	±0.07°	±0.08°	±0.04°	±0.03°		
25	±0.07°	±0.07°	±0.04°	±0.03°		
32	±0.08°	±0.07°	±0.04°	±0.03°		
40	±0.06°	±0.06°	±0.03°	±0.03°		

Table of Maximum Movable Weight and Allowable Moment

Bore size	Pooring	Max. movable weight	Allowable moment (N·m)			
(mm)	Dearing	Wmax (kg)	M1(=M3)	M2		
40	Slide	2	1.25	1.68		
12	Ball bushing	3	0.53	0.70		
40	Slide	7	3.34	4.25		
10	Ball bushing	/	1.53	2.11		
20	Slide	10	11.4	17.1		
20	Ball bushing	12	5.60	7.28		
25	Slide	20	11.4	19.3		
25	Ball bushing	20	5.60	8.19		
22	Slide	20	19.8	23.3		
32	Ball bushing		10.1	14.8		
40	Slide	FO	37.3	46.2		
40	Ball bushing	50	21.3	27.5		

Note) For the purpose of calculating the moment, the length of the arm is the distance that is measured from the guide shaft center ("•" mark). Dimension *t* from the guide shaft center to the top surface of the table is indicated below.

						(mm)
Bore size	12	16	20	25	32	40
ℓ dimension	19.5	24	28	31	39.5	47.5

Allowable Load Only by Adjusting Bolts

If only the adjustment bolt is used for stopping the load, make sure that the load weight and the speed will be below the curve in the graph on the right, taking into consideration the durability of the rubber bumper that is attached to the end of the adjustment bolt and the vibration and noise that are created when stopping (provided that the maximum load weight is not exceeded).

In conditions in which the load mass and the speed will be above the curve, use a shock absorber (provided that the maximum load weight is not exceeded).

Caution

In the case of the ball bushing style, the service life could be drastically shortened if shocks or excessive moments are applied. Therefore, even if the conditions given above are not exceeded, the use of a shock absorber is recommended.

Static Movable Weight When Stopped

When the CXT Series cylinder is used for moving the workpiece receptacle, such as in a stamping or press-fitting process, a vertical load will be applied to the top surface of the stopped slide block (refer to the diagram on the right). In this case, the allowable weight is greater than the maximum load weight, as given in the table on the right.

Caution

- Make sure that the slide block is stopped at the stroke end.
- Match the center of the weight to be applied with the center of the slide block. The direction of the weight must be vertically downward in relation to the surface on which the workpiece is mounted, as shown in the diagram on the right.
- O not apply a load that involves shocks such as those caused by pounding (particularly with the ball bushing style).
- (If this weight is applied, the deflection of the guide shaft will also have a large value.

Allowable static weight

Bore size (mm)	CXTM (Slide bearing)	CXTL (Ball bushing bearing)
12	350	60
16	500	70
20	900	125
25	900	125
32	1100	140
40	1900	170

(kg)

Construction

Component Parts

No.	Description	N	laterial	Notes
1	Slide block	Aluminu	m alloy	Hard anodized
2	Plate A	Aluminu	m alloy	Hard anodized
3	Plate B	Aluminu	m alloy	Hard anodized
•		СХТМ	Carbon steel	Hard chrome plated
(4)	Guide rod	CXTL	Bearing steel	High frequency quenching, Hard chrome plating
(5)	Slide bearing	Bearing al	loy, Carbon steel	
6	Ball bushing bearing			
7	C set ring	Carbon tool steel		Nickel plated
8	Adapter	Carbon	steel	Nickel plated
9	Connected disk	Carbon	steel	Nickel plated
10	Flat seat metal	Carbon	steel	Zinc chromated
1	C type set ring	Carbon	tool steel	Nickel plated
(12)	Hex. socket head cap bolt	Chrome molybdenum steel		Nickel plated
13	Spring seat metal	Steel wire		Nickel plated
14	Adjusting bolt (With damper)	Carbon steel, Elastomer Nickel plated		Nickel plated
(15)	Nut	Carbon	steel	Nickel plated

