

LX Series

Compact Electric Actuators

Compact, Low Profile
Rigid Linear Guides
DC Stepper Motor
(Optional AC Servo Motor)

N700

able of Contents

Series LX - Compact Electric Actuators

Features and Benefits	.page	4	&	5
Product Variations	.page	6	&	7

Series LXF - Low Profile Slide Table

Specifications/Construction/Parts List	page 8
Selection Chart & Duty Ratio	page 9
Kinetic Moment Allowance & Table Deflection	page 10
Criteria of Accelerating Speed	page 11
How To Order	pages 12 & 13
How to Mount	page 14
Dimensions	pages 15 & 16

Series LXP - Low Profile with Guides

	Specifications/Construction/Parts List	page 17
	Selection Chart & Duty Ratio	page 18
	Criteria of Accelerating Speed	page 19
	Table Deflection	page 20
01-100 HILL	Working Range & Operating Conditions	page 21
	How To Order	pages 22 & 23
10.0	How to Mount	page 24
	Dimensions	pages 25 & 26

Series LXS - Slide Table w/ High Rigidity Guides

000	Specifications/Construction/Parts List	page 27
	Selection Chart & Duty Ratio	page 28
	Kinetic Moment Allowance/Table Deflection	page 29
1	Criteria of Accelerating Speed	page 30
AN 101-2	How To Order	pages 31 & 32
	How to Mount	page 33
	Dimensions	pages 34 & 35

Made to Order Optionspage 36

Stepper Motor Control Overviewpage 37

LX Control Methodspages 38 & 39

LC6C & LC6D Positioning Driver......pages 40~46

Auto Switch Specificationspages 47~49

Safety Instructionspages 50~56

Glossary of Related Termspage 57

Stepping Motor and Slide Screw Provide

Multi-point positioning possible: Accuracy to \pm 0.03mm

Ball/Slide screw mechanism is enclosed

Choice of motor types

2-phase/5-phase stepping motor is standard with optional AC servo motor.

Proximity Sensor & Auto switch capable

Auto switch grooves provide flush installation.

Precision body installation: ±0.07mm

Can be precisely installed even with repeated removal and reinstallation due to standard mounting face supplied by NC machining process and positioning pin hole.

Horizontal Orientation, Low Profile Space Saving Body, Slide Table With Linear Guide

Series LXF

Max. pay load: 30N (In horizontal mounting)

Max. thrust: 15N

Max. speed: 200mm/s

Available strokes: 25mm, 50mm, 75mm, 100mm

With Linear Guide

Noise level comparison

Model	Noise (dB)	Specifications
LXFH5SA-100	58	5-phase stepping motor, screw lead 6
LXFH5SB-100	57	5-phase stepping motor, screw lead 12

weight				(kg)
Model	S	andard s	troke(mr	n)
IXE	25	50	75	100
LAF	0.8	1.0	1.1	imi)

Model	Noise (dB)	Specifications
LXPB2SB-100	58	2-phase stepping motor, screw lead 12
LXPB5SB-100	57	5-phase stepping motor, screw lead 12

Model	(1993) (1993) (1993) (1993) (1993) (1993) (1993) (1993) (1993)		Standa	rd strok	æ (mm)		
LXP	50	75	100	125	150	175	200
	2	2.2	2.3	2.6	2.8	2.9	3.1

Horizontal/Vertical Orientation, Slide Table With High Rigidity Guides

Series LXS

Max. pay load: 100N (In horizontal mounting)

Max. pay load: 50N (In vertical mounting)

Max. thrust: 220N

Max. speed: 200mm/s

Available strokes: 50mm, 75mm, 100mm, 125mm, 150mm

Noise level comparison

Model	Noise (dB)	Specifications
LXSH2SB-100	60	2-phase stepping motor, screw lead 12
LXSH5SB-100	58	5-phase stepping motor, screw lead 12

Weight	a a la cal				(kg
Model		Standa	urd strok	e (mm)	
LXS	50	75	100	125	150
LNO	1.9	2.1	2.3	2.5	2.7

Specifications introduced in this page are measured with SMC LC6 Series driver. (See page 40 and 45)

Series LX Product Variations

Series	Type of Guide	Drive Sçrew Type	Model	Max. Horizontal Payload (N)	Max. Vertical Payload (kg)	Max. thrust (N)	
	Linear guide	Ball	LXFH5BC	30	_	·	
Series		Screw	LXFH5BD	30	·	-	-
LXF		Slide	LXFH5SA	30	_	15	
	<u>lest</u> Of	Screw	LXFH5SB	20	-	9	
	Linear ball bearing guide		LXPB2BC	60	50	220	
	ganad and and and and and and and and and	Ball	LXPB2BD	60	50	90	
		Screw	LXPB5BC	60	50	160	
Series	0	Ball Screw Slide Screw	LXPB5BD	60	50	70	
LXP			LXPB2SA	60	50	60	
			LXPB2SB	30	30	30	
			LXPB5SA	40	40	40	
			LXPB5SB	20	20	20	
	High rigidity linear guide		LXSH2BC	100	50	220	
	linear guide	Ball Screw	LXSH2BD	100	50	90	
		COICW	LXSH5BC	100	50	160	
Series			LXSH5BD	100	50	70	
LXS			LXSH2SA	90	40	60	
	50.0.05 10.0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Slide Screw	LXSH2SB	45	20	30	
			LXSH5SA	60	20	40	
			LXSH5SB	30	10	20	

Driver unit LC6D-

System diagram

Compact Electric Actuators

Series LX

Product Features

Max. speed	Positioning	Slide screw	Motor				Strok	e(mm)			
(mm/s)	repeatability (mm)	specifications	specifications	25	50	75	100	125	150	175	200
30	±0.03.	Ø8; 2mm lead									
80	_0.001	Ø8; 5mm lead	ø5 stepping	•	•	•	•				
100	±0.05	Ø8; 6mm lead	_								
200		Ø8; 12mm lead		and the second second			the second second				n dar auf die der
30		Ø8; 2mm lead									
80		Ø8; 5mm lead	ø2 stepping								1 (1)
30	±0.03	Ø8; 2mm lead	ø5 stepping								
80		Ø8; 5mm lead	go stepping								
100		Ø8; 6mm lead	a etopping								
200		Ø8; 12mm lead	ØZ stepping								
100	±0.05	Ø8; 6mm lead	ø5 stepping								
200		Ø8; 12mm lead	ee oropp 9								
30		Ø8; 2mm lead									
80		Ø8; 5mm lead	ø2 stepping								
30	±0.03	Ø8; 2mm lead	ø5 stepping								
80		Ø8; 5mm lead	øs stepping								
100]	Ø8; 6mm lead									
200		Ø8; 12mm lead	ø2 stepping								
100	±0.05	Ø8; 6mm lead	ø5 stepping								
200		Ø8; 12mm lead	ag srephing								
	Driver Unit LC6C		LC5				PLC //O CA			~~~~	
	A CONTRACTOR		17	Discret	e I/O	S	ee Pag	ge 40			

Series LXF

Low Profile Electric Slide Table

Specifications

Model		LXFH5SA	LXFH5SB	LXFHBC	LXFHBD		
Stroke(mm)		25, 50, 75, 100					
Motor		5-phase stepping motor					
Screw(mm)		ø8, Lead 6 ø8, Lead 12 ø8, Lead 2 ø8					
Max. pay load (horizontal orientation)		30N (6.6 lb)	20N (4.4 lb)	30N (6.6 lb)	30N (6.6 lb)		
Max. speed		100mm/s	200mm/s	30mm/s	80mm/s		
Positioning repeatability		±0.05mm		±0.03mm			
Type of guide			Linea	r guide			
Operating tempe	rature range		5 to 40°C	(40~105°F)			
Pitch (Nm)		4					
Static moment allowance	Roll (Nm)			3			
anowance	Yaw (Nm)			4			

Construction

Component parts

No.	Description	Material	Note
1	Motor	_	
2	Linear guide	_	
3	Nut	Resin	
4	Forged screw	Alloy steel	
5	Body	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
7	End plate	Aluminum alloy	Anodized
8	Tube	Aluminum alloy	Anodized
9	Stopper A	Aluminum alloy	

Component parts

No.	Description	Material	Note
10	Stopper B	Aluminum alloy	
11	Sensor plate	Soft steel	Chromated
12	Coupling	Aluminum alloy	
13	Magnet	-	
14	Damper	Rubber	
15	Cushion damper	Rubber	
16	Motor cover	Resin	
17	Photo micro sensor		

Duty ratio

When using a stepping motor actuator must be operated at less than 50% of duty ratio* independent of pay load value. Continuous operation time** should be less than 30 seconds.

*Duty ratio: ratio of actuator operating time and suspended time in a cycle. It is calculated by the formula below.

Duty ratio = {Operating time / (Operating time + Suspended time)} X 100

- * Refer to the examples.
- **Continuous operation time: time between the initiation and the end of slider movement
- Remark) The operation provisionally ends when slider turns at the stroke end; the operation is no longer "continuous".

Examples below show how to acquire duty ratio and possibility of use.

Duty ratio = {(1 + 1 + 0.8) / (1 + 0.9 + 1 + 0.8 +1)} X 100 = 50% ∴ Possible to use.

Example 2

Duty ratio = $\{(4 + 3) / (4 + 0.2 + 3 + 2)\}$ X 100 = 76% : Not possible to use.

Kinetic Moment Allowance

Series LXF

Table receives moment from each direction according to center of gravity of work. Overhang of work should be within the range shown in the figures below.

W: Applicable load weight (kg) L1, L2: Overhang distance to the center of gravity of work (mm) a: Acceleration of work (mm/sec2) Me: Kinetic moment

Table Deflection

How to use the graph

1. If work overhangs to the direction of "L1" or "L2", 70% of applicable load weight shown in the graph is the upper limit.

2. The graph above shows the case of horizontal orientation of actuator. If using in vertical, static moment should NOT exceed static moment allowance.

bove graph is based on calculation; therefore, there may be differences from values of actual usage. Safe margin must be taken into consideration when designing.

