Operation Manual

Fieldbus system
Analog unit
PRODUCT NAME
EX600-AXA
EX600-AYA
EX600-AMB
MODEL/ Series

Table of Contents

Safety Instructions 3
System Outline 9
Assembly 10
Mounting and Installation 12
Installation 12
Wiring 14
Analog input unit
Model Indication and How to Order 15
Names and Functions of Product 15
Mounting and Installation 16
Wiring 16
LED Display 18
Specification 19
Specifications 19
Dimensions 24
Analog output unit
Model Indication and How to Order 25
Names and Functions of Product 25
Mounting and Installation 26
Wiring 26
LED Display 27
Specification 28
Specifications 28
Dimensions 32
Analog I/O unit
Model Indication and How to Order 33
Names and Functions of Product 33
Mounting and Installation 34
Wiring 34
LED Display 36
Specification 37
Specifications 37
Dimensions 44

Common items

Maintenance 45
Troubleshooting 46
Parameter Setting 46
I/O Map 46
Diagnostic 46
Accessories 46
Precautions before mounting 47

Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution", "Warning" or "Danger". They are all important notes for safety and must be followed in addition to International standards (ISO/IEC) ${ }^{* 1)}$ and other safety regulations.
*1) ISO 4414: Pneumatic fluid power -- General rules relating to systems
ISO 4413: Hydraulic fluid power -- General rules relating to systems
IEC 60204-1: Safety of machinery -- Electrical equipment of machines (Part 1: General requirements) ISO 10218-1992: Manipulating industrial robots -Safety. etc.

CAUTION indicates a hazard with a low level of risk which, if not avoided, \| could result in minor or moderate injury.
WARNING indicates a hazard with a medium level of risk which, if not ${ }^{\|}$ avoided, could result in death or serious injury.
DANGER indicates a hazard with a high level of risk which, if not avoided, ॥ will result in death or serious injury.

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.
Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment. The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

\. Caution

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries. If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary. If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered. ${ }^{* 2)}$ Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

When the product is exported, strictly follow the laws required by the Ministry of Economy, Trade and Industry (Foreign Exchange and Foreign Trade Control Law).

Operator

- This operation manual has been written for those who have knowledge of machinery and apparatus that use pneumatic equipment and have full knowledge of assembly, operation and maintenance of such equipment.
- Please read this operation manual carefully and understand it before assembling, operating or providing maintenance to the product.
-Precautions

Wharning
Do not disassemble, modify (including changing the printed circuit board) or repair.
An injury or failure can result.
Do not operate or set with wet hands.
This may lead to an electric shock.
Do not operate the product outside of the specifications.
Do not use for flammable or harmful fluids.
Fire, malfunction, or damage to the product can result.
Verify the specifications before use.
-Do not operate in an atmosphere containing flammable or explosive gases.
Fire or an explosion can result.
This product is not designed to be explosion proof.
If using the product in an interlocking circuit:
-Provide a double interlocking system, for example a mechanical system.
-Check the product regularly for proper operation.
Otherwise malfunction can result, causing an accident.
-The following instructions must be followed during maintenance:
-Turn off the power supply.
-Stop the air supply, exhaust the residual pressure and verify that the air is released before performing
maintenance.
Otherwise an injury can result.

\triangle Caution

-When handling the unit or assembling/replacing units:
-Do not touch the sharp metal parts of the connector or plug for connecting units.
-Take care not to hit your hand when disassembling the unit.
The connecting portions of the unit are firmly joined with seals.
-When joining units, take care not to get fingers caught between units.
An injury can result.
■After maintenance is complete, perform appropriate functional inspections.
Stop operation if the equipment does not function properly.
Safety cannot be assured in the case of unexpected malfunction.
■Provide grounding to assure the safety and noise resistance of the Fieldbus system.
Individual grounding should be provided close to the product with a short cable.

NOTE

-Follow the instructions given below when designing, selecting and handling the product.
-The instructions on design and selection (installation, wiring, environment, adjustment, operation, maintenance, etc.) described below must also be followed.
*Product specifications
-The direct current power supply to combine should be UL 1310 Class2 power supply when conformity to UL is necessary.
-Use the specified voltage.
Otherwise failure or malfunction can result.
-The power supply for the unit should be OV as the standard for both the power supply for outputs and the power supply for inputs and control.

-Reserve a space for maintenance.
Allow sufficient space for maintenance when designing the system.
-Do not remove any nameplates or labels.
This can lead to incorrect maintenance, or misreading of the operation manual, which could cause damage or malfunction to the product.
It may also result in non-conformity to safety standards.
-Beware of inrush current when the power supply is turned on.
Some connected loads can apply an initial charge current which will activate the over current protection function, causing the unit to malfunction.

-Product handling

*Installation
-Do not drop, hit or apply excessive shock to the SI unit.
Otherwise damage to the product can result, causing malfunction.
-Tighten to the specified tightening torque.
If the tightening torque is exceeded the mounting screws may be broken.
IP67 protection cannot be guaranteed if the screws are not tightened to the specified torque.
-If a large manifold valve is mounted, lift the unit so that stress is not applied to the connecting part while transporting.
The stress may cause breakage of the connecting part. The unit may become very heavy depending on the combination. Transportation/installation shall be performed by multiple operators.
-Never mount a product in a location that will be used as a foothold.
The product may be damaged if excessive force is applied by stepping or climbing onto it.

*Wiring

-Avoid repeatedly bending or stretching the cables, or placing heavy load on them.
Repetitive bending stress or tensile stress can cause breakage of the cable.
-Wire correctly.
Incorrect wiring can break the product.
-Do not perform wiring while the power is on.
Otherwise damage to the SI unit and/or input or output device can result, causing malfunction.
-Do not route wires and cables together with power or high voltage cables.
Otherwise the SI unit and/or input or output device can malfunction due to interference of noise and surge voltage from power and high voltage cables to the signal line.
Route the wires (piping) of the SI unit and/or input or output device separately from power or high voltage cables. -Confirm proper insulation of wiring.
Poor insulation (interference from another circuit, poor insulation between terminals, etc.) can lead to excess voltage or current being applied to the product, causing damage.
-Take appropriate measures against noise, such as using a noise filter, when the Fieldbus system is incorporated into equipment.
Otherwise noise can cause malfunction.