Com	ponent Parts				MXW	
No.	Description	Material	Notes			
16	Shock absorber		Option		МХР	
17	Nut	Carbon steel	Shock absorber a	accessory		
(18)	Hex. socket head cap bolt	Chrome molybdenum steel	Nickel plated		MG	
(19)	Cylinder tub	Aluminum alloy	Hard anodized			
20	Collar	Aluminum alloy	White anodized	d	MGP	
21)	Piston	Aluminum alloy	Chromate	Chromate		
22	Distan red	Stainless steel	—	ø12 to 25	MGQ	
4	Piston rod	Carbon steel	Hard chrome plating	ø32, 40	moq	
23	C set ring	Carbon tool steel	Phosphate zinc	coating	MGG	
24)	Bumper A	Poly-urethane				
25	Bumper B	Poly-urethane			MGC	
26	Magnet					
27	Rod seal	NBR		MGF		
28	Piston seal	NBR				
29	Tube gasket	NBR			CY1	

Replacement Parts	Seal Kits (A rod seal 2), a piston sael 28 and a tube gasket 29 are included in the seal kits. Order the seal kits with ordering numbers.)											
			Kit	No.								
Model	CXT□12	CXT□16	CXT□20	CXT□25	CXT□32	CXT□40						
Stroke	CDQSB12	CDQSB16	CDQSB20	CDQSB25	CDQ2A32	CDQ2A40						
Standard stroke	CQSB12-PS	CQSB16-PS	CQSB20-PS	CQSB25-PS	CQ2B32-PS	CQ2B40-PS	_					
Long stroke ⁽¹⁾	CQSB12-L-PS	CQSB16-L-PS	CQSB20-L-PS	CQSB25-L-PS	CQ2A32-L-PS	CQ2A40-L-PS	-					

Note 1) The same type of the part is equipped to the head side for the long stroke style.

Series CXT Dimensions Ø12 to Ø25

Cylinder form **T**

Ð

働╂● ø12

€¥® ⊕ <u>®hh@</u> ø16

																					(mm)
Bore size (mm)	Standard stroke (mm)	A	в	с	Slide	d Ball b	ushing	Е	G	GP	н	НА	HG	HN	HP	нт		J	JK	L	LD
12	15, 25	8.5	8	4	16	1	0	25	7.5	50	34	6	14.5	34	33	18	M5 2	X 0.8	9.5	68	4.3
16	15, 25	7.5	9.5	5	18	1	2	29	6.5	65	40	6.5	16	39.5	39	21	M6 2	X 1	9.5	75	5.2
20	25, 50	9.5	11	6.5	25	1	6	36	8.5	80	46	9	18	44.1	45	24	M8 2	X 1.25	10	86	6.9
25	25, 50	9.5	11	6.5	25	1	6	40	8.5	90	54	9	23	55	53	28	M8 2	X 1.25	10	86	6.9
Bore size (mm)	MM	м	(NI)	(NIA)	N	N	D۸*	DD	DW/	0	0.W/	D	D	DW/	c	т		w	v	v	7
Dore Size (mm)	IVIIVI	IVI	(11)	(INA)	N IN	IN	FA	FD	FVV	ų	QW	R	D	R VV	3		U	vv	^	I	2
12	M4 X 0.7	6	8	27	M8 X	1.0	30	60	80	85	26	RB0	806	17.5	96	13	1	77	22	7.5	5
16	M5 X 0.8	8	8	27	M8 X	1.0	45	70	95	90	40	RB0	806	15	103	13	2	92	22	7.5	5
20	M6 X 1	10	10	29	M10	X 1.0	60	100	120	105	46	RB1	007	26	122	17	2	117	29.5	9	5.5
25	M6 X 1	10	12	50	M14	X 1.5	60	100	130	105	50	RB1	411	22	122	17	2	127	32.5	11	5.5