LXFH5SA LXFH5BC 100 30 Load weight Reached speed (mm/s) Reached speed(mm/s) 3kg 20 Load weight 2kg 3kg 50 1.5kg 1kg 10 0kg Okg 0.03 0.2 0 0.01 0.02 0 0.1 Time(s) Time (s) LXFH5SB LXFH5BD 200 80 Reached speed (mm/s) Reached speed(mms) Load weight 50 3kg Load weight 100 2kg 2kg 1kg 0kg Okg 0 0.01 0.02 0.03 0.2 0 0.1 Time(s) Time (s)

Criteria of Accelerating Speed (Horizontal Orientation)

A Caution

- *Payload should be under the max. payload. *Accelerating time is decided per pay load and reached speed.
- *If operating beyond the range shown in those graphs, unit may function improperly.
- *The data in these graphs represents the LXS used with the LC6D in half-step mode.
- * Data varies depending upon operating conditions.

Compact Electric Actuators

Series LXF

How To Order Ball Screw Type

Proximity Sensor Information

The LX series uses SUNX brand GXL-8F series micro proximity sensors. For more information on these sensors, please visit the SUNX website at www.sunx-ramco.com

A DECEMBER OF STREET, S	A REAL PROPERTY OF A REAL PROPERTY OF	a de la competencia de la competencia En esta de la competencia de la		A CONTRACTOR	
Designator	G	GD	GB	GDB	
SUNX Part Number	GXL-8F	GXL-8FB	GXL-8FI	GXL-8FIB	
Sensing Type	Approach-ON	Depart-ON	Approach-ON Varied Frequency*	Depart-ON Varied Frequency	
Output	NPN Open-Collector (100mA)				
Sensing Direction	Front				
Sensing Range	2.5mm ±20% (rated), 0~1.8mm (normal)				
Indication	Red LED when ON				
Cable Length	1m, extendable up to 100m				

*Units with the suffix "I" are varied oscillating frequency type. Use this type when installing 12mm or closer to the nearest sensor. Separate by at least 2mm when using three or more sensors.

Applicable driver unit

	DC power supply type driver
LXFH5S	LC6D-507AD

Applicable auto switch

		Wiring method/	Indicator	Electrical	Lead wire I	ength(m)
Part number	Туре	output type	light	entry	0.5(-)	3(L)
D-F9N	a second de	3-wire/NPN	With	In-line		•
D-F9P	Solid-state	3-wire/PNP	With	In-line	•	•
D-F9B	a statistic	2-wire	With	In-line	•	•

* Refer to page 47 for further specifications of auto switch.

Applicable driver unit

	DC power supply type driver
LXFH5S	LC6D-507AD

rigin Home Switch Information

K series actuators are available with an optional photo micro sensor as an origin home switch to detect when the stuator is fully retracted. The LC6C series positioning driver requires an input from the origin home switch or some her sensor when homing the actuator. The origin home switch can be used for other purposes as well, and likewise her sensors can be used to trigger the home position. Please refer to pages 42 and 45 of this catalog for more formation and precautions regarding the optional origin home switch.

Series LXF

Mounting Instructions

How to mount LXF

How to mount actuator

Actuator can be mounted from two directions according to machinery or work requirements.

▲ Caution

Bolt should be at least 0.5mm shorter than the max, tightening depth to prevent bolt from pressing the body.

How to mount work

Work can be mounted on two faces of the actuator.

∧Caution

Bolt should be at least 0.5mm shorter than the max. tightening depth to prevent bolt from pressing the body.

How To Operate The LXF

The standard LXF series actuator uses a 5-phase uni-polar DC stepper motor. (0.7A/ø). The motor requires a driver to move the motor based on the input commands. The LXF can be operated with either the LC6D-507AD basic stepper driver or other compatible driver. See pages 31-39 for more information on SMC's LC6 series drivers.

ompact Electric Actuators

Series LXF Dimensions for Ball Screw Type

LXFH5B_

^[] shows the location at which origin point switch operates.

Model	N	D	E	F	G	н	
LXFH5B 25	4	151	160	138	60	30	(50)
LXFH5B 50	4	176	185	163	90	60	(50)
LXFH5B 75	6	201	210	188	90	60	100
LXFH5B100	6	226	235	213	90	60	100

Series LXF

Dimensions - Slide Screw Type

LXFH5S

Scale: 40%

[] shows the location at which origin point switch operates.

Model	N	D	E.	F	G	H	1 1
LXFH5S -25	4	151	160	138	60	30	(50)
LXFH5S -50	4	176	185	163	90	60	(50)
LXFH5S -75	6	201	210	188	90	60	100
LXFH5S -100	6	226	235	213	90	60	100

Low Profile Electric Actuator with Guides

Series LXP

Specifications

Model	LXPB2SA	LXPB2SB	LXPB5SA	LXPB5SB		
Stroke (mm)	Ę	50, 75, 100, 125, 150, 175, 200				
Motor	2-phase ste	2-phase stepping motor		epping motor		
Screw (mm)	ø8, Lead 6	Ø8, Lead 12	Ø8, Lead 6	ø8, Lead 12		
Max. pay load (horizontal)	6kg	3kg	4kg	2kg		
Max. pay load (vertical)	5kg	3kg	4kg	2kg		
Max. speed	100mm/s	200mm/s	100mm/s	200mm/s		
Positioning repeatability		±0.05mm				
Type of guide	Linear ball bearing					
Operating temperature range		5 to 40°C (No dewing)				

Model Ball screw		LXPB2BC	LXPB2BD	LXPB5BC	LXPB5BD		
		ø8 lead 2mm	ø8 lead 5mm	ø8 lead 2mm	ø8 Lead 5mm		
Max. allowable Horizontal		60N					
weight	Vertical	50N(220N)	50N(90N)	50N(160N)	50N(70N)		
Max. speed		30mm/s	80mm/s	30mm/s	80mm/s		
Positioning re	epeatability	± 0.03mm		± 0.03mm			
. En Franklin	Half step	0.005mm	0.0125mm	0.002mm	0.005mm		
Min. lead *	Full step	0.01mm	0.025mm	0.004mm	0.01mm		

* With one pulse input

Construction

Component parts

No.	Description	Material	Note
1	Motor		Stepping motor
2	Forged screw	Alloy steel	
3	Nut	Resin	
4	Coupling		Chromated
5	Bearing		Nickel plated
6	Body	Aluminum alloy	
7	Mounting plate	Soft steel	Chromated
8	Linear ball bearing		Anodized
9	Guide rod	Bearing steel	
10	Tube	Aluminum alloy	
11	Sensor pin	Stainless steel	3

Brake specifications

Model	Negative actuate type
Static torque	0.1Nm (1kgf-cm) or more
Rated voltage	24V(DC)±5%
Power consumption	5W(at 75°C)

Component parts

No.	Description	Material	Note
12	Photo micro sensor		
13	Lock nut	Carbon steel	Black zinc chromated
14	Stopper nut	Aluminum alloy	
15	Damper bolt	Bearing steel	Nickel plated
16	Damper	Resin	
17	Motor cover	Resin	
18	Tension ring	Stainless steel	
19	Cable cap		
20	Plug		
21	Magnet	_	
22	Adopter	Aluminum alloy	
23	Plate mounting bolt	Carbon steel	Nickel platec

Compact Electric Actuators

<u>Series LXP</u>

How To Select

Duty ratio

When using a stepping motor actuator must be operated at less than 50% of duty ratio independent of pay load value. Continuous operation time should be less than 30 seconds.

Duty ratio: ratio of actuator operating time and suspended time in a cycle. It is calculated by the formula below.

Duty ratio = {Operating time / (Operating time + Suspended time)} X 100

Refer to the examples.

Continuous operation time: time between the initiation and the end of slider movement

Remark) The operation provisionally ends when slider turns at the stroke end; the operation is no longer "continuous".

Example 1

SMC

Model Selecting Method

Criteria of Accelerating Speed (Horizontal Orientation)

∆ Caution

Pay load should be under the maximum pay load.

Accelerating time is decided per pay load and reached speed.

If operating beyond the range shown in these graphs, unit may function improperly.

These graphs consist of data when SMC made DC power supply input type driver unit is used and the excitation is half step.

Data varies depending upon operating conditions.

Series LXP

Table Deflection

Table Deflection

Series LXP

Model Selecting Methodl

Vorking range when LXP is used as lifter

Vorking range to linear ball bearing. Use within allowable thrust.

i0 to 100 stroke

Over 100 stroke

Eccentric distance: L(mm)

Operating conditions

Lateral load allowance

Stroke	Load (N)
50	60
75	60
100	58
125	60
150	54
175	48
200	43

Plate rotation torque

Stroke	Torque (Nm)
50	2.87
75	2.47
100	2.17
125	2.38
150	2.16
175	1.98
200	1.82

Non-rotating accuracy of plate

Compact Electric Actuators

How To Order - Ball Screw Type

Series I XP

Applicable driver unit

	DC power supply type driver	
LXPB2B	LC6D-220AD, LC6C-220AD	
LXPB5B	LC6D-507AD	

Origin Home Switch Information

LX series actuators are available with an optional photo micro sensor as an origin home switch to detect when the actuator is fully retracted. The LC6C series positioning driver requires an input from the origin home switch or some other sensor when homing the actuator. The origin home switch can be used for other purposes as well, and likewise other sensors can be used to trigger the home position. Please refer to pages 42 and 45 of this catalog for more information and precautions regarding the optional origin home switch.

Series LXP

How To Order - Slide Screw Type

Applicable auto switch

		Wiring method/	Indicator	Electrical	Lead wire length(m)	
Part number	Туре	output type	light	entry	0.5(-)	3(L)
D-F9N	C. H. P. L.	3-wire/NPN	With	In-line	•	
D-F9P	Solid-state	3-wire/PNP	With	In-line	•	
D-F9B	Children	2-wire	With	In-line	•	

* Refer to page 47 for further specifications of auto switch.

Applicable driver unit

	DC power supply type driver
LXPB2S	LC6D-220AD, LC6C-220AD
LXPB5S	LC6D-507AD

)rigin Home Switch Information

X series actuators are available with an optional photo micro sensor as an origin home switch to detect when the ctuator is fully retracted. The LC6C series positioning driver requires an input from the origin home switch or some ther sensor when homing the actuator. The origin home switch can be used for other purposes as well, and likewise ther sensors can be used to trigger the home position. Please refer to pages 42 and 45 of this catalog for more iformation and precautions regarding the optional origin home switch.

