Slider Type/Slide Bearing

Series CY1S

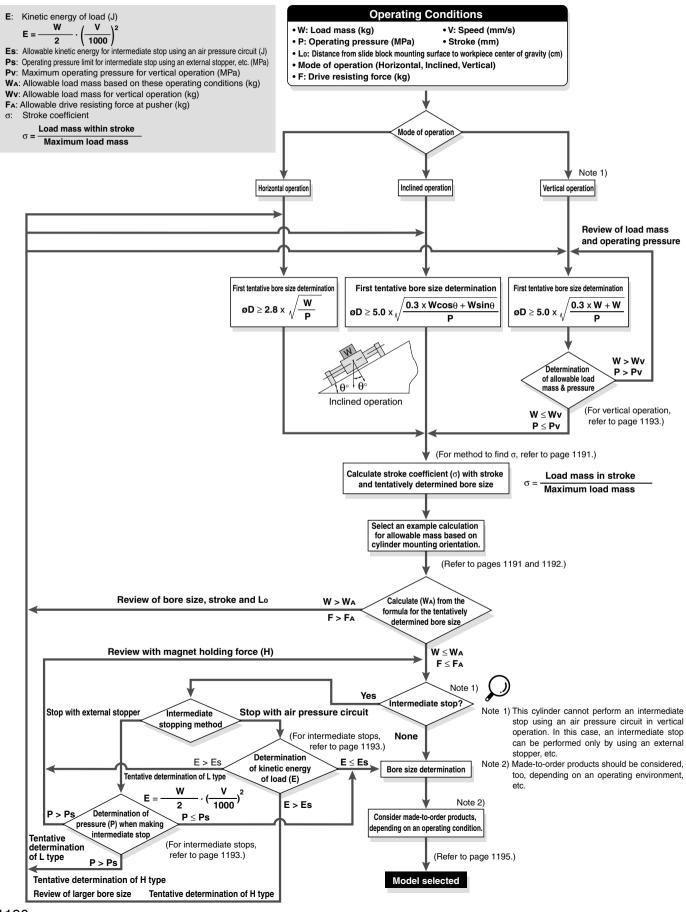
Ø6, Ø10, Ø15, Ø20, Ø25, Ø32, Ø40

CY3B CY3R

CY1L

CY1H CY1F

CYP


D-□

-X□

Individual -X -

Model Selection 1

SMC

Series CY1S Model Selection 2

Caution on Design (1)

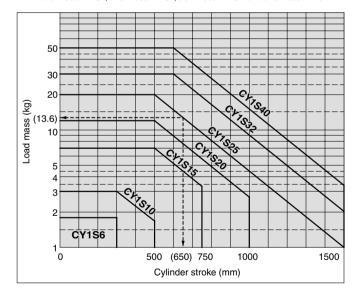
How to Find σ when Selecting the Allowable Load Mass

Since the maximum load mass with respect to the cylinder stroke changes as shown in the table below, σ should be considered as a coefficient determined in accordance with each stroke.

Example) CY1S25□-650

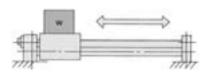
- (1) Maximum load mass = 20 kg
- (2) Load mass for 650 st = 13.6 kg
- (3) $\sigma = \frac{13.6}{20} = 0.68$ is the result.

Calculation Formula for σ ($\sigma \le 1$)


ST: Stroke (mm)

		. ,	,
Model	CY1S6	CY1S10	CY1S15
σ=	1	10 ^(0.86 - 1.3 x 10⁻³ x ST)	10 ^(1.5 - 1.3 × 10⁻³ × ST) 7

Model	CY1S20	CY1S25	CY1S32
σ=	10 ^(1.71 - 1.3 x 10⁻³ x ST)	10 ^(1.98 - 1.3 x 10⁻³ x ST)	10 ^(2.26 - 1.3 x 10⁻³ x ST)
	12	20	30

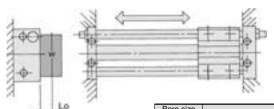

Model	CY1S40	
σ=	10 ^(2.48 - 1.3 x 10⁻³ x ST)	
	50	

Note) Calculate with σ = 1 for all applications up to ø10 – 300 mmST, ø15 – 500 mmST, ø20 – 500 mmST, ø25 – 500 mmST, ø32 – 600 mmST and ø40 – 600 mmST.

