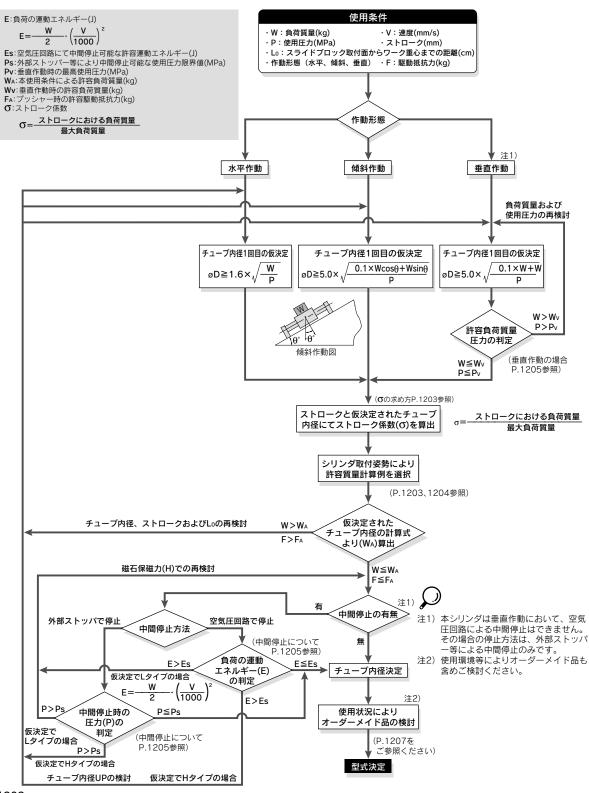
スライダ形/ボールブッシュ軸受

CY1L Series

Ø6, Ø10, Ø15, Ø20, Ø25, Ø32, Ø40

CY3B CY3R

CY1S CY1L


CY1H CY1F

CYP

D-□ -X□

個別 -X□ 技術

CY1L series 機種の選定方法①

CY1L Series 機種の選定方法②

設計上のご注意(1)

許容負荷質量選定時の〇の求め方

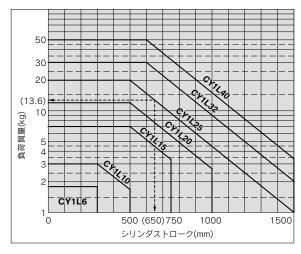
σは、最大負荷質量が下表に示すようにシリンダストロークに関係し、変 化するため各ストローク対応で決定される係数と考えてください。

例) CY1L25 -650 の場合

(1)最大負荷質量=20kg

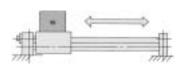
(2)650st時の負荷質量=13.6kg

 $(3)\sigma = \frac{13.6}{20} = 0.68 \ge \text{table}$


σの算出式 (σ≤1)

ST:ストローク(mm)

型式	CY1L6	CY1L10	CY1L15
σ=	1	$\frac{10^{(0.86-1.3\times10^{-3}\times\text{ST})}}{3}$	$\frac{10^{(1.5-1.3\times10^{-3}\times\text{ST})}}{7}$
型式	CY1L20	CY1L25	CY1L32
		CY1L25 10 ^(1.98-1.3×10⁻³×ST) 20	


型式	CY1L40
σ=	10 ^(2.48-1.3×10⁻³×ST)
•	50

注) ø10-300mmST、ø15-500mmST、ø20-500mmST、ø25-500mmST、ø32-600 mmST、 $\phi 40-600mmST$ までの使用の場合は全て σ =1で算出してください。

シリンダ取付姿勢による許容負荷質量計算例

■水平作動 (床取付)

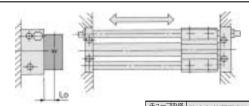
最大負荷質量 (スライドブロック中心)

(kg)

CY3B CY3R

CY1S CY1L

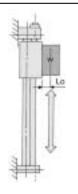
CY1H


CY1F

CYP

チューブ内径 (mm)	6	10	15	20	25	32	40
最大負荷質量 (kg)	1.8	3	7	12	20	30	50
ストローク (max)	~300st	~300st	~500st	~500st	~500st	~600st	~600st

最大負荷質量はガイドシャフトのたわみ量の制限より各シリンダサイズとも、 ストローク長さにより上記の質量は変化します。(係数σにご注意ください。) また作動方向によっては許容負荷質量が最大負荷質量と異なる場合があります。


2水平作動(壁取付)

Lo:取付面より負荷重心までの距離(cm)

チュープ内径 (mm)	許容負荷質量(Wa)(kg
6	<u>σ⋅6.48</u> 6.8+2 Lo
10	<u>σ·15.0</u> 8.9+2 Lo
15	<u>σ·45.5</u> 11.3+2 Lo
20	<u>σ·101</u> 13.6+2 Lo
25	<u>σ⋅180</u> 15.2+2 Lo
32	<u>σ</u> ·330 18.9+2 Lo
40	<u>σ⋅624</u> 22.5+2 Lo

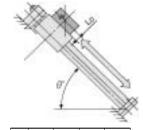
3 垂直作動

チューブ内径 (mm)	許容負荷質量(Wv)(kg)
6	<u>σ·1.53</u> 1.6+ Lo
10	<u> </u>
15	<u>σ·15.96</u> 2.4+ Lo
20	<u>σ·31.1</u> 2.8+ Lo
25	<u>σ·54.48</u> 3.1+ Lo
32	<u>σ·112.57</u> 3.95+ Lo
40	<u>σ·212.09</u> 4.75+ Lo