Long stroke

Long strok	(e			(mm)
Bore size (mm)	Stroke range (mm)	Х	Y	Z
12	50, 75, 100	32	7.5	7.5
16	50, 75, 100	32	7.5	7.5
20	75, 100, 125, 150, 175, 200	41	9	9
25	75, 100, 125, 150, 175, 200, 250, 300	44	11	11

Slide bearing Standard stroke Long stroke Ball bushing bearing Standard stroke Long stroke

SCXT Tube bore size A, #1(#1+#3) SCXT Tube bore size B, #1(#1+#3)

SCXT Tube bore size A, #2(#2+#3) SCXT Tube bore size B, #2(#2+#3)

ø32, ø40 🖾

Series CXT **Auto Switch Specifications**

Refer to p.5.3-2 for details on auto switch.

Common Specifications

Style	Reed switch	Solid state switch	
Current leakage	None	3 wire style: 100 mA or less 2 wire style: 1mA or less	
Operating time	1.2ms	1 ms or less ⁽²⁾	
Shock resistance	300m/s ²	1000m/s ²	
Insulation resistance	50M Ω or more at 500V	DC (Electrical wire, Between bowls)	
Voltage resistance	1 minute at 1500V AC ⁽¹⁾ (Electrical wire, Between bowls)	1 minute at 1000V AC (Electrical wire, Between bowls)	
Ambient temperature		–10 to 60°C	
Enclosure	IP67 according to IEC529 standard, C 0920 osmosis proof construction according to JIS standard		

Electrical entry for the connector style and model D-A9□(V): 1 minute at 1000V AC (Between electrical wire and case)

 \mathcal{O} Note 2) Except for the solid state switch with a timer (D-F7NT)

Electrical Wire Specifications

Auto swit	ch model				
Reed switch	Solid state switch	Wire specification			
D-A90(V) D-A93(V)	D-F9B(V) D-F9BW(V) D-F9BAL	Oil proof vinyl cab tire cord ø2.7 0.18mm ² X 2 cores (brown, blue)			
D-A96(V)	D-F9N(V) D-F9P(V) D-F9NW(V) D-F9PW(V)	Oil proof vinyl cab tire cord ø2.7 0.15mm ² X 3 cores (brown, black, blue)			
D-A72(H) D-A73(H)(C) D-A76H D-A80(H)(C) D-A79W	D-J79(C)(W) D-F7BV D-F7BWV D-F7BAL	Oil proof vinyl cab tire cord ø3.4 0.2mm ² X 2 cores (brown, blue)			
	D-F79(W) D-F7P(V)(W) D-F7NV D-F7NWV D-F7NTL	Oil proof vinyl cab tire cord ø3.4 0.2mm ² X 3 cores (brown, black, blue)			
	D-F7LF D-F79F	Oil proof vinyl cab tire cord ø3.4 0. 2mm ² X 4 cores (brown, black, blue, orange)			

Minimum Strokes for Auto Switch Mounting

								(mm)
Applicable model	Auto switch model Number of mountings	D-A 9□	D-A9⊡V	D-F9N	D-F9B D-F9P D-F9⊟W	D-F9⊡V	D-F9□WV	D-F9BAL
CXT□12	2 pcs.	10	10	15	20	5	10	25
CXTD25	1 pc.	10	5	15	20	5	10	25
OVT 32	2 pcs.	10	10	10	15	5	15	20
CXI 40	1 pc.	10	5	10	15	5	10	20

(mm) D-F7□W Auto switch model **D-A7** D-A7□H D-J79W **D-A8**□ D-F7□V D-A80H Applicable D-F7 UVV **D-A79W** D-F9BAL D-F7LF D-A73C D-J79C **D-F7**□ model D-F7NT Number of mountings D-A80C D-J79 D-F79F 10 20 2 pcs. 5 15 15 20 25 CXT 1 pc. 5 5 10 15 15 20 25

Installation

- ()When handling the product, do not drop an object on it, gouge it, or apply an excessive impact on it.
- ②Do not operate it in an area in which a large amount of magnetism is present.
- (3) If the cylinder is operated in an area in which magnetic objects are placed in proximity to the actuating cylinder, the operation of auto switches could become unstable. If this is the case, contact SMC.