Series LXP

How To Mount LXP

How to mount actuator

How to mount work

∆Caution

Bolt should be at least 0.5mm shorter than the max, tightening depth to prevent bolt from pressing the body.

How To Operate The LXP

The standard LXP series actuator is available with either a 2phase $(2.0A/\emptyset)$ or a 5-phase $(0.7A/\emptyset)$ uni-polar DC stepper motor. The motor requires a driver to move the motor based on the input commands. The LXP can be operated with either the LC6D-220AD (2 \emptyset) or LC6D-507AD (5 \emptyset) basic stepper driver, the LC6C-220AD (2 \emptyset) positioning driver, or other compatible driver. See pages 40~46 for more information on SMC's LC6 series drivers,

LXPB_B_-200

Dimensions - Ball Screw Type

LXPB_B_

Series LXP

Dimensions - Slide Screw Type

LXPB S

With brake

Widdel			r.	1 L 1
LXPB S -50		52	154	231
LXPB S -75	44		179	256
LXPB S -100			204	281
LXPB S -125	120	90	246	323
LXPB S -150			271	348
LXPB S -175			296	373
LXPB S -200			321	398

SMC

Electric Slide Table with High Rigidity Guides

Series LXS

Specifications

Model		LXSH2SA	LXSH2SB	LXSH5SA	LXSH5SB	
Stroke (mn	Sector and a sector and the sector form have been	50, 75, 100, 125, 150				
Motor		2-phase stepping motor 5-phase stepping m				
Screw (mm	1)	ø8 Lead 6	Ø8 Lead 12	Ø8 Lead 6	ø8 Lead 12	
Max. pay lo	oad (horizontal)	9kg	4.5kg	6kg	Зkg	
Max. pay lo	oad (vertical)	4kg	2kg	2kg	1kg	
Max. speed	k	100mm/s	200mm/s	100mm/s	200mm/s	
Positioning	g repeatability		±0.0	5mm		
Type of gu	ide		High rigidity	linear guide		
Operating temperature		5 to 40°C (No dewing)				
Static	Pitching (Nm)	15.7				
moment	Rolling (Nm)	15.7				
allowance	Yawing (Nm)	7.84				
Model		LXSH2BC	LXSH2BD	LXSH5BC	LXSH5BD	
Ball screw		ø8 lead 2mm	ø8 lead 5mm	ø8 lead 2mm	ø8 Lead 5mm	
Max. allowab	e Horizontal	100N				
weight	Vertical	50N(220N)	50N(90N)	50N(160N)	50N(70N)	
Max. speed		30mm/s	80mm/s	30mm/s	80mm/s	
Positioning repeatability		± 0.03mm ± 0.03r			3mm	
	Half step	0.005mm	0.0125mm	0.002mm	0.005mm	
Min. lead *	(ton step	0.00011111				

Brake specifications

Model	Negative actuate type
Static torque	0.1 Nm(1 kgf-cm)or more
Rated voltage	24V (DC) ±5%
Power consumption	5W(at 75°C)

Construction

24

Component parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Table	Aluminum alloy	Anodized
3	Adopter	Aluminum alloy	Anodized
4	Plate	Aluminum alloy	Anodized
5	Tube	Aluminum alloy	Anodized
6	Rod ass'y	-	With magnet
7	Stopper A	_	With damper
8	Stopper B	Aluminum alloy	
9	Linear guide (block, rail)		i and a second second
10	Acme screw (shaft)	Alloy steel	
11	Tension ring	Stainless steel	
12	Bearing retainer	Stainless steel	
13	Bearing		

Component parts

No.	Description	Material	Note
14	Lock nut	Carbon steel	Black zinc chromated
15	Coupling		
16	Motor	Resin	
17	Magnet holder	Rare earth magnet	The second second in the second second
18	Magnet	Mild steel	
19	Sensor plate		Model with origin point switch
20	Photo micro sensor	Resin	Model with origin point switch
21	Motor cover		
22	Plug A		
23	Plug B		
24	Сар	Carbon steel	
25	Parallel pin	Resin	6 SM
26	Nut		- CITA

Series LXS

Duty ratio

When using a stepping motor actuator must be operated at less than 50% of duty ratio independent of pay load value. Continuous operation time should be less than 30 seconds.

Duty ratio: ratio of actuator operating time and suspended time in a cycle. It is calculated by the formula below.

Duty ratio = {Operating time / (Operating time + Suspended time)} X 100

Refer to the examples.

Continuous operation time: time between the initiation and the end of slider movement

Remark) The operation provisionally ends when slider turns at the stroke end; the operation is no longer "continuous".

≈ {(1 + 1 + 0.8) / (1 + 0.9

Figure 1

Example 2

Duty ratio = {(4 + 3) / (4 + 0.2 + 3 + 2)} X 100 ≈ 76% ∴ Not possible to use.

@ SMC

ompact Electric Actuators

Kinetic Moment Allowance / Table Deflection

Series IXS

Table receives moment from each direction according to center of gravity of work. Overhang of work should be within the range shown in the figures below.

W: Applicable load weight (kg)

L1, L2: Overhang distance to the center of gravity of work (mm)

a: Acceleration of work (mm/sec2) Me: Kinetic moment

Yawing Rolling Overhang Pitching direction a a Mey Men 2 00 Series a = 1000a=1000 to 3000 a=1000 to 3000 4000 1000 1000 3000 a = 2000L2(mm) L2(mm) L1(mm) LXS a = 3000500 500 2000 1000 1411 0 0 0 5 9 5 9 5 9 Applicable load weight W (kg) Applicable load weight W (kg) Applicable load weight W (kg)

low to use the graph

. If work overhangs to the direction of "L1" or "L2", 70% of applicable load weight shown in the graph is the upper limit.

1. The graph above shows the case of horizontal orientation of actuator. If using in vertical, static moment should NOT exceed static moment allowance.

I. Above graph is based on calculation; therefore, there may be differences from values of actual usage. Safe margin must be taken into consideration when designing. See the specifications of each model for static moment allowance.

Table Deflection

Series LX

Model Selecting Method

Criteria of Accelerating Speed (Horizontal Orientation)

A Caution

Pay load should be under the maximum pay load.

Accelerating time is decided per pay load and reached speed.

If operating beyond the range shown in these graphs, unit may function improperly.

These graphs consist of data when SMC made DC power supply input type driver unit is used and the excitation is half step.

Proximity Sensor Information

The LX series uses SUNX brand GXL-8F series micro proximity sensors. For more information on these sensors, please visit the SUNX website at www.sunxramco.com

Designator	G	GD	GB	GDB		
SUNX Part Number	GXL-8F	GXL-8FB	GXL-8FI	GXL-8FIB		
Sensing Type	Approach-ON	Depart-ON	Approach-ON Varied Frequency*	Depart-ON Varied Frequency		
Output	NPN Open-Collector (100mA)					
Sensing Direction	Front					
Sensing Range	2.5mm ±20% (rated), 0~1.8mm (normal)					
Indication	Red LED when ON					
Cable Length	1m, extendable up to 100m					

"Units with the suffix "I" are varied oscillating frequency type. Use this type when installing 12mm or closer to the nearest sensor. Separate by at least 2mm when using three or more sensors.

Applicable driver unit

	DC power supply type driver
LXSH2S	LC6D-220AD, LC6C-220AD
LXSH5S	LC6D-507AD

Compact Electric Actuators

How To Order - Slide Screw Type

Series I XS

Applicable auto switch

		No. of Concession, Name	Indicator	Electrical	Lead wire	ad wire length (m)	
Part number	Type	Wiring/output	light	entry	0.5m(-)	3m(L)	
D-F9N	Solid-	3-wire/NPN	With	In-line	•		
D-F9P	state	3-wire/PNP	With	In-line	•		
D-F9B	switch	2-wire	With	In-line	•	•	

'Refer to page 47 for the further auto switch specifications.

Applicable driver unit

	DC power supply type driver
LXSH2S	LC6D-220AD, LC6C-220AD
LXSH5S	LC6D-507AD

Origin Home Switch Information

LX series actuators are available with an optional photo micro sensor as an origin home switch to detect when the actuator is fully retracted. The LC6C series positioning driver requires an input from the origin home switch or some other sensor when homing the actuator. The origin home switch can be used for other purposes as well, and likewise other sensors can be used to trigger the home position. Please refer to pages 42 and 45 of this catalog for more information and precautions regarding the optional origin home switch.

How to mount LXS

How to mount actuator

Actuator has 3-way mounting method as shown below. Select the optional method according to your requirements.

▲ Caution

Bolt should be at least 0.5mm shorter than the max. tightening depth to prevent bolt from pressing the body.

▲Caution

Bolt should be at least 0.5mm shorter than the max. tightening depth to prevent bolt from pressing the body.

How to mount work

Work can be mounted on 2-face of actuator body.

▲ Caution

Bolt should be at least 0.5mm shorter than the max. tightening depth to prevent bolt from pressing the body.

How To Operate The LXS

The standard LXS series actuator is available with either a 2-phase $(2.0A/\emptyset)$ or a 5-phase $(0.7A/\emptyset)$ uni-polar DC stepper motor. The motor requires a driver to move the motor based on the input commands. The LXS can be operated with either the LC6D-220AD (2 \emptyset) or LC6D-507AD (5 \emptyset) basic stepper driver, the LC6C-220AD (2 \emptyset) positioning driver, or other compatible driver. See pages 40~46 for more information on SMC's LC6 series drivers.