Lo:取付面より負荷重心までの距離(cm) 注)使用圧力はP.1205に記載されている「垂直作動の場合」の項の 最高使用圧力以下で使用してください。

D-□ -X□

個別 -X□ 技術

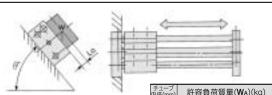

CY1L Series

機種の選定方法③

設計上のご注意(2)

シリンダ取付姿勢による許容負荷質量計算例

4 傾斜作動(作動方向)



	角度	~45°	~60°	~75°	~90°	
	k	1	0.9	0.8	0.7	
-	アキト/		4 E ° /	011	_	

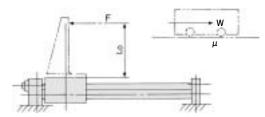
角度係数(k):k= [~45°(=θ)]=1、 [~60°]=0.9、[~75°]=0.8、 [~90°]=0.7 Lo:取付面より負荷重心までの距離(cm)

チューブ 内径(mm)	許容負荷質量(Wa)(kg)			
6	σ ⋅4.05⋅ K			
0	$1.7\cos\theta + 2(1.6 + \text{Lo})\sin\theta$			
10	σ ⋅10.2⋅ K			
10	$2.8\cos\theta + 2(1.95 + \text{Lo})\sin\theta$			
15	σ ⋅31.1⋅ K			
15	$2.9\cos\theta + 2(2.4 + \text{Lo})\sin\theta$			
20	σ ⋅86.4 ·K			
20	$6\cos\theta + 2(2.8 + \text{Lo})\sin\theta$			
25	σ ⋅105.4⋅ K			
25	$3.55\cos\theta + 2(3.1 + \text{Lo})\sin\theta$			
32	σ ⋅178⋅ K			
32	$4\cos\theta + 2(3.95 + \text{Lo})\sin\theta$			
40	σ·361.9·K			
40	$5.7\cos\theta + 2(4.75 + Lo)\sin\theta$			

5傾斜作動(作動方向に直角)

Lo:取付面より負荷重心までの距離(cm)

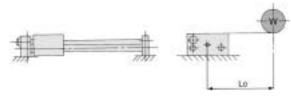
$ \begin{array}{c c} 6 & \frac{\mathbf{\sigma} \cdot 6.48}{3.6+2(1.6+Lo) \sin \theta} \\ 10 & \frac{\mathbf{\sigma} \cdot 15}{5+2(1.95+Lo) \sin \theta} \\ 15 & \frac{\mathbf{\sigma} \cdot 45.5}{6.5+2(2.4+Lo) \sin \theta} \\ 20 & \frac{\mathbf{\sigma} \cdot 115}{8+2(2.8+Lo) \sin \theta} \\ 25 & \frac{\mathbf{\sigma} \cdot 180}{9+2(3.1+Lo) \sin \theta} \\ 32 & \frac{\mathbf{\sigma} \cdot 330}{11+2(3.95+Lo) \sin \theta} \\ 40 & \frac{\mathbf{\sigma} \cdot 6.48}{13+2(4.75+Lo) \sin \theta} \\ \end{array} $	内住(mm)	n d A la A = (• A) (kg)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	σ ⋅6.48
	0	$3.6+2(1.6+Lo)\sin\theta$
$\begin{array}{c} 5 + 2(1.95 + \mathbf{L}0)\sin\theta \\ \hline 0 \cdot 45.5 \\ \hline 6.5 + 2(2.4 + \mathbf{L}0)\sin\theta \\ \hline 20 \frac{\mathbf{\sigma} \cdot 115}{8 + 2(2.8 + \mathbf{L}0)\sin\theta} \\ 25 \frac{\mathbf{\sigma} \cdot 180}{9 + 2(3.1 + \mathbf{L}0)\sin\theta} \\ 32 \frac{\mathbf{\sigma} \cdot 330}{11 + 2(3.95 + \mathbf{L}0)\sin\theta} \\ 40 \mathbf{\sigma} \cdot 624 \\ \end{array}$	10	<u></u> σ⋅15
$ \begin{array}{c c} \textbf{15} & \hline 6.5 + 2(2.4 + \text{Lo}) \sin \theta \\ \textbf{20} & \hline 6.5 + 2(2.8 + \text{Lo}) \sin \theta \\ \textbf{25} & \hline 6.180 \\ \hline 9 + 2(3.1 + \text{Lo}) \sin \theta \\ \textbf{32} & \hline 6.330 \\ \hline 11 + 2(3.95 + \text{Lo}) \sin \theta \\ \textbf{33} & \hline 6.624 \\ \end{array} $	10	$5+2(1.95+Lo)\sin\theta$
$ \begin{array}{c} \textbf{6.5+2(2.4+Lo)sin}\theta \\ \textbf{0 } & \frac{\textbf{0 } \cdot 115}{8+2(2.8+Lo)sin}\theta \\ \textbf{25} & \frac{\textbf{0 } \cdot 180}{9+2(3.1+Lo)sin}\theta \\ \textbf{32} & \frac{\textbf{0 } \cdot 330}{11+2(3.95+Lo)sin}\theta \\ \textbf{40} & \frac{\textbf{0 } \cdot 624}{9+2(3.4+Lo)sin}\theta \\ \textbf{32} & \frac{\textbf{0 } \cdot 624}{11+2(3.95+Lo)sin}\theta \\ \textbf{33} & \frac{\textbf{0 } \cdot 624}{11+2(3.95+Lo)sin}\theta \\ \textbf{34} & \frac{\textbf{0 } \cdot 624}{11+2(3.95+Lo)sin}\theta \\ \textbf{35} & \frac{\textbf{0 } \cdot 624}{11+2(3.95+Lo)sin}\theta \\ \textbf{36} & \frac{\textbf{0 } \cdot 624}{11+2(3.95+Lo)sin}\theta \\ \textbf{37} & \frac{\textbf{0 } \cdot 624}{11+2(3.95+Lo)sin}\theta \\ \textbf{38} & \frac{\textbf{0 } \cdot 624}{11+2(3.95+Lo)sin}\theta \\ \textbf{39} & \frac{\textbf{0 } \cdot 624}{11+2(3.95+Lo)sin}\theta$	15	σ ⋅45.5
20 $8+2(2.8+\text{Lo})\sin\theta$ 25 $\frac{\sigma \cdot 180}{9+2(3.1+\text{Lo})\sin\theta}$ 32 $\frac{\sigma \cdot 330}{11+2(3.95+\text{Lo})\sin\theta}$ 40 $\sigma \cdot 624$	15	$6.5+2(2.4+Lo)\sin\theta$
$ \begin{array}{c c} 8+2(2.8+\text{Lo})\sin\theta \\ \hline \textbf{25} & \frac{\sigma\cdot 180}{9+2(3.1+\text{Lo})\sin\theta} \\ \textbf{32} & \frac{\sigma\cdot 330}{11+2(3.95+\text{Lo})\sin\theta} \\ \textbf{40} & \frac{\sigma\cdot 624}{3} \\ \end{array} $	20	<u>σ</u> ·115
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	8+2(2.8+ Lo)sin θ
$ \begin{array}{c} 9+2(3.1+\text{Lo})\sin\theta \\ \hline 32 & \frac{\sigma \cdot 330}{11+2(3.95+\text{Lo})\sin\theta} \\ \hline 40 & \frac{\sigma \cdot 624}{11+2(3.95+\text{Lo})\sin\theta} \end{array} $	O.E.	o ⋅180
$ \begin{array}{c c} & \hline & 11 + 2(3.95 + \text{Lo})\sin\theta \\ \hline & \sigma \cdot 624 \end{array} $	25	9+2(3.1+ Lo)sin θ
$\frac{11+2(3.95+\text{Lo})\sin\theta}{\text{CO} \cdot 624}$	22	σ ⋅330
10	32	$11+2(3.95+Lo)\sin\theta$
13+2(4.75+ Lo)sin θ	40	σ ⋅624
	40	$13+2(4.75+Lo)\sin\theta$