Magnetic body (Iron board, etc.

- ④ Avoid wire routing that applies repetitive bending stress or tensile force to the lead wires.
- (5)To operate the product in an area in which a large amount of water, oil, or cleaning fluid is present in the atmosphere, contact SMC.
- (6)When tightening the auto switch retaining screw, for the D-A9□(V) or D-F9□□(V), use a watchmaker's screwdriver with a grip diameter of 5 to 6mm. The tightening torque is approximately 0.1 to 0.2Nm.
- ⑦It might not be possible to install the D-A9□(V) or D-F9□□(V) auto switches on the cylinders with a bore size of ø20 and ø25, due to their stroke or the size of their pipe fittings. If this is the case, contact SMC.
- (8) For detailed specifications of the auto switches, refer to the pages on auto switches in SMC's Best Pneumatics No. 2 catalog.

Cylinder piston speed

In an application in which an auto switch is placed in the middle of a stroke to actuate a load as the piston passes, be aware that if the piston speed is too fast, even though the auto switch will activate, the length of time during which the switch is activated will be short, without being able to properly actuate the load.

Reed switches

Contact capacity

Never operate a load that exceeds the maximum contact capacity of the auto switch. To operate a relay as a load, use the relay shown in the table below or the equivalent, in order to extend the life of the switch.

Fuji Electric	MRON	Matsushita
HH5	MY	HC
Tokyo Electric	Izumi Electric	Mitsubishi Electric
MPM	RM	RD

Wiring: amperage and voltage

- ①Make sure to connect the load before connecting the auto switch to the power supply.
- ②If switches with an indicator light such as D-A93(V) or D-A73(H, C) are used under a DC load, their polarities must be observed. The brown lead wire is positive (+) and the blue lead wire is negative (-). The switches will operate even if the wires are reversed, but their LEDs will not illuminate. Be aware that if an amperage that is greater than the rated amperage is applied, the LED will become damaged and will not operate.
- ③Using switches with an indicator light (except DA96, A96V, and A76H)
 - •If the switch is operated below the rated amperage, its switch function will operate without a problem, even if its LED becomes dim or does not illuminate at all.
 - ●If the switches are connected in series as shown in the diagram below, be aware that the internal voltage drop of the LEDs will be significant (up to 2.4V or 2.6V per switch).

- ●If a switch is operated below the rated voltage, even if the switch operation is normal, the load might not operate due to the problem of the switch's internal voltage drop. Therefore, make sure to verify the load's allowable voltage range before operating the switch.
- (4) If the internal voltage drop of an LED poses a problem, use a switch without an indicator light.

Solid state switches

- Never operate a load that exceeds the maximum contact capacity of the auto switch.
- ⁽²⁾Make sure to connect the load before connecting the auto switch to the power supply.
- ③Make sure to wire it correctly because improper wiring could also cause damage to the load.
- ④A 2 wire auto switch has an internal voltage drop of 5V or less and leak amperage of 1mA or less. Therefore, it will satisfy the input specifications of most PLCs. However, if there is any problem, use a 3 wire DC style.