*Environment

- Select the proper type of protection according to the environment of operation.

IP67 protection is achieved when the following conditions are met.
(1)The units are connected properly with fieldbus cable with M12 connector and power cable with M12 (M8) connector.
(2)Suitable mounting of each unit and manifold valve.
(3)Be sure to fit a waterproof cap on any unused connectors.

If using in an environment that is exposed to water splashes, please take measures such as using a cover.
Do not use in an environment where moisture or water vapor are present. Otherwise failure and malfunction can result.
-Do not use in a place where the product could be splashed by oil or chemicals.
If the product is to be used in an environment containing oils or chemicals such as coolant or cleaning solvent, even for a short time, it may be adversely affected (damage, malfunction etc.).
-Do not use the product in an environment where corrosive gases or fluids could be splashed.
Otherwise damage to the product and malfunction can result.
-Do not use in an area where surges are generated.
If there is equipment generating large surge near the unit (magnetic type lifter, high frequency inductive furnace, welding machine, motor, etc.), this can cause deterioration of the internal circuitry element of the unit or result in damage. Take measures against the surge sources, and prevent the lines from coming into close contact.
-When a surge-generating load such as a relay, valve or lamp is driven directly, use a product with a built-in surge absorbing element.
Direct drive of a load generating surge voltage can damage the unit.
-The product is CE marked, but not immune to lightning strikes. Take measures against lightning strikes in the system.
-Prevent foreign matter such as dust or wire debris from getting inside the product.

- Mount the product in a place that is not exposed to vibration or impact.

Otherwise failure or malfunction can result.
-Do not use the product in an environment that is exposed to temperature cycle.
Heat cycles other than ordinary changes in temperature can adversely affect the inside of the product.
-Do not expose the product to direct sunlight.
If using in a location directly exposed to sunlight, shade the product from the sunlight.
Otherwise failure or malfunction can result.
-Keep within the specified ambient temperature range.
Otherwise malfunction can result.
-Do not operate close to a heat source, or in a location exposed to radiant heat.
Otherwise malfunction can result.
*Adjustment and Operation
-Set the switches by using a sharp-pointed screwdriver etc. When setting the switch, do not touch other unrelated parts.
This can cause parts damage or malfunction due to a short circuit.
-Perform settings suitable for the operating conditions.
Incorrect setting can cause operation failure.
For details of each setting, refer to the SI unit Operation Manual.
-Please refer to the PLC manufacturer's manual etc. for details of programming and addresses.
For the PLC protocol and programming refer to the relevant manufacturer's documentation.

*Maintenance

-Turn off the power supply, stop the supplied air, exhaust the residual pressure and verify the release of air before performing maintenance.
There is a risk of unexpected malfunction.
-Perform regular maintenance and inspections.
There is a risk of unexpected malfunction.
-After maintenance is complete, perform appropriate functional inspections.
Stop operation if the equipment does not function properly.
Otherwise safety is not assured due to an unexpected malfunction or incorrect operation.
-Do not use solvents such as benzene, thinner etc. to clean each unit.
They could damage the surface of the body and erase the markings on the body.
Use a soft cloth to remove stains.
For heavy stains, use a cloth soaked with diluted neutral detergent and fully squeezed, then wipe up the stains again with a dry cloth.

System Outline

-System configuration

The EX600 range of units can be connected to various types of Fieldbus to realize the reduction of input or output device wiring and the distributed control system. The unit communicates with the Fieldbus through the SI unit. One SI unit can be connected with manifold valves with up to 32 outputs and the input • output • I/O units with maximum 10 units.

SI unit: Performs Fieldbus communication and solenoid valve manifold ON/OFF output.
Digital input unit: For connecting sensors with switch output capability. PNP and NPN types are available.
Digital output unit: For connecting output device such as solenoid valves, lamps, buzzers, etc. PNP and NPN types are available.
Digital I/O unit: This unit has both digital input and output functions. PNP and NPN types are available.
Analog input unit: For connecting sensors with analog output capability.
Analog output unit: This can be connected to the equipment which can read analog input.
Analog I/O unit: This unit has both analog input and output functions.
End plate: Connected at EX600 Manifold's D side, incorporating the power supply connection.
Solenoid valve manifold: An assembly of solenoid valves. One connector is used as the electric connection to all connected valves.

Assembly

-Composing the unit as a manifold
*: If the unit was purchased as a manifold, the work described in this section is not necessary.
(1)Connect the unit to the end plate.

The Digital unit, Analog unit can be connected in any order.
Tighten the bracket of the joint using tightening torque 1.5 to 1.6 Nm .

(2)Add more units.

Up to 10 units (including the SI unit) can be connected to one manifold.

(3)Connecting the SI unit.

After connecting the necessary units, connect the SI unit.
Connecting method is the same as above (1), (2).
(4)Mounting the valve plate.

Mount the valve plate (EX600-ZMVם) to the valve manifold using the valve set screws. (M3x8)
Apply 0.6 to 0.7 Nm tightening torque to the screws.

(5)Connect the SI unit and the valve manifold.

Insert the valve plate to the valve plate set groove on the side of SI unit. Then, tighten it with the valve plate set screws (M4x6) to fix the plate.
Tightening torque for set screws 0.7 to 0.8 Nm .

[^0]
Mounting and Installation

-Installation

-Direct mounting

(1)When joining six or more units, fix the middle part of the complete EX600 unit with an intermediate reinforcing brace (EX600-ZMB1) before mounting using 2-M4x5 screws.
Tightening torque: 0.7 to 0.8 Nm .