6荷重中心が作動方向にオフセット(Lo)

Lo: スライドブロック中心より 負荷重心までの距離(cm)

内径(n	nm)	計合貝何貝里(WA)(KG)
6	;	$\frac{\mathbf{\sigma} \cdot 2}{\mathbf{Lo} + 1.7}$
10)	<u> </u>
15	;	<u>σ·13.34</u> Lo+2.9
20)	<u>σ·43.2</u> Lo+6
25	;	<u>σ·46.15</u> Lo+3.55
32	2	
40)	<u>σ·188.1</u> Lo+5.7

7水平作動(負荷押し、プッシャー)



F:駆動 (スライドブロックより**Lo**の位置) 抵抗力W×μ(kg) **Lo**:取付面より負荷重心までの距離(cm) μ:摩擦係数

チューブ内径(mm)	6	10	15	20
許容駆動抵抗力 (Fa)(kg)	$\frac{\sigma \cdot 2.72}{1.6 + Lo}$	$\frac{\mathbf{\sigma} \cdot 5.55}{1.95 + \mathbf{Lo}}$	$\frac{\mathbf{\sigma} \cdot 15.96}{2.4 + \mathbf{Lo}}$	$\frac{\mathbf{\sigma} \cdot 41.7}{2.8 + \mathbf{Lo}}$

チューブ内径(mm)	25	32	40
許容駆動抵抗力 (Fa)(kg)	$\frac{\sigma \cdot 58.9}{3.1 + Lo}$	$\frac{\mathbf{\sigma} \cdot 106.65}{3.95 + \mathbf{Lo}}$	<u>σ⋅228</u> 4.75+Lo

■水平作動(負荷、横方向へオフセットLo)

Lo:スライドブロック中心より負荷重心までの距離(cm)

チューブ内径(mm)	6	10	15	20
許容負荷質量 (W A)(kg)	$\frac{\mathbf{\sigma} \cdot 6.48}{3.6 + \mathbf{Lo}}$	<u>σ·15</u> 5+ Lo	<u>σ·45.5</u> 6.5+ Lo	<u>σ⋅80.7</u> 8+Lo
チューブ内径(mm)	25	32	40	
許容負荷質量	<u>σ·144</u>	<u>σ·275</u>	<u>σ⋅520</u>	

CYIL series 機種の選定方法4

設計上のご注意(3)