CL
MLGC
CNA
СВ
CV/MVG
CXW
CXS
СХТ
MX
MXU
MXS
MXQ
MXF
MXW
MXP
MG
MGP
MGQ
MGG
MGC
MGF
CY1
MY1

Series CXT

Auto Switch Mounting Position and Mounting Height

Reed switch D-A72H D-A73H D-A76H D-A80H	Solid state D-F79 D-F7P D-J79 D-F79W D-F7PW	e switch D-J79W D-F7BAL D-F79F D-F7LF D-F7NTL	ø32, 40)
				D-A72H D-A80H	D-F79	D-F79W D-F7BAI	

Auto switch model		D-A72H D-A80H D-A73H D-A76H			D-F79 D-F7P D-J79		D-F79W D-F7BAL D-F7PW D-F79F D-J79W D-F7LF			D-F7NTL			
Symbol		Α	В	Hs	Α	В	Hs	Α	В	Hs	Α	В	Hs
Standard stroke													
Bore size (mm)	32	9.5	6.5	32.5	9.5	6.5	32.5	13.5	10.5	32.5	14.5	10.5	32.5
	40	13.5	9	36	13.5	9	36	17.5	13	36	18.5	13	36
Long stroke													
Bore size	32	10	18	32.5	10	18	32.5	14	22	32.5	15	23	32.5
(mm)	40	13.5	24	36	13.5	24	36	17.5	28	36	18.5	29	36

3.8-12

Platform Cylinder Series CXT

World Wide SMC Support...

North American Branch Offices For a branch office near you call: 1-800-SMC-SMC1 (762-7621)

SMC Pneumatics Inc. (Atlanta) 1440 Lakes Parkway, Suite 600 Lawrenceville, GA 30043 Tel: (770) 624-1940 FAX: (770) 624-1943

SMC Pneumatics Inc. (Austin) 2324-D Ridgepoint Drive Austin, TX 78754 Tel: (512) 926-2646 FAX: (512) 926-7055

SMC Pneumatics Inc. (Boston) Zero Centennial Drive Peabody, MA 01960 Tel: (978) 326-3600 Fax: (978) 326-3700

SMC Pneumatics Inc. (Charlotte) 5029-B West W.T. Harris Blvd. Charlotte, NC 28269 Tel: (704) 597-9292 FAX: (704) 596-9561

SMC Pneumatics Inc. (Chicago) 27725 Diehl Road Warrenville, IL 60555 Tel: (630) 393-0080 FAX: (630) 393-0084

SMC Pneumatics Inc. (Cincinnati) 4598 Olympic Blvd. Erlanger, KY 41018 Tel: (606) 647-5600 FAX: (606) 647-5609

Europe ENGLAND SMC Pneumatics (U.K.) Ltd. GERMANY SMC Pneumatik GmbH **ITALY SMC Italia SpA** FRANCE **SMC Pneumatique SA** HOLLAND SMC Controls BV SWEDEN **SMC Pneumatics Sweden AB** SWITZERLAND **SMC Pneumatik AG** AUSTRIA **SMC Pneumatik GmbH** SPAIN SMC España, S.A. IRELAND SMC Pneumatics (Ireland) Ltd. Asia JAPAN

SMC Pneumatics Inc. (Cleveland) 2305 East Aurora Rd., Unit A-3 Twinsburg, OH 44087 Tel: (330) 963-2727 FAX: (330) 963-2730

SMC Pneumatics Inc. (Columbus) 3687 Corporate Drive Columbus, OH 43231 Tel: (614) 895-9765 FAX: (614) 895-9780

SMC Pneumatics Inc. (Dallas) 12801 N. Stemmons Frwy, Ste. 815 Dallas, TX 75234 Tel: (972) 406-0082 FAX: (972) 406-9904

SMC Pneumatics Inc. (Detroit) 2990 Technology Drive Rochester Hills, MI 48309 Tel: (248) 299-0202 FAX: (248) 293-3333

SMC Pneumatics Inc. (Houston) 9001 Jameel, Suite 180 Houston, TX 77040 Tel: (713) 460-0762 FAX: (713) 460-1510

SMC Pneumatics Inc. (L.A.) 14191 Myford Road Tustin, CA 92780 Tel: (714) 669-1701 FAX: (714) 669-1715