Series LXS

Dimensions - LXSH Ball Screw Type

Compact Electric Actuators

Series LX

Dimensions - Slide Screw Type

Made To Order

AC Servo Motor Specifications

	Motor Specifi	Power supply voltage			Driver unit	Applicability		
Reference No.	Manufacturer	for driver unit	Brake	Motor part number	part number	LXF	LXP	LXS
1 Note 1)	Tamagawa Selki Panasonic (Matsushita Electric Industrial Company Ltd.)	100VAC -	Without	TS4501N	Note 1)		Applicable	Applicable
2 Note 1)			With	TS4501N			Applicable	Applicable
3 Nole 1)		200VAC -	Without	TS4501N			Applicable	Applicabl
4 Note 1)			With	TS4501N		10	Applicable	Applicabl
5		100VAC	Without	MSM2AZ21A	MSS2A121P	Applicable		-
6		200VAC	Without	MSM2AZ21A	MSS2A321P	Applicable		-
7		100VAC	Without	MSM3AZP1A	MSD3A1P1E		Applicable	Applicabl
8			With	MSM3AZP1B	MSD3A1P1E	-	Applicable	Applicabl
9		200VAC	Without	MSM3AZP1A	MSD3A3P1E		Applicable	Applicabl
10			With	MSM3AZP1B	MSD3A3P1E	_	Applicable	Applicabl
11	Mitsubishi Electric	100VAC	Without	HC-PQ033	MR-C10A1		Applicable	Applicab
12			With	HC-PQ033B	MR-C10A1	-	Applicable	Applicab
13		200VAC	Without	HC-PQ033	MR-C10A		Applicable	Applicab
14			With	HC-PQ033B	MR-C10A	_	Applicable	Applicab
15		100VAC	Without	SGME-A3BF12	SGDE-A3BP		Applicable	Applicab
16			With	SGME-A3BF12B	SGDE-A3BP		Applicable	Applicab
17	Yasukawa Electric		Without	SGME-A3AF12	SGDE-A3AP	-	Applicable	Applicab
18		200VAC	With	SGME-A3AF12B	SGDE-A3AP	-	Applicable	Applicab

Note 1) AC servo motor is basically available in combination with driver unit. However, in the case of Ref. No. 1 to 4, Series LC1 should be separately ordered due to unavailability of driver unit with AC servo motor. Please contact SMC for its part number when ordering due to special product.

Note 2) AC servo motor equipped model does not have motor cover.

AC servo motor model external view

Series	Motor Manufacturer	Motor Output	Driver Voltage	Suffix	Typical part number
			100VAC	-X18	LXSHABD-100SB-F9N2-X18
IVC	Mitsubishi	30W	200VAC	-X19	LXSHABD-100SB-F9N2-X19
LXS			100VAC	-X15	LXSHABD-100SB-F9N2-X15
	Panasonic	30W	200VAC	-X16	LXSHABD-100SB-F9N2-X16
		00147	100VAC	-X12	LXSHABD-100SB-F9N2-X12
	Tamagawa	30W	200VAC	-X13	LXSHABD-100SB-F9N2-X13
	AND TRACTORES TRACT	00111	100VAC	-X21	LXSHABD-100SB-F9N2-X21
	Yaskawa	30W	200VAC	-X22	LXSHABD-100SB-F9N2-X22
LXP		0014/	100VAC	-X18	LXSHABD-100SB-F9N2-X18
	Mitsubishi	30W	200VAC	-X19	LXSHABD-100SB-F9N2-X19
	Constant of the second s	2011	100VAC	-X15	LXSHABD-100SB-F9N2-X15
	Panasonic	30W	200VAC	-X16	LXSHABD-100SB-F9N2-X16
		0014/	100VAC	-X12	LXSHABD-100SB-F9N2-X12
	Tamagawa	30W	200VAC	-X13	LXSHABD-100SB-F9N2-X13
		00144	100VAC	-X21	LXSHABD-100SB-F9N2-X21
	Yaskawa	30W	200VAC	-X22	LXSHABD-100SB-F9N2-X22

Different Actuator Operation Methods

DC stepper motor actuators and AC servo motor actuators are not that different from familiar pneumatic cylinders and actuators. Electric actuators give you more control and precision, and in return they require more explicit instructions than pneumatic actuators. Compare the basic differences inthe illustrations below.

Pneumatic System

The PLC is programmed to turn the outputs on or off based on the various inputs. In this example there is an output to each solenoid on the pneumatic valve, and 2 inputs from the autoswitches on the cylinder, for a total of four I/O points. The solenoid valve directs the air pressure to move the cylinder piston, and the auto-switches tell whether the rod is extended or retracted.

DC Stepper System (LC6C)

The Valve and tubing are replaced with a driver and wiring. The PLC is programmed like before, but the driver is also pre-loaded (using a teaching pendant) with different moves, speeds, and acceleration rates. The PLC then uses I/O to tell the driver which moves to make, and the driver reports back when it's done. This gives you multi-point positioning and speed control of your actuator.

DC Stepper System (LC6C)

Here too, the valve and tubing are replaced with a driver and wiring. This time the PLC is programmed to send out quick pulses instead of steady ON or OFF I/O. Most PLCs have highspeed pulse outputs built in, and plug-in cards are available too. This lets you take total control over the actuator by pulsing the motor clockwise and couter-clockwise for your moves.

AC Servo System

The AC servo system uses a driver like the DC stepper system (LC6C) above, but also has a controller for automatic acceleration, position, & velocity control. You preload positions, speeds, and routines into the controller, and then use the PLC to run them. The driver uses the controller instructions to turn the motor, and the encoder tells the controller the current position. SMC's *LC1* is both a controller and driver in one.

X Control Methods - LC6C

LX Control Methods - LC6C

The LC6C is a easy to use yet full function positioning driver for 2-phase LX series actuators. Simply pre-program up to 28 incremental or absolute moves and 8 speed profiles using the LC5 teaching box. Then select amove using a control box or I/O from your PLC. The LC6C automatically moves the LX the desired amount, and gives an "all done" output when complete. To make things easier, up to sixteen LC6C drivers can be preset at once using a single LC5 teaching box. See page 40 for more information on the LC6C.

LX Control Methods - LC6D

The LC6D is a basic DC stepper motor driver designed especially for 2-phase and 5-phase LX series actuators. LC6D takes a pulse signal from the PLC counter or other source and excites the motor in full or half steps. The LC6D features photo-coupler I/O isolation, an automatic current reduction when the motor is stopped, and an on-demand power down feature to disengage the motor. The LC6D is rated for a 50% duty cycle. 100% duty cycle micro-stepping drivers are available for this series from Sanyo Denki America* or Applied Motion Products**. See page 45 for more information on the LC6D

* Contact Sanyo Denki America at (734)414-8640 for information on their PMM-MD-53031-10 series driver ** Contact Applied Motion Products at (800) 525-1609 for information on their Si3540 series driver/indexer.

Positioning Driver Unit for Series LX Actuators

Series LC6C Positioning Driver

- Driver LC6D has built-in pulse control function
- Position information can be set up to a maximum of 28 points
- · Point movement can be easily accomplished with a PLC, etc.
- · Compatible with Series LX electric actuator 2-phase stepping motor

Application examples

Can be used in operation patterns like these.

System configuration

To be provided by customer.

Dimensions

How to Order

Specifications

Π

۵

Compatible actuator	LX00200-0000
Power supply	24VDC ± 10% Max. 3.0A
Number of setting positions	28 points
Position setting method	Setting with dedicated teaching box (LC5-1-T1-02)
Position control method	Absolute and incremental moves Speed: 6 to 200mm/s (with feed screw lead of 12mm)
Input signal capacity	Optically isolated input 24VDC Max. 6mA
Output signal capacity	Optically isolated output Max. 30VDC or less Max. 20mA
Parameter setting	Position data setting, Speed acceleration setting, etc.
Indication LED	LED for power supply, LED for alarm
Operating temperature	5 to 40°C

Dimensions

LC6C-220AD

42 *

Dedicated teaching box LC5-1-T1- 02

Connecting Example

123456789

Series LC6C

Connecting Example

Power Connector

Molex Inc. part number 39-01-2180 (receptacle), 39-00-0039 (pins). Uses crimp tool 11-01-0014 and pin extraction tool number 11-03-0044.

Connecting Example

Interface Connector

Omron part number XG4M-2030

Program Example

LC6C Program Example LXS Work Transfer

Below is an example of a work-transfer program. Move the actuator out 800 pulses to inspect the first work piece, then increment out 1,000 pulses three times for the remaining three work pieces and finally return to home. Use the LC5 teaching box to preset the LC6C with the position and speed/acceleration information.

#	Operation	LX/LC6C Actions & Reactions
1	Initialize	1. OV to Emergency Stop input.
		2. No alarm output should be on.
2	Move actuator to origin/home.	1. Set bank 1, 2, & 3 inputs off.
		2. Set point A input on.
		3. Busy output is on while actuator homes.
		4. Busy output turns off, and origin return output turns on.
		5. Set point A input off, and point A output turns off.
3	Load 4 work pieces.	
4	Move from home to point A	1. Set bank 1 input on, 2 & 3 off.
Ĩ ((800 pulses)	2. Set point A input on.
		3. Busy output is on while actuator moves.
		4. Busy output turns off; point A output turns on.
		5. Set point A input off, and point A output turns off.
5	First work piece is inspected.	
6	Move from present position to	1. Set bank 1 input on, 2 & 3 off.
	next piece (increment + 1,000	2. Set point B input on.
	pulses).	3. Busy output is on while actuator moves.
		4. Busy output turns off; point B output turns off.
		5. Set point B input off, and point B output turns off.
7	Repeat steps 5 and 6 three more tir	nes.
8	Return to home.	1. Set bank 1, 2, & 3 inputs off.
		2. Set point A input on.
		3. Busy output is on while actuator homes.
		4. Busy output turns off, and origin return output turns on.
		5. Set point A input off, and point A output turns off.
9	Return to step #2 to repeat.	

How To Order and Specifications

How to Order

Specifications

	LC6D-220AD	LC6D-507AD
Power supply	24VDC±10%, 3A	24VDC±10%, 2.5A
Excitation (Step angle) *	Full step (1.8°) Half step (0.9°)	Full step (0.72°) Half step (0.36°)
Motor current	2.0/phase	0.75/phase
Input signal	Photo coupler input	(Input impedance 330Ω)
Max. input frequency	10kHz at Full step 20kHz at Half step	
Function **	Auto current down*, Power down input	
Connecting method	Connector	
Ambient temperature	5 to 40°C	
Ambient humidity	35 to 85% (No dewing)	
Corresponding actuator	LXSH2S LXPB2S	LXFH5S LXSH5S LXPB5S

*Set by function change switch. Product is set as shown below when shipped from factory.