Example of Allowable Load Mass Calculation Based on Cylinder Mounting Orientation

1. Horizontal Operation (Floor mounting)

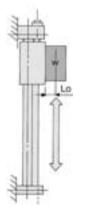
 Maximum Load Mass (Center of slide block)
 (kg)


 Bore size (mm)
 6
 10
 15
 20
 25
 32
 40

 Max. load mass (kg)
 1.8
 3
 7
 12
 20
 30
 50

 Stroke (Max)
 Up to 300 st Up to 300 st Up to 300 st Up to 500 st

The above maximum load mass values will change with the stroke length for each cylinder size, due to limitation from warping of the guide shafts. (Take note of the coefficient σ .) Moreover, depending on the operating direction, the allowable load mass may be different from the maximum load mass.


2. Horizontal Operation (Wall mounting)

Lo: Distance from mounting surface to load center of gravity (cm)

Bore size (mm)	Allowable load mass (WA) (kg)		
6			
10	<u></u>		
	8.4 + 2 Lo		
15	σ.36.4		
13	10.6 + 2 Lo		
00	σ.74.4		
20	12 + 2 Lo		
25	σ.140		
25	13.8 + 2 Lo		
32	σ.258		
32	17 + 2 Lo		
40	σ.520		
40	20.6 + 2 Lo		

3. Vertical Operation

Bore size (mm)	Allowable load mass (Wv) (kg)	
6		
10	<u> </u>	
15	<u> </u>	
20	<u> </u>	
25	<u> </u>	
32		
40	<u>σ.167.8</u> 5.1 + Lo	

Lo: Distance from mounting surface to load center of gravity (cm)

Note) Operating pressure should be equal to or less than the maximum operating pressure in the article, "Vertical Operation" listed on page 1193.

CY3B CY3R

CY1S

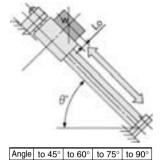
CY1L

CY1H

CY1F

CYP

Individual -X -

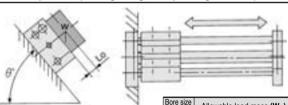


Model Selection 3

Caution on Design (2)

Example of Allowable Load Mass Calculation Based on Cylinder Mounting Orientation

4. Inclined Operation (In operating direction)


Angle	to 45°	to 60°	to 75°	to 90°
k	1	0.9	8.0	0.7

Angle coefficient (k): $k = [to \ 45^\circ \ (= \theta)] = 1$, $[to \ 60^\circ] = 0.9, \ [to \ 75^\circ] = 0.8, \\ [to \ 90^\circ] = 0.7$

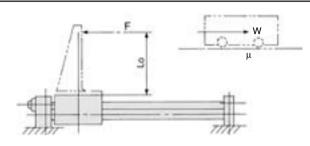
Allowable load mass (WA) (kg) **σ**⋅5.1 K $3\cos\theta + 2(1.9 + \textbf{Lo})\sin\theta$ **σ**.10.5 K 10 $3.5\cos\theta + 2(2.2 + \text{Lo})\sin\theta$ σ.35 K 15 $5\cos \theta + 2 (2.7 +$ **Lo**) sin θσ.72 K 6cos θ + 2 (2.9 + **Lo**) sin θ **σ**⋅120 K 25 $6\cos \theta + 2 (3.4 +$ **Lo** $) \sin \theta$ **σ**⋅210 K 32 $7\cos \theta + 2 (4.2 +$ **Lo** $) \sin \theta$ σ.400 K 40 8cos θ + 2 (5.1 + **Lo**) sin θ

Lo: Distance from mounting surface to load center of gravity (cm)

5. Inclined Operation (At a right angle to operating direction)

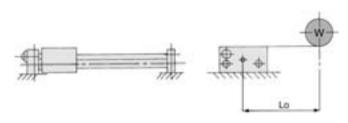
Lo: Distance from mounting surface to load center of gravity (cm)

(mm)	Allowable load mass (W _A) (kg)		
6	σ.5.44		
0	$3.2 + 2 (1.9 + Lo) sin \theta$		
10	σ·12.0		
10	4 + 2 (2.2 + Lo) sin θ		
15	σ.36.4		
13	5.2 + 2 (2.7 + Lo) sin θ		
20	σ.74.4		
20	6.2 + 2 (2.9 + Lo) sin θ		
25	σ·140		
25	7 + 2 (3.4 + Lo) sin θ		
32	σ .258		
32	8.6 + 2 (4.2 + Lo) sin θ		
40	σ.520		
40	10.4 + 2 (5.1 + Lo) sin θ		