(2)Fix and tighten the end plates at one end of the unit. (M4)

Tightening torque: 0.7 to 0.8 Nm .
Fix the end plate at the valve side while referring to the operation manual of the corresponding valve manifold.

n (Number of connected units) $\leqq 10$
-DIN rail mounting
(Available for series other than SY series. Refer to the catalog for SY series.)
(1)When joining six or more units, fix the middle part of the complete EX600 unit with an intermediate reinforcing brace (EX600-ZMB2) before mounting, using 2-M4x6 screws.
Tightening torque: 0.7 to 0.8 Nm .
(2)Mount the end plate bracket (EX600-ZMA2) to the end plate at the opposite end to the valves, using 2-M4x14 screws.
Tightening torque: 0.7 to 0.8 Nm .

(3)Hook the DIN rail mounting groove to the DIN rail.
(4)Press the manifold using its side hooked to the DIN rail as a fulcrum until the manifold is locked.
(5)Fix the manifold by tightening the DIN rail fixing screws of the EX600-ZMA2. (M4x20)

Tightening torque: 0.7 to 0.8 Nm .
The tightening torque at the valve side depends on the valve type.
Refer to the operation manual of the corresponding valve manifold.

(EX600-ZMA2)

-Wiring

-Connect the M12 or M8 connector cable. M12 connector is applicable for SPEEDCON connector. SPEEDCON connector wiring method is explained below.
(1)Align the mark B on the metal bracket of the cable side connector (plug/socket) with the mark A.
(2)Align the mark C on the unit and insert the connector into the unit vertically.

If they are not aligned, the connector cannot be joined properly.
(3)When the mark B of the connector has been turned 180 degrees ($1 / 2$ turn), wiring is completed. Confirm that the connection is not loose. If turned too far, it will become hard to remove the connector.

- Mounting the marker

Signal name of the input or output devices and unit address can be written to the marker, and it can be installed to each unit.
Mount the marker (EX600-ZT1) into the marker groove as required.

Analog input unit

Model Indication and How to Order

Symbol	Connector	Number of input channels
A	$2 \times \mathrm{M} 12$ connector $(5 \mathrm{pin})^{*}$	2 channels

*: An M12 connector (4 pin) can also be connected.

Names and Functions of Product

(4)

No.	Description	Function
1	Status display LED	Displays the status of the unit.
2	Connector (Analog input)	Connector for analog input device.
3	Marker groove	Groove to mount a marker.
4	Joint bracket	Bracket for joining to adjacent units.
5	Unit Connector (Plug)	Transmits signals and power supplies to adjacent units.

Mounting and Installation

■Wiring

-Connector pin assignment and circuit diagram
-Connector pin assignment

Configuration	Pin number	Signal name
$\left(\begin{array}{ll} 5 & 0 \\ 0 & 0 \end{array}\right)^{2}$	1	24 V (Control and input)
	2	Input +
	3	0 V (Control and input)
	4	Input -
	5	FE

*: An M12 connector (4 pin) can also be connected.
-Circuit diagram

Input impedance
Voltage input: $100 \mathrm{k} \Omega$
Current input: 50Ω
-Precautions for handling
Be sure to fit a seal cap on any unused connectors. Proper use of the seal cap enables the enclosure to achieve IP67 specification.

oExamples of wiring with input devices

-When using a sensor whose analog output signal is 0 V standard type.

-When using a 2-wire current output type sensor.

-When using a differential output type sensor.

-Precautions for handling

When an analog sensor is connected to the Analog input unit, pay attention to the following cautions.
EX600 analog input has a differential input specification, and it receives 2-pin (input +) signal based on 4-pin (input -). Because of the specification, if 4-pin is not connected, it will not be able to read the signal input properly. Therefore, when using an analog sensor that does not have the differential output type, 3-pin and 4-pin should be connected externally.

LED Display

The status display LED shows following unit status.
Various kinds of status can be checked as follows:

Display	Content
$\begin{gathered} \bigcirc \\ \text { OFF } \end{gathered}$	The power supply for control and input is OFF.
Green LED is ON	The product is operating normally.
Red LED is ON	The power supply of input device has a short circuit.
0 and 1 red LEDs are ON	Either of the following conditions: -The current value of the analog input device has exceeded the upper or lower limit. -When the range is set by current input type, voltage is input from the analog input device.
Red LED is flashing	Either of the following conditions: -The upper or lower limit of the range is exceeded. -The upper or lower limit of the measuring value (With user's setting value) is exceeded.

*: Refer to troubleshooting (SI unit Operation Manual of protocol used) for the further details of countermeasures.

Specification

■Specifications

Model			EX600-AXA	
Input type			Voltage input type	Current input type
Input connector			M12 connector (5 pin) Socket *1	
	Number of input ch	nnels	2 channels (1 channel/Connector)	
	Power supply voltag (Control and input)		24 VDC Class2, 2 A	
	Max. sensor supply	current	0.5 A/Channel	
	Protective function		Short circuit protection	
	Input signal range	12 bit Resolution	0 to $10 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 5 V	0 to $20 \mathrm{~mA}, 4$ to 20 mA
		16 bit Resolution	-10 to $10 \mathrm{~V},-5$ to 5 V	-20 to 20 mA
	Max. rated input signal		$\pm 15 \mathrm{~V}$	$\pm 40 \mathrm{~mA}$
	Input impedance		$100 \mathrm{k} \Omega$	50Ω
	Linearity ($25{ }^{\circ} \mathrm{C}$)		$\pm 0.05 \%$ F.S or less	
	Repeatability ($25^{\circ} \mathrm{C}$)		$\pm 0.15 \%$ F.S. or less	
	Absolute accuracy ($25^{\circ} \mathrm{C}$)		$\pm 0.5 \%$ F.S. or less	$\pm 0.6 \%$ F.S. or less
Current consumption			70 mA or less	
	Enclosure		IP67 (With manifold assembled) *2	
	Operating temperature range		-10 to $50{ }^{\circ} \mathrm{C}$ (Max. surrounding air temperature rating: $50{ }^{\circ} \mathrm{C}$) ${ }^{* 3}$	
	Storage temperature range		-20 to $60^{\circ} \mathrm{C}$	
	Operating humidity range		35 to 85\%RH (No condensation)	
	Withstand voltage		500 VAC for 1 min. between external terminals and FE	
	Insulation resistance		$500 \mathrm{VDC}, 10 \mathrm{M} \Omega$ or more between external terminals and FE	
	Vibration resistance		10 to 57 Hz : constant amplitude $0.75 \mathrm{~mm} \mathrm{p-p}$57 to 150 Hz : constant acceleration $49 \mathrm{~m} / \mathrm{s}^{2}$for 2 hours each in direction X, Y and Z respectively (De-energized)	
	Impact resistance		$147 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in directions of X, Y and Z respectively (De-energized)	
	Pollution degree		For use in Pollution Degree 2 Environment (UL508)	
Standard			CE marking, UL (CSA), RoHS	
Weight			290 g	