垂直作動の場合

負荷を垂直作動させる場合は、下表の許容負荷質量および最高使用圧力 以下でご使用ください。

規定値を超えて使用されますと、落下する可能性がありますので、ご注 意ください。

シリンダの取付姿勢が垂直または傾斜の場合は、移動子の自重およびワーク質量により移動子が下方向に変位する場合があります。ストローク端およびストローク中間において、停止位置精度が必要な場合は外部ストッパ等により位置決めするようご検討ください。

チューブ内径 (mm)	型式	許容負荷質量 (Wv) (kg)	最高使用圧力 (Pv) (MPa)
6	CY1L 6H	1.0	0.55
10	CY1L10H	2.7	0.55
15	CY1L15H	7.0	0.65
15	CY1L15L	4.1	0.40
	CY1L20H	11.0	0.65
20	CY1L20L	7.0	0.40
25	CY1L25H	18.5	0.65
25	CY1L25L	11.2	0.40
32	CY1L32H	30.0	0.65
32	CY1L32L	18.2	0.40
40	CY1L40H	47.0	0.65
40	CY1L40L	29.0	0.40

- 注1) 最高使用圧力以上での使用は、マグネットカップリングが離脱する可能性がありますので、ご注意ください。
- 注2) 上表の許容負荷質量は、積載した場合の最大負荷質量を示しており、実際 に積載可能な負荷質量は、選定方法①のフローにて設定してください。

中間停止について

1) 負荷を外部ストッパー等で中間停止する場合

負荷を外部ストッパー (アジャストボルト等) でストローク途中で停止させる場合は、下表の使用圧力限界以下でご使用ください。使用圧力限界を超える圧力で使用すると、マグネットカップリングが離脱する可能性がありますのでご注意ください。

シリンダ チューブ内径 (mm)	型式	中間停止させる時の使用圧力限界 (Ps) (MPa)			
6	CY1L 6H	0.55			
10	CY1L10H	0.55			
15	CY1L15H	0.65			
15	CY1L15L	0.40			
20	CY1L20H	0.65			
20	CY1L20L	0.40			
25	CY1L25H	0.65			
25	CY1L25L	0.40			
32	CY1L32H	0.65			
32	CY1L32L	0.40			
40	CY1L40H	0.65			
40	CY1L40L	0.40			

2) 負荷を空気圧回路で中間停止する場合

負荷を空気圧回路で停止する場合は、下表の運動エネルギー以下でご 使用ください。許容値を超えて使用しますと、マグネットカップリン グが離脱する可能性がありますのでご注意ください。

(参考値)

チューブ内径 (mm)	型式	中間停止可能な運動エネルギー (Es) (J)			
6	CY1L 6H	0.007			
10	CY1L10H	0.03			
CY1L15H		0.13			
15	CY1L15L	0.076			
20	CY1L20H	0.24			
20	CY1L20L	0.16			
25	CY1L25H	0.45			
25	CY1L25L	0.27			
20	CY1L32H	0.88			
32	CY1L32L	0.53			
40	CY1L40H	1.53			
	CY1L40L	0.95			

CY3B CY3R

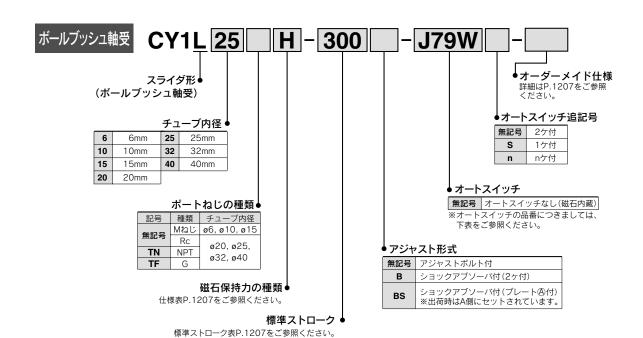
CY1S CY1L

CY1H CY1F

СҮР

-X□ 技術 資料

個別



マグネット式ロッドレスシリンダ スライダ形/ボールブッシュ軸受

CY1L Series

Ø6, Ø10, Ø15, Ø20, Ø25, Ø32, Ø40

型式表示方法

適用	適用オートスイッチ /オートスイッチ単体の詳細仕様は→P.1263~1371をご参照ください。																										
		リード線	インジ			負荷電圧 オートスイッチ品番 ※!		жIJ-	※リード線長さ(m) プリワイヤ																		
種類	特殊機能	取出し	ケータ	配線(出力)	1	OC .	AC			0.5 (無記号)	3	5	なし	コネクタ	適用	負荷											
		-1/140	ランプ				AC	縦取出し	横取出し	(無記号)	(L)	(Z)	(N)	44177													
				3線(NPN)		5V.12V		F7NV	F79			0	_	0	IC回路												
		グロメット		3線(PNP)		30,120		F7PV	F7P		•	0	_	0	に凹凸												
オー	=			2線		12V		F7BV	J79	•	•	0	_	0													
卜無		コネクタ		Zilojk		120	124		J79C	-			lacktriangle		_	_	リレー.										
ス接	★無 コネクタ【接 コネクタ「点 診断表示(2色表示)	1	有	有 3線(NPN) 24V	24V _{5\}	^{24V} 5V,12V	-	F7NWV	F79W			0	-	0	IC回路												
イ点				3線(PNP)]	_	F7PW			0	-	0	ICEM I LC	I LC											
チ		グロメット	グロメット	グロメット	グロメット	グロメット	グロメット	グロメット	グロメット	グロメット	グロメット	グロメット	グロメット	グロメット	 	2線	12V		F7BWV	J79W			0	-	0	_	
	耐水性向上品(2色表示)			∠™				F7BAV	F7BA	-		0	-	0													
	診断出力付(2色表示)			4線(NPN)		5V,12V		-	F79F			0	-	0	IC回路												
オ			有	3線 (NPN相当)	_	5V	_	-	A76H	•	•	-	-	_	IC回路	-											
		グロメット	175		-	_	200V	A72	A72H	•	•	-	-	_													
ト有ス接イ点	_					12V	100V	A73	A73H				-	_	_												
ッ			無	2線	24V	5V,12V	1000以下	A80	A80H			-	-	_	IC回路	リレー, PLC											
チ	チ	コネクタ	有		L4V	12V		A73C	_	•			•	_	_	FLC											
		コホンタ	無			5V,12V		A80C	-					_	IC回路												