1. ON: Excitation/Half step

2. OFF: Auto current down function

	ON	OFF
1	Half step	Full step
2	Release	Setting

** Function:

Auto current down; Function to automatically reduce 50% of current output to moor when stopped. Power down input; Current flow to motor is shut down by this input, and motor goes to non-excitatic

Connecting Example and Dimensions

Connecting example

Signal code	Function	Pin
+24V	Driver power supply +24V	7
GND	Driver power supply ground	6
CW+	CW pulse input terminal (+)	3
CW-	CW pulse input terminal (-)	10
CCW+	CCW pulse input terminal (+)	2
CCW-	CCW pulse input terminal (-)	9
PD+	Power down input terminal (+)	1
PD-	Power down input terminal (-)	8

Signal code	Function	Pin
A	Motor drive output A	5
в	Motor drive output B	4
C	Motor drive output C	14
D	Motor drive output D	13
E	Motor drive output E	12
F	Motor drive output F ("LC6D-2	11

00

5

4

:=====

Driver

1

9 8

3 2

Dimensions

Solid State Switch D-F9 type/3-wire, 2-wire

Applicable auto switch

Model	Auto sw	itch	Specifications	Electrical	entry
LXF LXP LXS Solid st auto sw	0.51	D-F9N	3 wire, NPN out put		
	Solid state auto switch	D-F9P	3 wire, PNP out put	Grommet	In-line
		D-F9B	2 wire		

*All the solid state auto switches are equiped with indicator light.

Auto switch specifications

Part number	Output	Power supply	Load voltage	Load current	Internal voltage drop	Leak current	Application
D-F9N	NPN		28VDC or less	0.4V or le 50mA or less	0.4V or less	10 mA or less	
D-F9P	PNP		_		1.5V or less		24VDC Relay PLC
D-F9B		12	24VDC (10 to 28VDC)	5 to 30mA	4.5V or less	1 mA or less at 24VDC	120

•Lead wire-----Oil proof vinyl heavy insulation cable, Ø2.7, 0.15mm² x 3 wire (brown, black, blue) 0.18mm² x 2 wire (brown, blue)

-Insulation resistance-----50MΩ or more at 500VDC (Between lead case and cable)

•Withstand voltage------1,000 VAC for 1 min. (Between lead case and cable) •Indicator light-----Light at ON •Ambient temperature-----10 to 60°C •Operating time-----1 ms or less •Shock resistance-----1000m /s2 /102G /

Auto switch internal circuit

Auto switch dimensions

How to mount auto switch **∧** Caution Auto switch mounting tool Use watch maker's screw driver with a grip diameter of 5 to 6 mm to tighten the set screw which is delivered with Set screw auto switch. (Supplied with auto switch.) **Tightening torque**

The tightening torque should be 0.05 to 0.1Nm.

(Grip diameter: 5 to 6 mm)

Solid State Switch Connection and Example

Basic wiring

AND(serial), OR(parallel) connection examples

Load voltage at ON=Supply voltage - Residual voltage×2 pcs.

= 24V-4V×2 pcs.

Switch internal voltage drop 4V

= 16V

2 wire 2 pcs./AND connection

Example) Supply voltage 24VDC

SMC

When 2 switches are connected by AND, load voltage will decrease at ON and these connections may cause malfunction of load. Indication lights up when both switches are ON.

3 wire NPN/OR connection

2 wire 2 pcs./OR connection

When 2 switches are connected as OR, load voltage will increase at OFF and these connections may cause malfunction.

Load voltage at OFF = Leakage current×2 pcs.×Load impedance = $1 \text{mA} \times 2 \text{ pcs.} \times 3 \text{k} \Omega$

Example) Load impedance 3kΩ

Switch leakage current 1mA

Standard photo micro sensor for origin point

Specifications

Supply voltage	5VDC to 24VDC ±10%, Ripple(p-p) 10% or less	
Power consumption	35mA or less	
Controlled output	5VDC to 24VDC, Load current(1c) 100mA, Residual voltage 0.8V or less 5VDC to 24VDC, Load current(1c) 40mA, Residual voltage 0.4V or less	
Ambient temperature	Operation: -25 to +55°C (At holding: -30 to 80°C)	
Ambient humidity	Operation: 5 to 85%RH (At holding: 5 to 95%RH)	

10000	24 23	92930 83
Tor	minal	positioning
101	minu	positioning

1	Brown	Vcc	(+)
2	White	Ľ	
3	Black	OUTPUT	
4	Blue	DND(0V)	Θ

*ON while light is shaded. If "L" terminal and "+" terminal are shorted, it changed to ON while light is passed.

Output level circuit

Common Terms Related To Electric Actuators

Phase Motor, 5-Phase Motor	A five-phase motor runs much smoother than a two-phase motor because it has two more magnetic poles than a two- phase motor does. This means there is less torque ripple or vibration from resonance. However, actuators with five- phase motors have slightly lower payload ratings than those with two-phase motors.
all Screw	Both ball screws and slide screws consist of a rolling contact on a lead screw. For ball screws, the rolling contact is a housing with recirculating ball bearings inside. The lead screw has machined grooves for the ball bearings to roll in. SMC offers two types of ball screw: a ground type (higher precision, higher cost) and a rolled type (lower precision, lower cost).
losed Loop Control System	A closed loop control system is a system that utilizes a feedback device (encoder, resolver, and so on) to enhance perfor- mance of the system by providing better acceleration and speed capabilities as well as better system stability. The closed loop control system also provides assurance that the programmed position is actually achieved. See also Open Loop Control System.
uty Cycle	Duty cycle is the variation of torque or speed or both with time during a specified operating cycle. The LC6 stepper driver has a duty cycle of 50%, regardless of actuator load. Also, <i>LC6</i> continuous operation may not exceed thirty seconds. Continuous operation is defined as the time from when the slider begins to move until it stops moving (not just pauses at stroke end).
	run time
	$duty \ cycle =x \ 100$ $run \ time + stopped \ time$
all Step	A full step is a logic pattern that will produce one unit of incremental motion from a stepper motor (the increments being determined by the stepper motor structure). For example, SMC's 5-phase LX actuator motors are divided into 500 steps. Thus, one pulse in full step mode equals (360° + 500=) 0.72° of shaft rotation. See also Stepping.
alf Step	A half step is the unit of incremental motion that is 1/2 the basic motion step. SMC's 2-phase LX actuator motors are divided into 200 steps. Each pulse in half step mode equals 0.9° of rotation. See also Stepping.
dexer	An indexer is the part of a stepper motor controller that retains the motion command data to determine the move sequence, such as a single move or a series of moves that are stored in "memory", available for continuous positioning tasks. SMC's <i>LC6</i> does not have this feature.
put Frequency	The <i>LC6</i> driver's input signal is a square-wave pulse. The internal circuit can only 'listen to' a certain number of these wave cycles per second. These are listed in terms of <i>kilohertz</i> , meaning 'thousand cycles.'
near Guide	A crossed roller linear guide bearing offers twice the load carrying capability of a ball bearing guide, making it ideal for applications needing high precision, high rigidity, high repeatability, and low friction.
nearity	Linearity is a measure of the degree to which the output of a control device maintains a constant relationship to the input over a range of input values.
op, Open or Closed	In motion control, these terms are used to describe a system having some sort of speed or position feedback (to com- pare to the original commands). SMC's electric actuators equipped with DC stepper motors are open loop; that is, there is no feedback other than auto-switches. SMC's AC servo electric actuators are closed loop if an application has irregular or unpredictable loads, a closed-loop system may be desirable over an open-loop one. See also Closed Loop Control System, Open Loop Control System.
cro-Step	The subdivision of a full-step into some finer increment that the half-step. A micro step is a logic patterns that will produce regular increments smaller than a half step. Micro-stepping is a function of the driver; SMC's <i>LC6</i> driver does not have this feature.
en Loop Control System	An open loop control system is a system that utilizes the stepper motor inherent positioning capabilities to provide precise positioning. There is no position confirmation feedback from the motor itself. See also Closed Loop Control System.
rvo	A servo system is a control system that employs feedback in order to control a desired output such as speed or position. A servo mechanism will detect and attempt to correct deviations from the desired output. Servo systems can offer higher speed, torque, and acceleration flexibility than step motor systems. Also, a servo is a closed-loop system, providing posi- tion and velocity feedback, whereas stepper motors are open loop systems.
de Screw	Slide screws are simpler than ball screws. The lead screw and rolling contact are machined with a trapezoidal pitch, and are in direct contact when moving. Slide screws give worse positioning repeatability, but are much less expensive than ball screws.
pper Motor	The stepper motor is the device that accepts the translated electrical current from the stepper driver and converts it to actual incremental motion stepper motors are inexpensive, simple to position, and offer high torque and good resolution, but no position feedback.
pping	Stepping is the process of supplying a proper logic pattern of drive signals that cause the stepper motor driver to supply the required stepper motor windings with current at appropriate times to create incremental motion. Full-stepping, half-
SMC	stepping, and micro-stepping are a function of the stepper motor driver, and not the motor itself. See also Full Step, Half Step, Micro Step.

Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by label of **"Caution"**, **"Warning" or "Danger"**. To ensure safety, be sure to observe ISO 4414 ^{Note 1}, JIS B 8370 ^{Note 2} and other safety practices.

Caution: Operator error could result in injury or equipment damage.
 Warning: Operator error could result in serious injury or loss of life.
 Danger: In extreme conditions, there is a possible result of serious injury or loss of life.

Note 1) ISO 4414 : Pneumatic fluid power - Recommendations for the application of equipment to transmission and control systems.

Note 2) JIS B 8370 : Pneumatic system axiom.

▲ Warning

1 The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.

Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements.

2 Only trained personnel should operate pneumatically operated machinery and equipment.

Compressed air can be dangerous if an operator is unfamiliar with it. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.

- 3 Do not service machinery/equipment or attempt to remove component until safety is confirmed.
 - 1.Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
- 2.When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
- 3.Before machinery/equipment is re-started, take measures to prevent shooting/out of cylinder piston rod etc. (Bleed air into the system gradually to create back-pressure.)
- 4 Contact SMC if the product is to be used in any of the following conditions:
- 1. Conditions and environments beyond the given specifications, or if product is used outdoors.
- 2.Installation on equipment in conjuction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverage, recreation equipment, emergency stop circuits, press applications, or safety equipment.
- 3.An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

Actuator Precautions

Be sure to read before handling

Designing

ACaution

1. A protective cover should be used for installations which could present danger to the operator.

In cases where the work or moving sections of the actuator may present a hazard to the operator, installation should be such that the operator cannot directly access the moving sections.