*1: An M12 connector (4 pin) can also be connected.
*2: All unused connectors must have a seal cap fitted.
*3: The UL compliant temperature is 0 to $50^{\circ} \mathrm{C}$.

○Analog input characteristics

(1)Offset binary data format
-Input signal range: 0 to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 20 mA

AD value		Input signal range (0 to b)		
Hexadecimal number	Decimal number	Voltage [V]		Current [mA]
	0 to 10 V	0 to 5 V	0 to 20 mA	
0FFF	4095	10.5	5.25	21
0F3D	3901	10	5	20
0800	2048	5.25	2.625	10.5
0000	0	0	0	0

AD value		Input signal range (a to b)	
Hexadecimal number	Decimal number	Voltage [V]	Current [mA]
	4095	5.25	21
0F1C	3868	5	20
0800	2048	3	12
00 E 4	228	1	4
0000	0	0.75	3

-Data format

-Input signal range: -10 to $10 \mathrm{~V},-5$ to $5 \mathrm{~V},-20$ to 20 mA

AD value		Input signal range (a to b)		
Hexadecimal number	Decimal number	Voltage [V]		Current [mA]
	65535	-10 to 10 V	-5 to 5 V	-20 to 20 mA
F9E8	63976	10	5.25	21
BCF4	48372	5	5	20
8000	32768	0	0	10
$430 C$	17164	-5	-2.5	0
0618	1560	-10	-5	-20
0000	0	-10.5	-5.25	-21

-Data format

(2)Signed binary data format and two's complement data format

- Input signal range: 0 to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 20 mA

AD value		Input signal range (0 to b)		
Hexadecimal number	Decimal number	Voltage [V]		Current [mA]
0 to 10 V	0 to 5 V	0 to 20 mA		
07 FF	2047	10.5	5.25	21
079 E	1950	10	5	20
0400	1024	5.25	2.625	10.5
0000	0	0	0	0

- Input signal range: 1 to 5 V , 4 to 20 mA

AD value		Input signal range (a to b)	
Hexadecimal number	Decimal number	Voltage $[\mathrm{V}]$	Current $[\mathrm{mA}]$ 07FF
2047	5.25	21	
078 E	1934	5	20
0400	1024	3	12
0072	114	1	4
0000	0	0.75	3

-Data format

CHO	Byte0								Byte1							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	Sign	MSB				$A D$ value					LSB	

	Byte2								Byte3							
CH1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	Sign	MSB				AD value					LSB	

-Input signal range : -10 to $10 \mathrm{~V},-5$ to $5 \mathrm{~V},-20$ to 20 mA

AD value			Input signal range (a to b)		
Hexadecimal number (Signed binary format)	Hexadecimal number (Two's complement format)	Decimal number	Voltage [V]		Current [mA]
			-10 to 10 V	-5 to 5 V	-20 to 20 mA
7FFF	7FFF	32767	10.5	5.25	21
79E8	79E8	31208	10	5	20
3CF4	3CF4	15604	5	2.5	10
0000	0000	0	0	0	0
BCF4	C30C	-15604	-5	-2.5	-10
F9E8	8618	-31208	-10	-5	-20
FFFF	8000	-32767	-10.5	-5.25	-21

-Data format

CH1	Byte2								Byte3							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Sign	MSB						AD value								LSB

-Dimensions

Analog output unit

Model Indication and How to Order

*: An M12 connector (4 pin) can also be connected.

Names and Functions of Product

(4)

No.	Description	Function
1	Status display LED	Displays the status of the unit.
2	Connector (Analog output)	Connector for analog output device.
3	Marker groove	Groove to mount a marker.
4	Joint bracket	Bracket for joining to adjacent units.
5	Unit Connector (Plug)	Transmits signals and power supplies to adjacent units.

Mounting and Installation

■Wiring

-Connector pin assignment and circuit diagram
-Connector pin assignment

Configuration	Pin number	Signal name
$\left(\begin{array}{ll} 5 & 0 \\ 5 & 0 \\ 0 & 0 \end{array}\right.$	1	24 V (Output)
	2	Output
	3	OV (Output)
	4	OV (Output)
	5	FE

*: An M12 connector (4 pin) can also be connected.
-Circuit diagram

Load impedance
Voltage output: $1 \mathrm{k} \Omega$ or more
Current output: 600Ω or less

-Precautions for handling

Be sure to fit a seal cap on any unused connectors. Proper use of the seal cap enables the enclosure to achieve IP67 specification.

LED Display

The status display LED shows the following unit status.
Various kinds of status can be checked as follows:

Display	
OFF	Content
Green LED is ON	

*: Refer to troubleshooting (SI unit Operation Manual of protocol used) for the further details of countermeasures.