※リード線長さ記号

0.5m……無記号 3m----- Z 5m-----なし…… N

※○印の無接点オートスイッチは受注生産となります。

(例)J79W

(例)J79WL

(例) 179W7

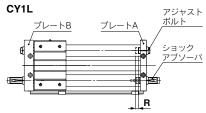
⁽例)J79CN 上記掲載機種以外にも、適用可能なオートスイッチがありますので詳細は、P.1210をご参照ください。

[・]ブリワイヤコネクタ付オートスイッチの詳細は、P.1328、1329をご参照ください。 ※オートスイッチは、同梱出荷(未組付)となります。

配管・配線処理が容易

中空シャフトを採用し、配管が片側に集 中しているため配管処理が容易。 特殊スイッチレールの採用によりオート スイッチの取付けが可能。

ショックアブソーバ、アジャスト ボルトを標準装備


高速使用によるストロークエンドでの衝 撃吸収やストロークの微調整が可能。

Order Made

オーダーメイド仕様 (詳細→P.1395~1565をご参照ください。)

表示記号	仕様/内容
—ХВ9	低速シリンダ(15~50mm/s)
—XB13	低速シリンダ(7~50mm/s)
—X116	ハイドロ仕様ロッドレスシリンダ
—X168	ヘリサートねじ仕様
—X322	シリンダチューブ外周面硬質クロームメッキ付

アジャストボルトの調整量

チューブ	アジャストボルト調整量: R (mm)					
内径(mm)	片側	両側				
6	6	12				
10	5.5	11				
15	3.5	7				
20	5.5	11				
25	5	10				
32	5.5	11				
40	4.5	9				

- ※ストローク調整を行った場合はシリンダは中間停止状態 となりますので、使用圧力および負荷の運動エネルギー にご注意ください。
- ※アジャストボルト調整量は、プレート両端部で調整した 場合の合計値を示していますが、片側プレートのみの場 合は上表の半分の量となります。
- ※ストローク調整はアジャストボルトにて行ってください。 ショックアブソーバでのストローク調整はできません。

仕様

チューブ内径	₹(mm)	6	10	15	20	25	32	40	
使用流体		空気							
保証耐圧力				1	.05MPa	a			
最高使用圧力				(0.7MPa				
最低作動圧力				C).18MPa	a			
周囲温度および使	用流体温度	-10~60℃							
*使用ピストン	速度	50~500mm/s							
クッション		ラバークッション/ショックアブソーバ							
給油		不要(無給油)							
ストローク長さ	許容差	$0\sim250$ st: $^{+1.0}_{0}$, $251\sim1000$ st: $^{+1.4}_{0}$, 1001 st \sim : $^{+1.8}_{0}$: +1.8	
保持力の種類	Hタイプ	19.6	53.9	137	231	363	588	922	
	Lタイプ	_	_	81.4	154	221	358	569	
標準装備	標準装備			オートスイッチ取付用レール					

※オートスイッチ付で、中間位置にオートスイッチを設定する場合、負荷 (リレー、シーケンスコントローラetc) の応答時間によって検出可能なピストン最大速度が規制されます。

標準ストローク表

チューブ 内径(mm)	標準ストローク(mm)	制作可能 最大ストローク(mm)
6	50、100、150、200	300
10	50、100、150、200、250、300	500
15	50、100、150、200、250、300、350 400、450、500	750
20	100 150 200 250 200 250	1000
25 32	100、150、200、250、300、350 400、450、500、600、700、800	1500
40	100、150、200、250、300、350 400、450、500、600、700、800 900、1000	1500

注)中間ストロークは1mm毎での対応が可能です。

質量表

								(kg)
磁石枚数	チューブ内径(mm)	6	10	15	20	25	32	40
基本質量	CY1L⊟H	0.324	0.580	1.10	1.85	2.21	4.36	4.83
	CY1L□L	_	_	1.02	1.66	2.04	4.18	4.61
50ストロー	ク当りの割増	0.044	0.077	0.104	0.138	0.172	0.267	0.406