6. Load Center Offset in Operating Direction (Lo)

Lo: Distance from center of slide block to load's center of gravity (cm)

	(mm)	Allowable load mass (Wa) (kg)		
	6	σ ⋅2.55		
	0	Lo + 3		
k	10	σ.5.25		
Λ.	10	Lo + 3.5		
	15	<u>σ.17.5</u>		
	15	Lo + 5.0		
	20	σ.36		
	20	Lo + 6.0		
	25	σ.60		
	25	Lo + 6.0		
	32	σ.105		
	32	Lo + 7.0		
	40	σ.200		
	40	Lo + 8.0		


7. Horizontal Operation (Pushing load, Pusher)

F: Drive (from slide block to position Lo) resistance force W x μ (kg) Lo: Distance from mounting surface to load center of gravity (cm) μ: Friction coefficient

Bore size (mm)	6	10	15	20
Allowable drive resisting force (Fa) (kg)	<u>σ.2.55</u> 1.9 + Lo	<u>σ.5.25</u> 2.2 + Lo	<u>σ.17.5</u> 2.7 + Lo	<u>σ.36</u> 2.9 + Lo
Bore size (mm)	25	32	40	

8. Horizontal Operation (Load, Lateral offset Lo)

Lo: Distance from mounting surface to load center of gravity (cm)

Bore size (mm)	6	10	15	20
Allowable load mass (WA) (kg)	<u>σ.3.80</u> 3.2 + Lo		<u>σ.25.48</u> 5.2 + Lo	<u>σ.52.1</u> 6.2 + Lo
Bore size (mm)	25	32	40	

Bore size (mm)	25	32	40
Allowable load mass	$\frac{\sigma.98}{7.0 + 1.0}$		$\frac{\sigma \cdot 364}{10.4 + 1.0}$

Series CY1S Model Selection 4

Caution on Design (3)

Vertical Operation

When operating a load vertically, it should be operated within the allowable load mass and maximum operating pressures shown in the table below. Use caution, as operating above the prescribed values may lead to dropping of the load.

When the cylinder is mounted vertically or sidelong, sliders may move downwards due to the self-weight or workpiece mass. If an accurate stopping position is required at the stroke end or the middle-stroke, use an external stopper to secure accurate positioning.

Bore size (mm)	Model	Allowable load mass (Wv) (kg)	Maximum operating pressure (Pv) (MPa)
6	CY1S 6H	1.0	0.55
10	CY1S10H	2.7	0.55
15	CY1S15H	7.0	0.65
15	CY1S15L	4.1	0.40
	CY1S20H	11.0	0.65
20	CY1S20L	7.0	0.40
25	CY1S25H	18.5	0.65
CY1S25L		11.2	0.40
32	CY1S32H	30.0	0.65
32	CY1S32L	18.2	0.40
40	CY1S40H	47.0	0.65
40	CY1S40L	29.0	0.40

Note 1) Use caution, since the magnetic coupling may be dislocated if it is used over the maximum operating pressure.

Note 2) Allowable load mass above indicates the maximum load mass when loaded. The actual loadable mass must be determined referring to the flow chart in the Model Selection 1.

Intermediate Stop

1) Intermediate stopping of load with an external stopper, etc.

When stopping a load in mid-stroke using an external stopper (adjusting bolt, etc.), operate within the operating pressure limits shown in the table below. Use caution, as operation at a pressure exceeding these limits can result in breaking of the magnetic coupling.

Bore size (mm)	Model	Operating pressure limit for intermediate stop (Ps) (MPa)			
6	CY1S 6H	0.55			
10	CY1S10H	0.55			
15	CY1S15H	0.65			
15	CY1S15L	0.40			
20	CY1S20H	0.65			
20	CY1S20L	0.40			
25	CY1S25H	0.65			
25	CY1S25L	0.40			
32	CY1S32H	0.65			
32	CY1S32L	0.40			
40	CY1S40H	0.65			
40	CY1S40L	0.40			

2) Intermediate stopping of load with an air pressure circuit

When stopping a load using an air pressure circuit, operate at or below the kinetic energy shown in the table below. Use caution, as operation when exceeding the allowable value can result in breaking of the magnetic coupling.