- Take care in mounting the actuator or work so that components cannot be loosened.
- 3. If dangerous situation at the interruption of service of electricity or at product failure can be predicted, safety mechanism should be installed so that machinery/human operator will not be damaged. Suspending system or lift also needs to be considered as countermeasure to prevent object from dropping down. should be installed so that machinery/human body will not be damaged. Suspending system or lift also needs to be considered countermeasure to prevent object from dropping down.

Selecting product

\land Warning

1. Specifications should be confirmed.Use equipment within the Specifications.

Operating environment

- 1. Do not use in the corrosive atmosphere.
- 2. If actuator is to be used in an area with excessive dust or dripping/splashing of water/oil, a protective cover should be used.
- 3. Actuators equipped with auto switches are not suitable for use in a strong magnetic field.
- 4. Do not use in an installation where cutting oil will directly contact the machinery.
- 5. Do not use in an environment where cutting powder, dust, spatter etc. are present.
- 6. Equipment must be thermally isolated from any heat source so that no heat is conducted to the equipment.
- 7. Do not use in areas where actuator will be subjected to vibration or shock.

Mounting

\land Caution

- 1. Do not operate until confirming whether equipment can function properly.
- 2. Mount products after having read and understood operating manual well.
- 3. Mounting surface of body/table should not be marked with scratches. Flatness of mounting surface may be compromised; play in guide section, increased sliding resistance, etc. can occur.
- 4. Do not give strong shock or heavy moment when mounting work.
- Flatness of mounting surface should be less than 0.05mm.
 Low quality of flatness of work or base etc. will cause play on guide section or increase on sliding resistance.
- 6. Appropriate connection method should be taken and accurate alignment is required if connecting to external support/guide mechanism.
- Do not mount in the areas where actuator will be subjected to vibration or shock.

Power-swing* or damage may occur. Consult SMC if mounting in this kind of environment. *Loss of synchronism

8. Repeatable bending force or tension to motor cable should be avoided.

\land Danger

1. Before performing wiring operation or system check, measure the voltage level by tester one minute after switch off of power supply. Otherwise, it may result in electric shock.

Maintenance

- 2. Wiring operation or system check should be made by qualified personnel.
- 3. Do not touch nor operate the switch with wet hand to avoid receiving electric shock.
- 4. Cable should not be damaged, stressed, pinched, nor loaded heavy weight.
- 5. Do not use equipment in environment where dusts, particles, cutting powder, spatter, etc. are in direct contact with equipment.
- 6. Equipment must be thermally isolated from any heat source so that no heat is conducted to the equipment.
- 7. Do not use in areas where actuator will be subjected to vibration or shock.

Wiring

A Caution

- 1. Driver unit and motor should only be mounted on non-combustible surfaces. If mounting directly on or near combustible material, it could result in a fire.
- 2. If failure occurs on driver unit, disconnect the power supply to the driver. Fire could result from the continued supply of power.
- 3. Do not apply any voltage to any terminal other than that designated in Operating Manual. Otherwise, electric circuit will be damaged.
- 4. Connection to wrong terminal or
 - wrong polarity (+, -) must be avoided, otherwise, electric circuit will be damaged.
- 5. While energizing or right after the power supply is switched off, do not touch the equipment due to very high motor temperature.
- 6. If continuously operating stepping motor, maintain the duty ratio mentioned in this catalog or Operating Manual. If the duty ratio is not maintained or is disregarded, coil breakage may be caused by high temperature.

Precautions

Brake Precautions

Read carefully before handling.

There exists a very slight possibility of the failure of the brake mechanism; should this occur, inertial running may be seen in the system. To prepare for such a failure, safety measures for machinery should be considered and implemented. Redundant safety measures should be taken particularly for use as a safety brake.

Construction

A Danger

- 1. Do not use in flammable or explosive atmosphere. Slip at the activation or braking may generate sparks. Never use in grease or combustible gas atmosphere which has possibility of flash or explosion.
- 2. Not applicable for braking.

This brake is non-excitation type designed only for holding and emergency stoppage. If repeatedly used for braking, it original performance and specifications can easily deteriorate within a short time and brake releasing becomes unavailable. If using in this way, brake will be damaged and holding performance will definitely be compromised leading to accidents such as runaway of machinery.

Before mounting

A Danger

1. Use the appropriate wire size for the power supply capacity.

If sufficient wire size is used, insulation coating will be melted and electric shock or fire may result.

2. Start operation after confirming proper electrical wring for the brake.

The brake is locked at de-energized state. 24VDC is needed to release the lock. A circuit example is shown below for reference.

Operation

A Danger

1. Immediately stop the operation whenever extraordinary operation noise is heard or vibration is felt. In the case where extraordinary operation noise is heard or vibration is felt, product may have been improperly mounted. Unless operation is stopped for the inspection, machinery may be seriously damaged.

Maintenance

A Danger

1. Do not apply oil nor water.

If water or oil is applied to sliding friction surface or even body, torque performance will be compromised drastically and the system may overrun causing human injury.

Photo Micro Sensor

Read carefully before handling.

Incorrect usage

▲ Caution

- 1. Do not operate beyond the rated voltage range.
 - If applying voltage over the rated voltage range, equipment may be damaged.

2. Avoid incorrect wiring such as polarity of power supply.

Otherwise, equipment may be damaged.

3. Do not short circuit the load. (Do not connect to power supply.)

Otherwise, equipment may be damaged.

Proper usage: Power supply

ACaution

The following conditions should be satisfied when using switch regulator.

1. Mounting frame is connected to "0V" line of power supply close to the sensor to reduce impedance of the frame so that induction noise will not enter the mounting frame.

<u>Series LX</u>

Precaution

Proper usage: Power supply

Caution

 Noise filter terminal (neutral terminal to "ACG") on switching power supply is connected the power supply 's body frame "FG" and "0V" of the power supply.

If the connected circuit is grounded to the earth or mounting frame body, its operation can be more stable. (Recommended by power supply manufacturers.)

3. Insert an approximately 10 mm width insulation plate made of plastics in between sensor body and mounting frame.

Proper usage: Surge voltage

Caution

If surge voltage is generated on the power supply line, according to the operating conditions, circuit should be equipped with zener diode "ZD", 30 to 35V, or condenser, 0.1μ F, etc. in order to eliminate the surge voltage. Do not start the operation before confirming disappearance of surge voltage.

A Caution

Insert resistor in between power supply and the output to enable connecting open collector output sensor to voltage input specification.

4.7k Ω of resistor is generally used. Suited wattage of resistor is 1/2W for 24V and 1/4W for 12V.

Proper usage: Voltage output

Caution

In the case resistor R = 4.7 k Ω At "H" level,

Input voltage VH

$$= \frac{Z}{B+7} Vcc = \frac{4.7k}{4.7k+4.7k} \times 24V = 12V$$

At "L" level,

Input voltage VL $\leq 0.4V$ Load voltage Ic

$$=\frac{Vcc}{B}=\frac{24V}{4.7k}=5.1mA \le 10mA$$

See the sensor specifications for residual voltage against load voltage.

Others

∆Caution

- 1. Voltage cable/power cable should not be in the same piping or duct where wiring of Photo Micro Sensor is in; otherwise, the system may malfunction or be damaged due to induction. Separate wring or individual wiring is requried to avoid such a trouble.
- 2. Avoid mounting in the following locations since failure may occur.
- · Place where the ambient is dusty.
- · Place where the ambient is corrosive gas.
- Place where water, oil, and/or chemical material are sprayed and/or directly contact the equipment.
- Outdoor and/or place where equipment is directly exposed to strong light; e.g. the sun light.
- 3. Use product within the ambient temperature range indicated in its specifications.
- 4. Operate after having checked its mounting condition if it is loosened or play is seen on it caused by vibration or shock.
- 5. If organic solvent, acid, alkaline, aroma group carbonhydrogen, or fatty chloride group carbon-hydrogen touches the sensor, it may melt.
- 6. If operating with small size dielectric load such as relay, wire as shown in the figure below. (Reverse voltage suppression diode should be connected.)

Auto Switch Precautions 1

Be sure to read before handling

Design/Selection

Warning

1. Confirm specifications.

Do not use switches with load current, voltage, temperature, impact beyond the specification range.

2. Parallel mounting of actuator

When using two or more auto switch capable actuator or more mounted parallel to one another, the distance between actuator bodyes should be 40 mm or more to avoid possible incorrect operation caused by magnetic force from neighboring actuators.

3. Wiring should be as short as possible.

Lead wire should be less than 100 meters.

4. Internal voltage drop

The internal voltage drop of 2-wire solid-state switch is larger than that of reed switch. 12VDC relay is not available.

If the switches are connected in series as shown in the following figure, it makes the voltage drop greater due to the internal resistance of the light emitting diodes (Refer to the internal resistance voltage in the auto switch specification). The load may not operate due to the internal voltage drop.

If used in less than he specified voltage, the load may not operate due to the internal voltage drop. The allowable range of the load should be confirmed. Select the auto switch usng the following formula.

Power voltage - Internal drop voltage > Min. operating voltage of load.

5. Current leakage

(Solid-state switch)

2-wire solid-state switch has a current flow in the load to operate the internal circuit at off.

Please use the following formula: Load operating current

(Input off current at controller) > Current leakage

If not, switch will remain in the ON condition. In such a case use the 3-wire type.

6. Do not use a load which generates a surge voltage.

(Solid-state switch)

An output part connected to a zener diode for protection against surge may be damaged by repeated surges. Use an auto switch with built-in surge absorbing element when directly driving a load that generates a surge such as a relay or solenoid valve.

7. Secure the maintenance space.

Space for maintenance should be taken into consideration when designing machinery.

Installation/Adjustment

Warning

1.Do not drop or cause impact to switch.

Do not drop, apply excessive impact (more than $300m/s^2$ for reed switch, more than $1000m/s^2$ for solid-state switch) when handling. Damage could occur to the inside as well as the body.