計算方法/例:CY1L32H-500

基本質量……4.36kg 割増質量……0.267/50st シリンダストローク……500st 4.36+0.267×500÷50=7.03kg

ショックアブソーバ仕様

ショックアブソーバ詳細内容については、Best Pneumatics No.③ RB シリーズを参照してください。

適用ロッドレ	スシリンダ	6 CY1L10 15	CY1L20	CY1L25	CY1L ₄₀		
ショックアブ	ソーバ型式	RB0805	RB1006	RB1411	RB2015		
最大吸収エネ	ルギー:J	0.98	3.92	14.7	58.8		
吸収ストローク:mm		5 6		11	15		
衝突速度:m/	's	0.05~5					
※最高使用頻图	复:cycle/min	80	80 70 45		25		
周囲温度範囲	∄	−10~80°C					
バネカ:N	伸長時	1.96	4.22	6.86	8.34		
	圧縮時	3.83	6.18	15.3	20.50		

※1サイクルあたりの最大吸収エネルギー時を示します。従いまして吸収エネルギーに応じて、使用頻度 は増加させることができます。

ショックアブソーバの寿命は、CY1Lシリンダ本体とは異なります。交換の目安は製品個別注意事項をご参照ください。

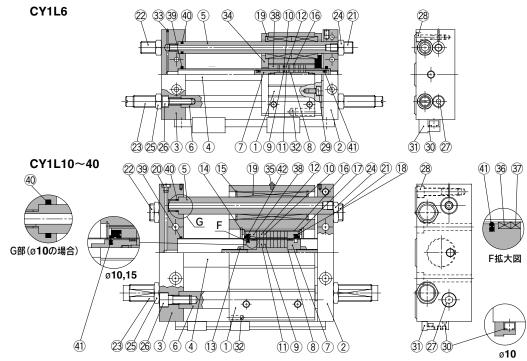
D-□ -X□

CY3B CY3R

CY1S

CY1L

CY1H


CY1F

CYP

個別 -X□ 技術

構造図

スライダ形/ボールブッシュ軸受

構成部品

番号	部品名	材質	備考
1	スライドブロック	アルミニウム合金	アルマイト
2	プレートA	アルミニウム合金	アルマイト
3	プレートB	アルミニウム合金	アルマイト
4	シリンダチューブ	ステンレス	
5	ガイドシャフトA	炭素鋼	硬質クロームメッキ
6	ガイドシャフトB	炭素鋼	硬質クロームメッキ
7	ピストン	^{注1)} アルミニウム合金	クロメート
8	シャフト	ステンレス	
9	ピストン側ヨーク	圧延鋼材	亜鉛クロメート
10	外部移動子側ヨーク	圧延鋼材	亜鉛クロメート
11	磁石A		
12	磁石B		
13	ピストンナット	炭素鋼	亜鉛クロメートø25~ø40
14	止メ輪	炭素工具鋼	ニッケルメッキ
15	止メ輪	炭素工具鋼	ニッケルメッキ
16	外部移動子チューブ	アルミニウム合金	
17	移動子スペーサ	圧延鋼材	ニッケルメッキ
18	スペーサ	圧延鋼材	ニッケルメッキ
_19	ボールブッシュ		
20	プラグ	黄銅	ø25,ø32,ø40のみ
21	アジャストボルトA	クロムモリブデン鋼	ニッケルメッキ
_22	アジャストボルトB	クロムモリブデン鋼	ニッケルメッキ
_23	ショックアブソーバ		
24	六角ナット	炭素鋼	ニッケルメッキ
25	六角ナット	炭素鋼	ニッケルメッキ
26	六角穴付ボルト	クロムモリブデン鋼	ニッケルメッキ
27	六角穴付ボルト	クロムモリブデン鋼	ニッケルメッキ
28	六角穴付ボルト	クロムモリブデン鋼	ニッケルメッキ

注1)ø6、ø10、ø15の場合、真ちゅう。

構成部品

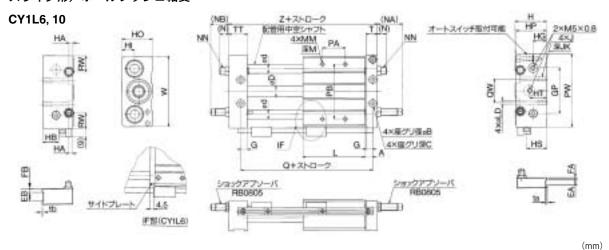
12120			
番号	部品名	材質	備考
29	六角穴付ボルト	クロムモリブデン鋼	ニッケルメッキ
30	スイッチ取付レール	アルミニウム合金	
31	オートスイッチ		
32	磁石(オートスイッチ用)		
33	スチールボール		ø6,ø10,ø15のみ
34	サイドカバー	炭素鋼	ø6のみ
35	グリスカップ	炭素鋼	ø15以上
*36	ウェアリングA	特殊樹脂	
*37	ウェアリング	特殊樹脂	
*38	ウェアリングB	特殊樹脂	
*39	シリンダチューブガスケット	NBR	
*40	ガイドシャフトガスケット	NBR	
*41	ピストンパッキン	NBR	
*42	スクレーパ	NBR	

交換部品/パッキンセット

チューブ内径(mm)	手配番号	内容				
6	CY1S6-PS-N	上記番号38,39,40,40のセット				
10	CY1L10-PS-N	上記番号				
15	CY1L15-PS-N	36,38,39,40,41,42のセット				
20	CY1L20-PS-N	I =7 =				
25	CY1L25-PS-N	上記番号				
32	CY1L32-PS-N	39,37,38,39,40, 41,42のセット				
40	CY1L40-PS-N	41,420727				