Specification

\square Specifications

Model			EX600-AYA	
	Output type		Voltage output type	Current output type
	Output conne		M12 connector (5 pin) Socket ${ }^{* 1}$	
	Number of out	ut channels	2 channels (1 channel/Connector)	
	Power supply (Control and	voltage put)	24 VDC Class2, 2 A	
	Power supply (Output)	oltage	24 VDC Class2, 2 A	
	Max. load cur		0.5 A/Channel	
	Protective function		Short circuit protection	
	Output signal range	12 bit Resolution *2	0 to $10 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 5 V	0 to $20 \mathrm{~mA}, 4$ to 20 mA
	Load impedance		$1 \mathrm{k} \Omega$ or more	600Ω or less
	Linearity		$\pm 0.05 \%$ F.S or less	
	Repeatability		$\pm 0.15 \%$ F.S. or less	
	Absolute accuracy		$\pm 0.5 \%$ F.S. or less	$\pm 0.6 \%$ F.S. or less
Current consumption			70 mA or less	
Enclosure			IP67 (With manifold assembled) ${ }^{* 3}$	
Operating temperature range			-10 to $50{ }^{\circ} \mathrm{C}$ (Max. surrounding air temperature rating: $50{ }^{\circ} \mathrm{C}$) ${ }^{* 4}$	
Storage temperature range			-20 to $60^{\circ} \mathrm{C}$	
	Operating humidity range		35 to 85% RH (No condensation)	
	Withstand voltage		500 VAC for 1 minute between external terminals and FE	
	Insulation resistance		$500 \mathrm{VDC}, 10 \mathrm{M} \Omega \mathrm{min}$. between external terminals and FE	
	Vibration resistance		10 to 57 Hz : constant amplitude $0.75 \mathrm{~mm} \mathrm{p-p}$57 to 150 Hz : constant acceleration $49 \mathrm{~m} / \mathrm{s}^{2}$for 2 hours each in direction X, Y and Z respectively (De-energized)	
Impact resistance			$147 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in directions of X, Y and Z respectively (De-energized)	
Pollution degree			For use in Pollution Degree 2 Environment (UL508)	
Standard			CE marking, UL(CSA), RoHS	
Weight			290 g	

[^1]
-Analog output characteristics

(1)Offset binary date format
-Output signal range: 0 to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 20 mA -Output signal range: 1 to $5 \mathrm{~V}, 4$ to 20 mA

AD value		Output signal range (0 to b)		
Hexadecimal number	Decimal number	Voltage [V]		Current [mA]
0 to 10 V	0 to 5 V	0 to 20 mA		
0FFF	4095	10.5	5.25	21
0 F3D	3901	10	5	20
0800	2048	5.25	2.625	10.5
0000	0	0	0	0

AD value		Output signal range (a to b)	
Hexadecimal number	Decimal number	Voltage [V]	Current [mA]
0FFF	4095	5.25	21
0F1C	3868	5	20
0800	2048	3	12
00 E 4	228	1	4
0000	0	0.75	3

-Data format

(2)Signed binary data format and two's complement data format

- Output signal range: 0 to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $20 \mathrm{~mA} \cdot$ Output signal range: 1 to $5 \mathrm{~V}, 4$ to 20 mA

AD value		Output signal range (0 to b)		
Hexadecimal number	Decimal number	Voltage $[\mathrm{V}]$		Current [mA]
	0 to 5 V	0 to 20 mA		
07 FF	2047	10.5	5.25	21
079 E	1950	10	5	20
0400	1024	5.25	2.625	10.5
0000	0	0	0	0

AD value		Output signal range (a to b)	
Hexadecimal number	Decimal number	Voltage $[\mathrm{V}]$ 1 to 5 V	Current $[\mathrm{mA}]$
07 FF	2047	5.25	21
078 mA	1934	5	20
0400	1024	3	12
0072	114	1	4
0000	0	0.75	3

-Data format

CHO	Byte0								Byte1							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	Sign	MSB					AD value					LSB

(3)Scaled data format

In the scaled data format, AD values corresponding to the output signal range can be optionally set between FFFF and 7FFF or -32767 and 32767. The resolution can be set by specifying the upper and lower limits of the scale.

$$
\text { Resolution }=\frac{\text { Upper limit value of the range }- \text { Lower limit value of the range }}{\text { Upper limit value of the scale }- \text { Lower limit value of the scale }}
$$

Example: when the range is 1 to 5 V

1. Set the range to 1 to 5 V .
2. When the upper limit of the scale is set to 5000, and the lower limit of the scale is set to 1000, the result will be as follows.
$1000 \ldots 1 \mathrm{~V}$ is output
$2000 \ldots 2 \mathrm{~V}$ is output
$3000 \ldots 3 \mathrm{~V}$ is output
$4000 \ldots 4 \mathrm{~V}$ is output
$5000 \ldots 5 \mathrm{~V}$ is output
3. The resolution from 1 to 5 V is $1 / 1000$ based on the calculation
$(5 \mathrm{~V}-1 \mathrm{~V}) /(5000-1000)=1 / 1000$.

AD value				Output signal range (a to b)				
	Hexadecimal number	Decimal number	Voltage [V]			Current [mA]		
	0 to 10 V		0 to 5 V	0 to 20 mA	4 to 20 mA			
Scale upper limit	FFFE to 7FFF	-32766 to 32767	10	5	5	20	20	
Scale lower limit	FFFF to 7FFE	-32767 to 32766	0	1	0	0	4	

-Data format

-Precautions for handling

When setting, make sure that the scale upper limit value is larger than the scale lower limit value (Scale lower limit value < Scale upper limit value).
-Dimensions

Analog I/O unit

Model Indication and How to Order

*: An M12 connector (4 pin) can also be connected.

Names and Functions of Product

(5)

No.	Description	Function
1	Status display LED	Displays the status of the unit.
2	Connector (Analog input)	Connector for analog input device.
3	Connector (Analog output)	Connector for analog output device.
4	Marker groove	Groove to mount a marker.
5	Joint bracket	Bracket for joining to adjacent units.
6	Unit connector (Plug)	Transmits signals and power supplies to adjacent units.