(Reference values)

		(1101010100 Valado)
Bore size (mm)	Model	Allowable kinetic energy for intermediate stop (Es) (J)
6	CY1S 6H	0.007
10	CY1S10H	0.03
15	CY1S15H	0.13
15	CY1S15L	0.076
20	CY1S20H	0.24
20	20 CY1S20L	0.16
25	CY1S25H	0.45
25	CY1S25L	0.27
22	CY1S32H	0.88
32	32 CY1S32L	0.53
40	CY1S40H	1.53
40	CY1S40L	0.95

CY3B CY3R

CY1L

CY1H

CY1F

CYP

Individual -X
Technical

Magnetically Coupled Rodless Cylinder Slider Type: Slide Bearing

Series CY1S

Ø6, Ø10, Ø15, Ø20, Ø25, Ø32, Ø40

Series CY1S slider type slide bearing has been remodeled to achieve the lightweight design and shorten the overall length. When selecting this model, please consider the new CY1S series.

How to Order

- * The shock absorber service life is different from that of the CY1S cylinder. Refer to "Specific Product Precautions" for each shock absorber for the replacement period
 - * The shock absorber soft type Series RJ type (-XB22) is a made to order specification. For details, refer to page 1415-1.

Applicable Auto Switch/Refer to pages 1263 to 1371 for further information on auto switches

Refer to "Standard Stroke" on page 1195.

			ight	Wiring	ī	Load vol	tage	Auto switch model Lead wire ler			ngth	(m) *										
Туре	Type Special function	Electrical	ndicator light	(Output)		DC	AC	Electrical en	try direction	0.5	3		None	Pre-wired connector	Applica	ble load						
		entry	Indic	(33,437)			AC	Perpendicular	In-line	(Nil)	(L)	(Z)	(N)	Connector								
				3-wire (NPN)		5 V, 12 V		F7NV	F79	•	•	0	_	0	IC							
		Grommet		3-wire (PNP)		5 V, 12 V		F7PV	F7P			0	_	0	circuit							
ᇷ	_			2-wire		12 V		F7BV	J79	•	•	0	_	0								
switch		Connector		Z-WIIE	-	12 V		J79C	_	•	•		•	-		Dolov						
S S	Diagnostic indication			3-wire (NPN)		24 V	24 V	24 V	24 V	24 V	5 V 40 V	_	F7NWV	F79W		•	0	_	0	IC	Relay, PLC	
state	Diagnostic indication (2-color indication)		Yes	3-wire (PNP)							24 V	24 V	24 V	24 V	24 V	V 5 V, 12 V		_	F7PW		•	0
S	(E color indication)									F7BWV	J79W		•	0	_	0						
Solid	Water resistant (2-color indication)	Grommet		2-wire									12 V		F7BAV	F7BA	_	•	0	-	0	_
	With diagnostic output (2-color indication)			4-wire (NPN)		5 V, 12 V		_	F79F	•	•	0	_	0	IC circuit							
r,			Yes	3-wire (NPN equivalent)	ı	5 V	ı	_	A76H	•	•	_	_	_	IC circuit	_						
switch		Grommet	>		_	_	200 V	A72	A72H		•	_	_	_								
						12 V	100 V	A73	A73H		•		-	_		Dala						
Reed			ટ	2-wire	24 V	5 V, 12 V	100 V or less	A80	A80H	•	•	-	-	_	IC circuit	Relay,						
Œ		Connector	No Yes]	24 V		_	A73C	_		•	•		_	_] [
		Cominector	2			5 V, 12 V		A80C	_					_	IC circuit							

* Lead wire length symbols:

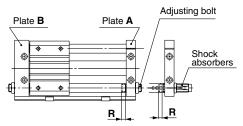
0.5 m----- Nil 3 m---- L 5 m--- Z None--- N (Example) J79W (Example) J79WL (Example) J79WZ (Example) J79CN

st Solid state auto switches marked with "O" are produced upon receipt of order.

[•] Since there are other applicable auto switches than listed, refer to page 1199 for details.

[•] For details about auto switches with pre-wired connector, refer to pages 1328 and 1329.

^{*}Auto switches are shipped together, (but not assembled).


Magnetically Coupled Rodless Cylinder Slider Type: Slide Bearing Series CY1S

JIS Symbol Rubber bumper (Magnet type)

Made to Order Specifications (For details, refer to pages 1395 to 1565.)

Symbol	Specifications
—ХВ9	Low speed cylinder (15 to 50 mm/s)
—XB13	Low speed cylinder (7 to 50 mm/s)
—XB22	Shock absorber soft type Series RJ type
—X116	Hydro specifications rodless cylinder
—X168	Helical insert thread specifications
—X210	Non-lubricated exterior specifications
—X322	Outside of cylinder tube with hard chrome plated
—X324	Non-lubricated exterior specifications (With dust seal)
—X431	Auto switch rails on both side faces (with 2 pcs.)