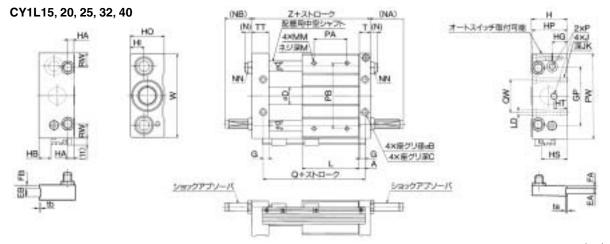
[※]パッキンセットは、ø6は38,39,40,40、ø10,ø15は36,38~@が、ø20~ 号にて手配してください。 ※ø6は、CY1S6用と共通です。

ø15~40用グリース品番:GR-S-010(10g)


[※]パッキンセットにはグリースパック(ø6,10は5gと10g、ø15~40は10g)が 付属されます。 グリースパックのみ必要な場合は下記品番にて手配してください。

 ^{66,10}用グリース品番: GR-F-005(5g) 外部摺動部用、GR-S-010(10g)

 チューブ内部用


外形寸法図

スライダ形/ボールブッシュ軸受

型式 В С D d EA EB FA FΒ G GP Н НА НВ HG н НО HP HS HT JK CY1L6 7 6.5 7.6 16 M4×0.7 3 8 6 36 27 6 10 11 9 25 26 14 6.5 CY1L10 8.5 8 4 12 10 6 12 3 5 7.5 50 34 6 17.5 14.5 13.5 33 33 21.5 18 M5×0.8 9.5 型式 L LD M MM (N) (NA) (NB) NN *PA PB PW Q QW RW Т TT tb W Z ta CY1L6 40 3.5 6 M4×0.7 11 30 24 M8×1.0 24 40 60 54 20 12 10 16 56 68 CY1L10 68 4.3 8 M4×0.7 10.5 27 19 M8×1.0 30 60 80 85 26 17.5 12.5 20.5 0.5 1.0 77 103

※PA寸法はセンタ振り分けです。

(mm)										mm)																
型式	Α	В	С	D	d	EA	ЕΒ	FΑ	FΒ	G	GP	Н	НА	HB	HG	i H	I H	ЭΗ	PHS	HT		J		JK	L	LD
CY1L15	7.5	9.5	5	16.6	12	6	13	3	6	6.5	65	40	6.5	4	16	14	1 3	3 39	25	16		M6×1	.0	9.5	75	5.6
CY1L20	9.5	9.5	5.2	21.6	16	_	_	_	_	8.5	80	46	9	10	18	16	3 4	1 4	5 31	20		M6×1	.0	10	86	5.6
CY1L25	9.5	11	6.5	26.4	16	8	14	4	7	8.5	90	54	9	18	23	21	5	2 53	39	20	N	//8×1.	25	10	86	7
CY1L32	10.5	14	8	33.6	20	8	16	5	7	9.5	110	66	12	26.	5 26.5	5 24.	5 6	1 6	47.5	25	N	И10×1	.5	15	100	9.2
CY1L40	11.5	14	8	41.6	25	10	20	5	10	10.5	130	78	12	35	30.5	5 28.	5 7	5 74	1 56	30	N	И10×1	.5	15	136	9.2
型式	M	MI	M	(N)	(NA)	(NB)	NN	1		Р	*PA	\ P	В	PW	Q	QW	RW	Т	ta	tb	TT	W	Z	ショックフ	アブソーバ
CY1L15	8	M5×	0.8	8.5	27	17	N	18×	1.0	M5	×0.8	45	7	0	95	90	30	15	12.5	0.5	1.0	22.5	92	112	RB0	805
CY1L20	10	M6×	1.0	10.5	29	20	М	10×	<1.0	R	C1/8	50	9	0	120	105	40	28	16.5	_	_	25.5	117	130	RB1	006
CY1L25	10	M6×	1.0	12.5	49	40	М	14×	<1.5	R	C ¹ /8	60	10	00	130	105	50	22	16.5	0.5	1.0	25.5	127	130	RB1	411
CY1L32	12	M8×	1.25	13.5	52	42	N	120×	(1.5	R	C ¹ /8	70	12	20	160	121	60	33	18.5	0.5	1.0	28.5	157	149	RB2	015
CY1L40	12	M8×	1.25	12.5	51	36	N	120×	(1.5	R	C ¹ / ₄	90	14	10	190	159	84	35	20.5	1.0	1.0	35.5	187	194	INDZ	.015

※PA寸法はセンタ振り分けです。

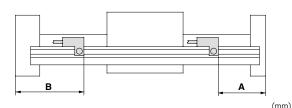
D-□

CY3B CY3R

CY1S

CY1L

CY1H

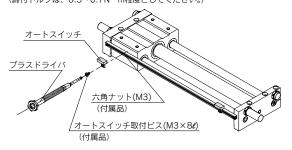

CY1F

CYP

-X□ 技術 資料

個別

オートスイッチ適正取付位置(ストロークエンド検出時)



						(11111)						
	適用オートスイッチ											
チューブ 内径(mm)	D-A73	3, A80	D-A72 D-A7 H, D-A73C, D-F7 V, D-F7 W, D-F7 W, D-F7BAL D-F79F	A80C 79 J79C J79W	D-F7NTL							
	Α	В	Α	В	Α	В						
6	23	45	23.5	44.5	28.5	39.5						
10	58	45	58.5	44.5	63.5	39.5						
15	65	47	65.5	46.5	70.5	41.5						
20	76	54	76.5	53.5	81.5	48.5						
25	76	54	76.5	53.5	81.5	48.5						
32	92	57	92.5	56.5	97.5	51.5						
40	130	64	130.5	63.5	135.5	58.5						