Mounting and Installation

■Wiring

-Connector pin assignment and circuit diagram
-Connector pin assignment

Configuration	Pin number	Signal name	
		Input connector	Output connector
	1	24 V (Control and Input)	24 V (Output)
	2	Input +	Output
	3	0 V (Control and input)	0 V (Output)
	4	Input -	0 V (Output)
	5	FE	FE

*: An M12 connector (4 pin) can also be connected.

- Precautions for handling

Be sure to fit a seal cap on any unused connectors. Proper use of the seal cap enables the enclosure to achieve IP67 specification.

oExamples of wiring with input devices

-When using a sensor whose analog output signal is 0 V standard type.

-When using a 2-wire current output type sensor.

-When using a differential output type sensor.

Precautions for handling
When an analog sensor is connected to the Analog I/O unit, pay attention to the following cautions.
EX600 analog input has a differential input specification, and it receives 2-pin (input +) signal based on 4-pin (input -). Because of the specification, if 4-pin is not connected, it will not be able to read the signal input properly. Therefore, when using an analog sensor that does not have the differential output type, 3-pin and 4-pin should be connected externally.

LED Display

The status display LED shows following unit status.
Various kinds of status can be checked as follows:

Display	Content	
	Input	Output
$\begin{gathered} \bigcirc \\ \text { OFF } \end{gathered}$	The power supply for control and input is OFF.	The power supply for control and input is OFF.
Green LED is ON	The product is operating normally.	The product is operating normally.
Red LED is ON	The power supply of input device has a short circuit.	The power supply of output device has a short circuit.
0 and 1 red LEDs are ON	Either of the following conditions: -The current value of the analog input device has exceeded the upper or lower limit. -When the range is set by current input type, voltage is input from the analog input device.	
Red LED is flashing	Either of the following conditions: -The upper or lower limit of the range is exceeded. -The upper or lower limit of the measuring value (With user's setting value) is exceeded.	The upper or lower limit of the output value (With user's setting value) is exceeded.

*: Refer to troubleshooting (SI unit Operation Manual of protocol used) for the further details of countermeasures.

Specification

-Specifications

Model			EX600-AMB	
	Input type		Voltage input type	Current input type
	Input connector		M12 connector (5 pin) Socket ${ }^{* 1}$	
	Number of input channels		2 channels (1 channel/Connector)	
	Power supply voltage (Control and input)		24 VDC Class2, 2 A	
	Max. sensor supply current		0.5 A/Channel	
	Protective function		Short circuit protection	
	Input signal range	$\begin{aligned} & 12 \text { bit } \\ & \text { Resolution *2 } \end{aligned}$	0 to $10 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 5 V	0 to $20 \mathrm{~mA}, 4$ to 20 mA
	Max. rated input signal		15 V	40 mA
	Input impedance		$100 \mathrm{k} \Omega$	250Ω
	Linearity ($25{ }^{\circ} \mathrm{C}$)		$\pm 0.05 \%$ F.S. or less	
	Repeatability ($25{ }^{\circ} \mathrm{C}$)		$\pm 0.15 \%$ F.S. or less	
	Absolute accuracy ($25^{\circ} \mathrm{C}$)		$\pm 0.5 \%$ F.S. or less	$\pm 0.6 \%$ F.S. or less
	Output type		Voltage output type	Current output type
	Output connector		M12 connector (5 pin) Socket ${ }^{* 1}$	
	Number of output channels		2 channels (1 channel/Connector)	
	Power supply voltage (Output)		24 VDC Class2, 2 A	
	Max. load current		0.5 A/Channel	
	Protective function		Short circuit protection	
	Output signal range	12 bit Resolution *2	0 to $10 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 5 V	0 to $20 \mathrm{~mA}, 4$ to 20 mA
	Load impedance		$1 \mathrm{k} \Omega$ or more	600Ω or less
	Linearity ($25{ }^{\circ} \mathrm{C}$)		$\pm 0.05 \%$ F.S. or less	
	Repeatability ($25{ }^{\circ} \mathrm{C}$)		$\pm 0.15 \%$ F.S. or less	
	Absolute accuracy ($25^{\circ} \mathrm{C}$)		$\pm 0.5 \%$ F.S. or less	$\pm 0.6 \%$ F.S. or less
Current consumption			100 mA or less	
	Enclosure		IP67 (With manifold assembled)*3	
	Operating temperature range		-10 to $50{ }^{\circ} \mathrm{C}$ (Max. surrounding air temperature rating: $50{ }^{\circ} \mathrm{C}$) ${ }^{* 4}$	
	Storage temperature range		-20 to $60^{\circ} \mathrm{C}$	
	Operating humidity range		35 to 85\%RH (No condensation)	
$\stackrel{\text { © }}{ }$	Withstand voltage		500 VAC for 1 min. between external terminals and FE	
.	Insulation resistance		$500 \mathrm{VDC}, 10 \mathrm{M} \Omega$ or more between external terminals and FE	
它	Vibration resistance		10 to 57 Hz : constant amplitude 0.75 mm p -p 57 to 150 Hz : constant acceleration $49 \mathrm{~m} / \mathrm{s}^{2}$ for 2 hours each in direction X, Y and Z respectively (De-energized)	
	Impact resistance		$147 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in directions of X, Y and Z respectively (De-energized)	
	Pollution degree		For use in Pollution Degree 2 Environment (UL508)	
Standard			CE marking, UL (CSA), RoHS	
Weight			300 g	

*1: An M12 (4 pin) connector can also be connected.
*2: All unused connectors must have a seal cap fitted.
*3:The UL compliant temperature is 0 to $50^{\circ} \mathrm{C}$.