SMC Corporation KOREA SMC Pneumatics Korea Co., Ltd. CHINA SMC (China) Co., Ltd. HONG KONG SMC Pneumatics (Hong Kong) Ltd. SINGAPORE SMC Pneumatics (S.E.A.) Pte. Ltd. PHILIPPINES SMC Pneumatics (Philippines), Inc. MALAYSIA SMC Pneumatics (S.E.A.) Sdn. Bhd. TAIWAN SMC Pneumatics (Taiwan) Co., Ltd. THAILAND SMC Thailand Ltd. INDIA SMC Pneumatics (India) Pvt., Ltd. North America CANADA SMC Pneumatics (Canada) Ltd. MEXICO SMC Pneumatics (Mexico) S.A. de C.V. **SMC Pneumatics Inc. (Milwaukee)** 16850 W. Victor Road New Berlin, WI 53151 Tel: (414) 827-0080 FAX: (414) 827-0092

SMC Pneumatics Inc. (Mnpls.) 990 Lone Oak Road, Suite 162 Eagan, MN 55121 Tel: (651) 688-3490 FAX: (651) 688-9013

SMC Pneumatics Inc. (Nashville) 5000 Linbar Drive, Suite 297 Nashville, TN 37211 Tel: (615) 331-0020 FAX: (615) 331-9950

SMC Pneumatics Inc. (Newark) 3434 US Hwy. 22 West, Ste. 110 Somerville, NJ 08876 Tel: (908) 253-3241 FAX: (908) 253-3452

SMC Pneumatics Inc. (Phoenix) 2001 W. Melinda Lane Phoenix, AZ 85027 Tel: (623) 492-0908 FAX: (623) 492-9493

SMC Pneumatics Inc. (Portland) 14107 N.E. Airport Way Portland, OR 97230 Tel: (503) 252-9299 FAX: (503) 252-9253

South America ARGENTINA SMC Argentina S.A. CHILE SMC Pneumatics (Chile) Ltda.

Oceania AUSTRALIA SMC Pneumatics (Australia) Pty. Ltd. NEW ZEALAND SMC Pneumatics (N.Z.) Ltd. **SMC Pneumatics Inc. (Richmond)** 5377 Glen Alden Drive Richmond, VA 23231 Tel: (804) 222-2762 FAX: (804) 222-5221

SMC Pneumatics Inc. (Rochester) 245 Summit Point Drive Henrietta, NY 14467 Tel: (716) 321-1300 FAX: (716) 321-1865

SMC Pneumatics Inc. (S.F.) 85 Nicholson Lane San Jose, CA 95134 Tel: (408) 943-9600 FAX: (408) 943-9111

SMC Pneumatics Inc. (St. Louis) 4130 Rider Trail North Earth City, MO 63045 Tel: (314) 209-0080 FAX: (314) 209-0085

SMC Pneumatics Inc. (Tampa) 8507-H Benjamin Road Tampa, FL 33634 Tel: (813) 243-8350 FAX: (813) 243-8621

SMC Pneumatics Inc. (Tulsa) 10203 A East 61st Street Tulsa, OK 74146 Tel: (918) 252-7820 FAX: (918) 252-9511

SMC offers the same quality and engineering expertise in many other pneumatic components

Valves Directional Control Valves Manual Valves Mufflers Exhaust Cleaners Quick Exhaust Valves Valves Proportional Valves Mechanical Valves Miniature Valves Fluid Valves Cylinders/Actuators Compact Cylinders Miniature Cylinders Rodless Cylinders Rotary Actuators Pneumatic Grippers Vacuum Ejectors Vacuum Accessories Instrumentation Pneumatic Positioners Pneumatic Transducers Air Preparation Equipment Filters-Regulators-Lubricators Coalescing Filters Micro Mist Separators Fittings Air Fittings

SMC Pneumatics Inc. P.O. Box 26640, Indianapolis, IN 46226 Tel: (317) 899-4440 • FAX: (317) 899-3102