注1) オートスイッチを2個取り付けた場合の製作最小ストロークは50mmとなります。それ以下のストロークの場合は当社にご確認ください。 注2) 実際の設定においては、オートスイッチの作動状態を確認の上、調整願います。

オートスイッチの取付方法

オートスイッチを取付ける場合は、オートスイッチ取付レールの溝内に挿入してある六角ナット(M3×0.5)に、オートスイッチ取付ビスをねじ込んでください。 (締付トルクは、0.5~0.7N・m程度としてください。)

動作範囲

							(mm)				
オートスイッチ型式	チューブ内径										
カードスイフル主式	6	10	15	20	25	32	40				
D-A7□, A8□	6	6	6	6	6	6	6				
D-F7□, J7□	3	3	4	3	3	3	3.5				
D-F79F	4.5	4.5	4.5	4.5	4.5	4.5	4.5				

※応差を含めた目安であり、保証するものではありません。(ばらつき±30%程度) 周囲の環境により大きく変化する場合があります。

型式表示方法に記載の適用オートスイッチ以外にも下記の オートスイッチの取付が可能です。

詳細仕様については→P.1314をご参照ください。

オートスイッチ種類	品番	リード線取出し (取出方向)	特長
無接点	D-F7NTL	グロメット(横)	タイマ付

※D-F7NTL型には、プリワイヤコネクタ付もあります。 詳細はP.1328、1329をご参照ください。

CYIL Series/製品個別注意事項

ご使用の前に必ずお読みください。

安全上のご注意については前付54、55、アクチュエータ/共通注意事項、オートスイッチ/ 共通注意事項についてはP.3~11をご確認ください。

使用上

⚠警告

- ①プレートとスライドブロックの間にご注意ください。 シリンダ作動中は指や手を挟まれ損傷を与える場合があります ので十分に注意してください。
- ②シリンダには、選定資料の許容値以上の負荷をかけない でください。

不適合発生の原因となります。

- ③シリンダに水や切削液、またシリンダ摺動部の潤滑状態を悪化させるような環境の場合、当社にお問合せください。
- ④シリンダにグリースUPする場合は、製品に塗布しているグリースをご使用ください。グリースパックを用意しておりますので当社にお問合せください。

取付け

⚠注意

- ①外部移動子固定でのご使用は避けてください。 シリンダは、プレート固定でご使用ください。
- ②シリンダの取付面は平面度0.2mm以下としてください。 シリンダ取付面の平面度が適正でない場合、2本のガイドシャ フトにねじれが生じる為、作動状態に悪影響をおよぼし、摺 動抵抗の増大および軸受け部の早期摩耗発生より、寿命低下 をまねきます。

シリンダ取付面は、平面度0.2mm以下とし全ストローク最低作動圧力(0.18MPa以下)で円滑に作動するよう取付けを行ってください。

ショックアブソーバの寿命および交換時期

△注意

①カタログ仕様範囲内における使用可能な作動回数は以下を目安としてください。

120万回 RB08□□

200万回 RB10□□~RB2725

注) 寿命回数(適切な交換時期)は常温(20~25℃)時の値です。 温度条件などにより異なる場合がありますので、上記作動回数以内で も交換が必要になる場合があります。

分解およびメンテナンス

⚠警告

①マグネットの吸着力は強力です。ご注意ください。

外部移動子とピストン移動子をメンテナンス等でシリンダチューブよりはずす場合は、各移動子に装着されているマグネットの吸着力は強力ですので、取扱いに十分注意してください。

注意

①外部移動子をそのまま取出すとピストン移動子と直接吸 着しますのでご注意ください。

シリンダチューブより外部移動子、またはピストン移動子を 取外す時は強制的にマグネットカップリングの位置関係をず らし保持力をなくした状態で別々に取出してください。そのま ま取出しますと直接マグネットが吸引し合いはずれなくなりま す。

- ②マグネット保持力の変更(例えば、CY1L25L→CY1L25H) は可能ですので当社にご確認ください。
- ③マグネット構成部(ピストン移動子、外部移動子)は、 絶対分解しないでください。

保持力の低下、不具合発生の原因となります。

- ④パッキンおよびウエアリングの交換の際の分解は、別途 分解要領書をご参照ください。
- (5)外部移動子とピストン移動子の方向性にご注意ください。

Ø6、Ø10および保持力Lタイプは外部移動子とピストン移動子に方向性がありますので分解およびメンテナンスの際には下図をご参照ください。外部移動子とピストン移動子を吸収させて図1のように正しい位置関係になるようにシリンダチューブに挿入します。図2のようになった時はピストン移動子のみを180°反転して挿入します。方向性が違ったまま組付けられますと所定の保持力が得られなくなります。

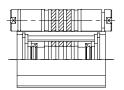


図1.正しい位置関係

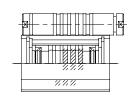


図2.方向性が違った位置関係

代表例ø15保持力Lタイプの場合

D-□

CY3B CY3R

CY1S

CY1L

CY1H

CY1F

CYP

-X□ 技術 資料

個別