-Analog input characteristics

(1)Offset binary data format

- Input signal range: 0 to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 20 mA

AD value		Input signal range (0 to b)		
Hexadecimal number	Decimal number	Voltage [V]		Current [mA]
	0 to 10 V	0 to 5 V	0 to 20 mA	
OFFF	4095	10.5	5.25	21
0F3D	3901	10	5	20
0800	2048	5.25	2.625	10.5
0000	0	0	0	0

-Input signal range: 1 to $5 \mathrm{~V}, 4$ to 20 mA

AD value		Input signal range (a to b)	
Hexadecimal number	Decimal number	Voltage [V]	Current [mA]
	4095	5.25	21
0F1C	3868	5	20
0800	2048	3	12
$00 E 4$	228	1	4
0000	0	0.75	3

-Data format

(2)Signed binary data format and two's complement data format
-Input signal range: 0 to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 20 mA

AD value		Input signal range (0 to b)		
Hexadecimal number	Decimal number	Voltage [V]		Current [mA]
	0 to 10 V	0 to 5 V	0 to 20 mA	
07 FF	2047	10.5	5.25	21
079 E	1950	10	5	20
0400	1024	5.25	2.625	10.5
0000	0	0	0	0

-Input signal range: 1 to $5 \mathrm{~V}, 4$ to 20 mA

AD value		Input signal range (a to b)	
Hexadecimal number	Decimal number	Voltage $[\mathrm{V}]$	Current $[\mathrm{mA}]$ 07 FF
to 5 V	4 to 20 mA		
078 E	1934	5.25	21
0400	1024	3	20
0072	114	1	12
0000	0	0.75	4

-Data format

(3)Scaled data format

In the scaled data format, AD values corresponding to the input signal range can be optionally set between FFFF and 7FFF or -32767 and 32767 . The resolution can be set by specifying the upper and lower limits of the scale.

$$
\text { Resolution }=\frac{\text { Upper limit value of the range }- \text { Lower limit value of the range }}{\text { Upper limit value of the scale }- \text { Lower limit value of the scale }}
$$

Example: when the range is 1 to 5 V

1. Set the range to 1 to 5 V .
2. When the upper limit of the scale is set to 5000, and the lower limit of the scale is set to 1000, the result will be as follows.

1000 ... 1 V is input
2000 ... 2 V is input
3000 ... 3 V is input
4000 ... 4 V is input
$5000 \ldots 5 \mathrm{~V}$ is input
3. The resolution from 1 to 5 V is $1 / 1000$ based on the calculation $(5 \mathrm{~V}-1 \mathrm{~V}) /(5000-1000)=1 / 1000$.

AD value				Input signal range (a to b)				
	Hexadecimal number	Decimal number	Voltage [V]			Current [mA]		
			1 to 5 V	0 to 5 V	0 to 20 mA	4 to 20 mA		
Scale upper limit	FFFE to 7FFF	-32766 to 32767	10	5	5	20	20	
Scale lower limit	FFFF to 7FFE	-32767 to 32766	0	1	0	0	4	

-Data format

- Precautions for handling

When setting, make sure that the scale upper limit value is larger than the scale lower limit value (scale lower limit value < scale upper limit value).

-Analog output characteristics

(1)Offset binary date format
-Output signal range: 0 to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 20 mA

AD value		Output signal range (0 to b)		
Hexadecimal number	Decimal number	Voltage $[\mathrm{V}]$		Current $[\mathrm{mA}]$
0 to 10 V	0 to 5 V	0 to 20 mA		
0FFF	4095	10.5	5.25	21
0F3D	3901	10	5	20
0800	2048	5.25	2.625	10.5
0000	0	0	0	0

-Output signal range: 1 to $5 \mathrm{~V}, 4$ to 20 mA

AD value		Output signal range (a to b)	
Hexadecimal number	Decimal number	Voltage [V]	Current [mA]
0FFF	4095	5.25	21
0F1C	3868	5	20
0800	2048	3	12
00 E 4	228	1	4
0000	0	0.75	3

-Data format

(2)Signed binary data format and two's complement data format
-Output signal range: 0 to $10 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 20 mA •Output signal range: 1 to $5 \mathrm{~V}, 4$ to 20 mA

AD value		Output signal range (0 to b)		
Hexadecimal number	Decimal number	Voltage [V]		Current [mA]
	0 to 10 V	0 to 5 V	0 to 20 mA	
07FF	2047	10.5	5.25	21
079 E	1950	10	5	20
0400	1024	5.25	2.625	10.5
0000	0	0	0	0

AD value		Output signal range (a to b)	
Hexadecimal number	Decimal number	Voltage [V]	Current [mA]
	1 to 5 V	4 to 20 mA	
07 FF	2047	5.25	21
078 E	1934	5	20
0400	1024	3	12
0072	114	1	4
0000	0	0.75	3

-Data format

	Byte0								Byte1							
CH2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	Sign	MSB				AD value					LSB	

CH3	Byte2								Byte3							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	Sign	MSB				AD value					LSB	

(3)Scaled data format

In the scaled data format, AD values corresponding to the input signal range can be optionally set between FFFF and 7FFF or -32767 and 32767 . The resolution can be set by specifying the upper and lower limits of the scale.

$$
\text { Resolution }=\frac{\text { Upper limit value of the range }- \text { Lower limit value of the range }}{\text { Upper limit value of the scale }- \text { Lower limit value of the scale }}
$$

Example: when the range is 1 to 5 V

1. Set the range to 1 to 5 V .
2. When the upper limit of the scale is set to 5000, and the lower limit of the scale is set to 1000 , the result will be as follows.
$1000 \ldots 1 \mathrm{~V}$ is output
$2000 \ldots 2 \mathrm{~V}$ is output
$3000 \ldots 3 \mathrm{~V}$ is output
4000 ... 4 V is output
$5000 \ldots 5 \mathrm{~V}$ is output
3. The resolution from 1 to 5 V is $1 / 1000$ based on the calculation $(5 \mathrm{~V}-1 \mathrm{~V}) /(5000-1000)=1 / 1000$.