2.Do not pull the lead wire with excessive force. Do not pull the lead wile to move the cylinder.

It may cause breakage of lead wire or damage to the internal switch element due to the applied stress.

3. Tighten the screw within the specified torque range.

Tightening with over the specified torque may damage the mounting screw, bracket or switch. If tightening with smaller torque than the specified range, the mounting position may slide.

4. Set the switch at the center of operating range.

Adjust the mounting position of auto switch to have the piston stopped in the middle of the switch operating range, or the switch may operate erratically. (The most suitable mounting position shown in the catalog is near the borderline of the stroke end.)

Change of lead wire color

Lead wire colors of SMC switches and related products have been changed in order to meet Nippon Electric Control Equipment Industries Association Standard No.402.

Please note the polarity when installing the switch.

2 wire			3 wire		
	Former	New		Former	New
Output (+)	Red	Brown	Output +	Red	Brown
Output(-)	Black	Blue	GND	Black	Blue
Solid state switch with			Output	White	Black
diagnostic out	put		Solid state swit	tch with	h
in market mark	Former	New	latching diagno	stic ou	utput
Power supply +	Red	Brown		Former	New
GND	Black	Blue	Power supply +	Red	Brown
Output	White	Black	GND	Black	Blue
Diagnostic output	Yellow	Orange	Output	White	Black
			Latching type diagnostic output	Yellow	Orange

Auto Switch Precautions 2

Be sure to read before handling

Wiring

Warning

1.Wiring must not be subjected to repeated bending stress or pulling forces.

It may cause the wire to break.

2.Connect the load before supplying power.

(2-wire type)

Switch may fail due to excessive current flow as soon as switch comes ON without load.

3.Check the insulation of wiring.

Do not use wiring with damaged insolation due to risk of a short circuit e.g. contact with other wiring, ground or between terminals etc. An auto switch may be damaged by excessive current flowing into the switch.

4.Avoid close proximity to power or high voltage cable.

Electrical interference might cause malfunction to the control circuit, including the switch, due to noise.

5.Do not short the load.

The short protection circuit is not equipped with not all the PNP type. Take care so that the switch is not broken as soon as the load is shorted. Pay special attention when replacing the power wire (Brown) and output wire (Black).

6. Avoid incorrect wiring.

1) The 2-wire type is equipped with a protection circuit so that the switch will not be damaged by reverse connection, however, the switch is always ON. The switch will be damaged by reverse connection when the load is shorted.

In case of 3-wire type

Heverse connection of (+) and (-) is protected by protection circuit, but the switch may be damaged if connecting polarity (+) with blue lead wire and (-) with black lead wire.

Environment

1.Do not use switches in an environment where auto switch is in direct contact with explosive atmosphere.

The auto switches have no explosion proof construction; it may ignite explosive gas.

Therefore, avoid the use of switch in such an atmosphere.

2.Do not use switches where a magnetic field exists.

It may cause a malfunction or reduce magnetic force of magnet assembled in the actuator. Contact SMC for a strong magnetic field resistant auto switch.

3.Do not use switches in an environment where an auto switch may be continuously exposed to direct water contact.

Use of the auto switch for long periods of time with continuous exposure to water should be avoided. It may cause adverse effect on insulation or switch malfunction due to deteriorated of potting resin.

4.Do not use switches in an environment where oil or chemical is required.

Contact SMC for the use of auto switches in an environment requiring contact with coolant, cleaning solvent, other kinds of oils or chemicals for a short time. It may cause adverse effect on insulation or switch malfunction due to deterioration of potting resin and hardening of lead wire.

5.Do not use switches where operating temperature changes greatly.

Contact SMC for the temperature changes other than normal range.

6.Do not use switches where a large surge voltage is generated.

When electronic type machine lifter, high frequency induction furnace or motor, which generate large surge voltage, is placed near switches, use a switch equipped with a built-in surge adsorption element and avoid the common wiring. It may cause damage or deterioration of switches internal circuit element.

7.Pay attention to any iron powder accumulation or magnetic substance.

If cutting or iron powder from welding spatter is accumulated or magnetic substances are placed nearby, magnetic force of piston magnet may be reduced and switch will not function properly.

Maintenance

Warning

1. The following maintenance should be done regularly.

- 1)Additional tightening of switch mounting screw
- Readjust the mounting position and tighten the screw if screw is loose or mounting position has slided.
- 2)Confirmation of the lead wire condition Replace switch or repair the lead wire to avoid insulation fault if lead wire is damaged.

Others

Warning

1.Contact SMC for water resistant performance, bending resistance of lead wires, and use in welding applications.

Compact Electric Actuators

Series LX

Driver Unit Precautions Read carefully before handling

Usage

Warning

- Operating manual should be read carefully to understand and confirm product specifications/characteristics before mounting.
- Avoid using equipment in any mounting method or operation other than that mentioned in the operating manual. Otherwise, it may cause failure or malfunction.
- Never touch the inside of driver unit. It may cause electric shock or failure.
- Motor and driver should be used in the designated combinations.

Caution

- Do not disassemble nor modify the equipment. This may cause failure, malfunction or fire.
- Do not touch the driver during energizing or right after deenergized due to high temperature.
- When fire or danger to human is predicted due to abnormal heating, firing or smoking of the driver, shut the power supply to the main body and the system immediately.

Usage

A Danger

 Adjusting, mounting or wiring change shouldn't be done before shutting the power supply to the driver. Electric shock may be received.

A Danger

- Wiring should be properly completed.
 Do not apply any voltage to the terminals other than those specified in operating manual. Unit may be damaged.
- Connector should be certainly connected.
- Certain measure against noise should be taken. If noise is on signal line, it may cause malfunction. As the countermeasure, separate strong electrical wire and weak electrical wire, and shorten their wiring length.

Mounting

Caution

- Mount the driver on non-combustible substance. Mounting directly on or closely to combustible material may cause fire.
- Cooling has to be done so that operating temperature of body will be within the range shown in the specifications.
 For that reason, each face of body should be at least 50mm from other constructions or components.

- Unit should be grounded.
- Avoid mounting the driver on the panel where vibration source such as large size electromagnetic contactor or circuit fuse breaker is also mounted. Even if driver is mounted on the same panel with such a vibration source, it should be separated from the source.
- Design the machinery so that the connector can be freely connected/disconnected after installation.
- Use within the specifications. Do not use in the place where dusts, oil, smoke, conductive dusts, corrosive gas, flammable gas, or so on is generated, in the place where exposed to high temperature, dewing, wind/rain or so on, or in the place where vibration or shock is conducted.

Common Terms Related To Electric Actuators

2-Phase Motor, 5-Phase Motor	A five-phase motor runs much smoother than a two-phase motor because it has two more magnetic poles than a two- phase motor does. This means there is less torque ripple or vibration from resonance. However, actuators with five- phase motors have slightly lower payload ratings than those with two-phase motors.
Ball Screw	Both ball screws and slide screws consist of a rolling contact on a lead screw. For ball screws, the rolling contact is a housing with recirculating ball bearings inside. The lead screw has machined grooves for the ball bearings to roll in, SMC offers two types of ball screw: a ground type (higher precision, higher cost) and a rolled type (lower precision, lower cost).
Closed Loop Control System	A closed loop control system is a system that utilizes a feedback device (encoder, resolver, and so on) to enhance perfor- mance of the system by providing better acceleration and speed capabilities as well as better system stability. The closed loop control system also provides assurance that the programmed position is actually achieved. See also Open Loop Control System.
Duty Cycle	Duty cycle is the variation of torque or speed or both with time during a specified operating cycle. The LC6 stepper driver has a duty cycle of 50%, regardless of actuator load. Also, <i>LC6</i> continuous operation may not exceed thirty seconds. Continuous operation is defined as the time from when the slider begins to move until it stops moving (not just pauses at stroke end).
	$duty \ cycle =$
	run time + stopped time
Full Step	A full step is a logic pattern that will produce one unit of incremental motion from a stepper motor (the increments being determined by the stepper motor structure). For example, SMC's 5-phase LX actuator motors are divided into 500 steps. Thus, one pulse in full step mode equals (360° + 500=) 0.72° of shaft rotation. See also Stepping.
Half Step	A half step is the unit of incremental motion that is 1/2 the basic motion step. SMC's 2-phase LX actuator motors are divided into 200 steps. Each pulse in half step mode equals 0.9° of rotation. See also Stepping.
Indexer	An indexer is the part of a stepper motor controller that retains the motion command data to determine the move sequence, such as a single move or a series of moves that are stored in "memory", available for continuous positioning tasks. SMC's <i>LC6</i> does not have this feature.
Input Frequency	The <i>LC6</i> driver's input signal is a square-wave pulse. The internal circuit can only 'listen to' a certain number of these wave cycles per second. These are listed in terms of <i>kilohertz</i> , meaning 'thousand cycles.'
Linear Guide	A crossed roller linear guide bearing offers twice the load carrying capability of a ball bearing guide, making it ideal for applications needing high precision, high rigidity, high repeatability, and low friction.
Linearity	Linearity is a measure of the degree to which the output of a control device maintains a constant relationship to the input
Enoury	over a range of input values.
Loop, Open or Closed	over a range of input values. In motion control, these terms are used to describe a system having some sort of speed or position feedback (to com- pare to the original commands). SMC's electric actuators equipped with DC stepper motors are open loop; that is, there is no feedback other than auto-switches. SMC's AC servo electric actuators are closed loop if an application has irregular or unpredictable loads, a closed-loop system may be desirable over an open-loop one. See also Closed Loop Control System, Open Loop Control System.
	In motion control, these terms are used to describe a system having some sort of speed or position feedback (to com- pare to the original commands). SMC's electric actuators equipped with DC stepper motors are open loop; that is, there is no feedback other than auto-switches. SMC's AC servo electric actuators are closed loop if an application has irregular or unpredictable loads, a closed-loop system may be desirable over an open-loop one. See also Closed Loop Control
Loop, Open or Closed	In motion control, these terms are used to describe a system having some sort of speed or position feedback (to com- pare to the original commands). SMC's electric actuators equipped with DC stepper motors are open loop; that is, there is no feedback other than auto-switches. SMC's AC servo electric actuators are closed loop if an application has irregular or unpredictable loads, a closed-loop system may be desirable over an open-loop one. <i>See also Closed Loop Control System, Open Loop Control System</i> . The subdivision of a full-step into some finer increment that the half-step. A micro step is a logic patterns that will produce regular increments smaller than a half step. Micro-stepping is a function of the driver; SMC's <i>LC6</i> driver does not have
Loop, Open or Closed Micro-Step	In motion control, these terms are used to describe a system having some sort of speed or position feedback (to com- pare to the original commands). SMC's electric actuators equipped with DC stepper motors are open loop; that is, there is no feedback other than auto-switches. SMC's AC servo electric actuators are closed loop if an application has irregular or unpredictable loads, a closed-loop system may be desirable over an open-loop one. <i>See also Closed Loop Control System, Open Loop Control System</i> . The subdivision of a full-step into some finer increment that the half-step. A micro step is a logic patterns that will produce regular increments smaller than a half step. Micro-stepping is a function of the driver; SMC's <i>LC6</i> driver does not have this feature. An open loop control system is a system that utilizes the stepper motor inherent positioning capabilities to provide precise
Loop, Open or Closed Micro-Step Open Loop Control System	In motion control, these terms are used to describe a system having some sort of speed or position feedback (to compare to the original commands). SMC's electric actuators equipped with DC stepper motors are open loop; that is, there is no feedback other than auto-switches. SMC's AC servo electric actuators are closed loop if an application has irregular or unpredictable loads, a closed-loop system may be desirable over an open-loop one. <i>See also Closed Loop Control System, Open Loop Control System.</i> The subdivision of a full-step into some finer increment that the half-step. A micro step is a logic patterns that will produce regular increments smaller than a half step. Micro-stepping is a function of the driver; SMC's <i>LC6</i> driver does not have this feature. An open loop control system is a system that utilizes the stepper motor inherent positioning capabilities to provide precise positioning. There is no position confirmation feedback from the motor itself. <i>See also Closed Loop Control System.</i> A servo system is a control system that employs feedback in order to control a desired output such as speed or position. A servo mechanism will detect and attempt to correct deviations from the desired output. Servo systems can offer higher speed, torque, and acceleration flexibility than step motor systems. Also, a servo is a closed-loop system, providing posi-
Loop, Open or Closed Micro-Step Open Loop Control System Servo	In motion control, these terms are used to describe a system having some sort of speed or position feedback (to com- pare to the original commands). SMC's electric actuators equipped with DC stepper motors are open loop; that is, there is no feedback other than auto-switches. SMC's AC servo electric actuators are closed loop if an application has irregular or unpredictable loads, a closed-loop system may be desirable over an open-loop one. <i>See also Closed Loop Control System, Open Loop Control System.</i> The subdivision of a full-step into some finer increment that the half-step. A micro step is a logic patterns that will produce regular increments smaller than a half step. Micro-stepping is a function of the driver; SMC's <i>LC6</i> driver does not have this feature. An open loop control system is a system that utilizes the stepper motor inherent positioning capabilities to provide precise positioning. There is no position confirmation feedback from the motor itself. <i>See also Closed Loop Control System.</i> A servo system is a control system that employs feedback in order to control a desired output such as speed or position. A servo mechanism will detect and attempt to correct deviations from the desired output. Servo systems can offer higher speed, torque, and acceleration flexibility than step motor systems. Also, a servo is a closed-loop system, providing posi- tion and velocity feedback, whereas stepper motors are open loop systems. Slide screws are simpler than ball screws. The lead screw and rolling contact are machined with a trapezoidal pitch, and are in direct contact when moving. Slide screws give worse positioning repeatability, but are much less expensive than