AD value			Output signal range (a to b)				
	Hexadecimal number	Decimal number	Voltage [V]			Current [mA]	
			1 to 5 V	0 to 5 V	0 to 20 mA	4 to 20 mA	
Scale upper limit	FFFE to 7FFF	-32766 to 32767	10	5	5	20	20
Scale lower limit	FFFF to 7FFE	-32767 to 32766	0	1	0	0	4

-Data format

- Precautions for handling

When setting, make sure that the scale upper limit value is larger than the scale lower limit value (scale lower limit value < scale upper limit value).
-Dimensions

Common items

Maintenance

Turn off the power supply, stop the supplied air, exhaust the residual pressure and verify the release of air before performing maintenance.

Cleaning method

Use a soft cloth to remove stains.
For heavy stains, use a cloth soaked with diluted neutral detergent and fully squeezed, then wipe up the stains again with a dry cloth.
Do not use solvents such as benzene, thinner etc. to clean each unit.

Inspection item	Content of inspection
Connector/Electric wiring	Connect properly if the connection is loose.
Seal cap	Tighten properly if the connection is loose.
Thread for mounting and installation	If the thread is loose, re-tighten it to the specified torque.
Connection cables	If the cable is broken or any other abnormality is confirmed by appearance, replace the cable with a new one.
Supply source voltage	Check if source voltage within the specification range (24 VDC $\pm 10 \%$) is supplied.

How to reset the product for power cut or forcible de-energizing

[^2]
Troubleshooting

Refer to the SI unit Operation Manual of protocol used.

Parameter Setting

Refer to the SI unit Operation Manual of protocol used.

I/O Map

Refer to the SI unit Operation Manual of protocol used.

Diagnostic

Refer to the SI unit Operation Manual of protocol used.

Accessories

Refer to the SI unit Operation Manual of protocol used.

Precautions before mounting

The units that can be connected vary depending on the product number．
Check the applicable unit type before mounting the unit．

		SI Unit			
		EX600－SPR （PROFIBUS DP）	$\begin{aligned} & \text { EX600-SPR } _\mathbf{A} \\ & \text { (PROFIBUS DP) } \end{aligned}$	$\begin{aligned} & \text { EX600-SMJ■ } \\ & \text { (CC-Link) } \end{aligned}$	EX600－SEN （EtherNet／IP）
		EX600－SDN （DeviceNet）	$\begin{aligned} & \text { EX600-SDN } \square \mathbf{A} \\ & \text { (DeviceNet) } \end{aligned}$		
	EX600－DX $\square_{\text {－}}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	EX600－DX $\square_{\square}{ }_{\square}$	－	－	－	\bigcirc
	EX600－DXロD	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	EX600－DX ${ }_{\square}$ E	\times	\bigcirc	－	\bigcirc
	EX600－DX $\square_{\text {F }}$	\times	\bigcirc	\bigcirc	－
	EX600－DY■B	\bigcirc	－	－	\bigcirc
	EX600－DYロE	\times	－	－	\bigcirc
	EX600－DYロF	\times	－	\bigcirc	\bigcirc
	EX600－DMıE	\times	\bigcirc	\bigcirc	\bigcirc
	EX600－DM \square F	\times	－	\bigcirc	\bigcirc
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{\pi}{4} \\ & \frac{1}{5} \end{aligned}$	EX600－AXA	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	EX600－AYA	\times	\bigcirc	\bigcirc	\bigcirc
	EX600－AMB	\times	\bigcirc	\bigcirc	\bigcirc
$\stackrel{\bullet}{\mathrm{I}}$	EX600－HT1	\bigcirc	\bigcirc	\bigcirc	\times
	EX600－HT1A	\bigcirc	\bigcirc	\bigcirc	\bigcirc

		H．T．	
		EX600－HT1－ם	EX600－HT1A－ם
$\begin{aligned} & \frac{4}{5} \\ & \frac{1}{\omega} \end{aligned}$	EX600－SPRם（PROFIBUS DP）	－	－
	EX600－SPR $\square_{\text {A（PROFIBUS DP）}}$	\bigcirc	\bigcirc
	EX600－SDN \square（DeviceNet）	\bigcirc	－
	EX600－SDN ${ }^{\text {A（DeviceNet）}}$	\bigcirc	\bigcirc
	EX600－SMJ■（CC－Link）	\bigcirc	\bigcirc
	EX600－SEN \square（EtherNet／IP）	\times	\bigcirc
	EX600－DX■B	\bigcirc	\bigcirc
	EX600－DX $\square_{\square}{ }_{\square}$	\bigcirc	\bigcirc
	EX600－DXロD	\bigcirc	\bigcirc
	EX600－DX■E	\times	\bigcirc
	EX600－DX \square_{\square}	\times	\bigcirc
	EX600－DY■B	\bigcirc	\bigcirc
	EX600－DYロE	\times	\bigcirc
	EX600－DYロF	\times	\bigcirc
	EX600－DMaE	\times	\bigcirc
	EX600－DMロF	\times	\bigcirc
$\begin{aligned} & \frac{8}{\frac{0}{0}} \\ & \frac{\pi}{4} \\ & \hline \end{aligned}$	EX600－AXA	\bigcirc	\bigcirc
	EX600－AYA	\times	\bigcirc
	EX600－AMB	\times	\bigcirc

A: Contents revised in several places.

SMC Corporation

4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021 JAPAN
Tel: +81 352078249 Fax: +81 352985362
URL http://www.smcworld.com
Note: Specifications are subject to change without prior notice and any obligation on the part of the manufacturer.
© 2010-2011 SMC Corporation All Rights Reserved

[^0]: -Precautions for handling
 -Please do not connect the unit while the power supply is active. It will cause equipment damage.
 -Take care not to drop the nuts of Joint bracket.

[^1]: *1: An M12 connector (4 pin) can also be connected.
 *2: All unused connectors must have a seal cap fitted.
 *3: The UL compliant temperature is 0 to $50^{\circ} \mathrm{C}$.

[^2]: Supply power to the product.
 The output status just before the power failure is not maintained when power supply is recovered.
 Start operation after confirming safety of the entire equipment.