World Wide SMC Support...

North American Branch Offices For a branch office near you call: 1-800-SMC-SMC1 (762-7621)

SMC Pneumatics Inc. (Atlanta) 1440 Lakes Parkway, Suite 600 Lawrenceville, GA 30043 Tel: (770) 624-1940 FAX: (770) 624-1943

SMC Pneumatics Inc. (Austin) 2324-D Ridgepoint Drive Austin, TX 78754 Tel: (512) 926-2646 FAX: (512) 926-7055

SMC Pneumatics Inc. (Boston) Zero Centennial Drive Peabody, MA 01960 Tel: (978) 326-3600 Fax: (978) 326-3700

SMC Pneumatics Inc. (Charlotte) 5029-B West W.T. Harris Blvd. Charlotte, NC 28269 Tel: (704) 597-9292 FAX: (704) 596-9561

SMC Pneumatics Inc. (Chicago) 27725 Diehl Road Warrenville, IL 60555 Tel: (630) 393-0080 FAX: (630) 393-0084

SMC Pneumatics Inc. (Cincinnati) 4598 Olympic Blvd. Erlanger, KY 41018 Tel: (606) 647-5600 FAX: (606) 647-5609

Europe ENGLAND SMC Pneumatics (U.K.) Ltd. GERMANY SMC Pneumatik GmbH **ITALY SMC Italia SpA** FRANCE **SMC Pneumatique SA** HOLLAND SMC Controls BV SWEDEN **SMC Pneumatics Sweden AB** SWITZERLAND **SMC Pneumatik AG** AUSTRIA **SMC Pneumatik GmbH** SPAIN SMC España, S.A. IRELAND SMC Pneumatics (Ireland) Ltd. Asia JAPAN

SMC Pneumatics Inc. (Cleveland) 2305 East Aurora Rd., Unit A-3 Twinsburg, OH 44087 Tel: (330) 963-2727 FAX: (330) 963-2730

SMC Pneumatics Inc. (Columbus) 3687 Corporate Drive Columbus, OH 43231 Tel: (614) 895-9765 FAX: (614) 895-9780

SMC Pneumatics Inc. (Dallas) 12801 N. Stemmons Frwy, Ste. 815 Dallas, TX 75234 Tel: (972) 406-0082 FAX: (972) 406-9904

SMC Pneumatics Inc. (Detroit) 2990 Technology Drive Rochester Hills, MI 48309 Tel: (248) 299-0202 FAX: (248) 293-3333

SMC Pneumatics Inc. (Houston) 9001 Jameel, Suite 180 Houston, TX 77040 Tel: (713) 460-0762 FAX: (713) 460-1510

SMC Pneumatics Inc. (L.A.) 14191 Myford Road Tustin, CA 92780 Tel: (714) 669-1701 FAX: (714) 669-1715

SMC Corporation KOREA SMC Pneumatics Korea Co., Ltd. CHINA SMC (China) Co., Ltd. HONG KONG SMC Pneumatics (Hong Kong) Ltd. SINGAPORE SMC Pneumatics (S.E.A.) Pte. Ltd. PHILIPPINES SMC Pneumatics (Philippines), Inc. MALAYSIA SMC Pneumatics (S.E.A.) Sdn. Bhd. TAIWAN SMC Pneumatics (Taiwan) Co., Ltd. THAILAND SMC Thailand Ltd. INDIA SMC Pneumatics (India) Pvt., Ltd. North America CANADA SMC Pneumatics (Canada) Ltd. MEXICO SMC Pneumatics (Mexico) S.A. de C.V. **SMC Pneumatics Inc. (Milwaukee)** 16850 W. Victor Road New Berlin, WI 53151 Tel: (414) 827-0080 FAX: (414) 827-0092

SMC Pneumatics Inc. (Mnpls.) 990 Lone Oak Road, Suite 162 Eagan, MN 55121 Tel: (651) 688-3490 FAX: (651) 688-9013

SMC Pneumatics Inc. (Nashville) 5000 Linbar Drive, Suite 297 Nashville, TN 37211 Tel: (615) 331-0020 FAX: (615) 331-9950

SMC Pneumatics Inc. (Newark) 3434 US Hwy. 22 West, Ste. 110 Somerville, NJ 08876 Tel: (908) 253-3241 FAX: (908) 253-3452

SMC Pneumatics Inc. (Phoenix) 2001 W. Melinda Lane Phoenix, AZ 85027 Tel: (623) 492-0908 FAX: (623) 492-9493

SMC Pneumatics Inc. (Portland) 14107 N.E. Airport Way Portland, OR 97230 Tel: (503) 252-9299 FAX: (503) 252-9253

South America ARGENTINA SMC Argentina S.A. CHILE SMC Pneumatics (Chile) Ltda.

Oceania AUSTRALIA SMC Pneumatics (Australia) Pty. Ltd. NEW ZEALAND SMC Pneumatics (N.Z.) Ltd. **SMC Pneumatics Inc. (Richmond)** 5377 Glen Alden Drive Richmond, VA 23231 Tel: (804) 222-2762 FAX: (804) 222-5221

SMC Pneumatics Inc. (Rochester) 245 Summit Point Drive Henrietta, NY 14467 Tel: (716) 321-1300 FAX: (716) 321-1865

SMC Pneumatics Inc. (S.F.) 85 Nicholson Lane San Jose, CA 95134 Tel: (408) 943-9600 FAX: (408) 943-9111

SMC Pneumatics Inc. (St. Louis) 4130 Rider Trail North Earth City, MO 63045 Tel: (314) 209-0080 FAX: (314) 209-0085

SMC Pneumatics Inc. (Tampa) 8507-H Benjamin Road Tampa, FL 33634 Tel: (813) 243-8350 FAX: (813) 243-8621

SMC Pneumatics Inc. (Tulsa) 10203 A East 61st Street Tulsa, OK 74146 Tel: (918) 252-7820 FAX: (918) 252-9511

SMC offers the same quality and engineering expertise in many other pneumatic components

Valves Directional Control Valves Manual Valves Mufflers Exhaust Cleaners Quick Exhaust Valves Valves Proportional Valves Mechanical Valves Miniature Valves Fluid Valves Cylinders/Actuators Compact Cylinders Miniature Cylinders Rodless Cylinders Rotary Actuators Pneumatic Grippers Vacuum Ejectors Vacuum Accessories Instrumentation Pneumatic Positioners Pneumatic Transducers Air Preparation Equipment Filters-Regulators-Lubricators Coalescing Filters Micro Mist Separators Fittings Air Fittings

SMC Pneumatics Inc. P.O. Box 26640, Indianapolis, IN 46226 Tel: (317) 899-4440 • FAX: (317) 899-3102