Amount of Adjustment for Adjusting Bolt and Shock Absorber

Bore size (mm)	R	Amount of adjustment by adjusting bolt (both ends: R x 2) (mm)
6	0 to 6	12
10	0 to 5.5	11
15	0 to 3.5	7
20	0 to 5.5	11
25	0 to 5	10
32	0 to 5.5	11
40	0 to 4.5	9

Bore size	Amount of adjustment by shock absorber: ${f R}$ (mm)					
(mm)	Plate A side	Plate B side				
6	17	11				
10	14	6				
15	14	4				
20	16	7				
25	32	23				
32	33	23				
40	32	17				

- * Since the cylinder is in an intermediate stop condition when stroke adjustment is performed, use caution regarding the operating pressure and the kinetic energy of the load.
- * The amount of adjustment for adjustment bolts is the total amount when adjusted on both plate ends. For the adjustment on a single plate end, the amount of adjustment is half of the figures in the table above.
- *The Plate A: Piping port side

Specifications

Bore size (mm)		6	10	15	20	25	32	40
Fluid				Air				
Proof pressure				1.05 MPa	l			
Maximum operating	g pressure				0.7 MPa			
Minimum operatin	g pressure				0.18 MPa	l		
Ambient and fluid	-10 to 60°C (No freezing)							
Piston speed *		50 to 400 mm/s						
Cushion		Rubber bumper / Shock absorbers						
Lubrication	Non-lube							
Stroke length tole	0 to 250 st: +1.0, 251 to 1000 st: +1.4, 1001 st and up: +1.8							
Holding force (N)	Type H	19.6	53.9	137	231	363	588	922
	Type L	_	_	81.4	154	221	358	569

^{*} In the case of setting an auto switch (CDY1S) at the intermediate position, the maximum piston speed is subject to restrict for detection upon the response time of a load (Relays, Sequence controller, etc.)

Standard Stroke

Bore size (mm)	Standard stroke (mm)	Maximum manufacturable stroke (mm)
6	50, 100, 150, 200	300
10	50, 100, 150, 200, 250, 300	500
15	50, 100, 150, 200, 250, 300, 350 400, 450, 500	750
20		1000
25 32	100, 150, 200, 250, 300, 350 400, 450, 500, 600, 700, 800	1500
40	100, 150, 200, 250, 300, 350 400, 450, 500, 600, 700, 800 900, 1000	1500

Note) Intermediate stroke is available by the 1 mm interval.

Mass

								(kg)
Number of magnets	Bore size (mm)	6	10	15	20	25	32	40
Basic mass	CY1S□H	0.27	0.48	0.91	1.48	1.84	3.63	4.02
	CY1S□L	_	_	0.85	1.37	1.75	3.48	3.84
Additional mass per each 50 mm of stroke		0.044	0.074	0.104	0.138	0.172	0.267	0.406

Calculation

(Example) CY1S32H-500

- Basic mass 3.63 kg
 Additional mass 0.267/50 st
 Cylinder stroke 500 st 3.63 + 0.267 x 500 ÷ 50 = 6.3 kg

Shock Absorber Specifications

Refer to the Series RR in Rest Pneumatics No. 3 for the details on shock absorbers

Refe	er to the Ser	es RB in Best Pr	neumatics INO. 3 f	or the details on	snock absorbers.		
Applicable rodless cylinder		6 CY1S10 15	CY1S20	CY1S25	CY1S ₄₀ ³²		
Shock absorber model		RB0805	RB1006	RB1411	RB2015		
Maximum energy absorption: (J)		0.98	3.92	14.7	58.8		
Stroke absorption: (mm)		5	6	11	15		
Collision speed: (m/s)		0.05 to 5					
Max. operating frequency: (cycle/min) *		80	70	45	25		
Ambient temperature range		−10 to 80 °C					
Spring force: (N)	Extended	1.96	4.22	6.86	8.34		
	Retracted	3.83	6.18	15.3	20.50		

It denotes the values at the maximum energy absorption per one cycle. Therefore, the operating frequency can be increased according to the energy absorption.

The shock absorber service life is different from that of the CY1S cylinder. Refer to the Specific Product Precautions for the replacement period.

CY3B CY3R CY1S

CY1L

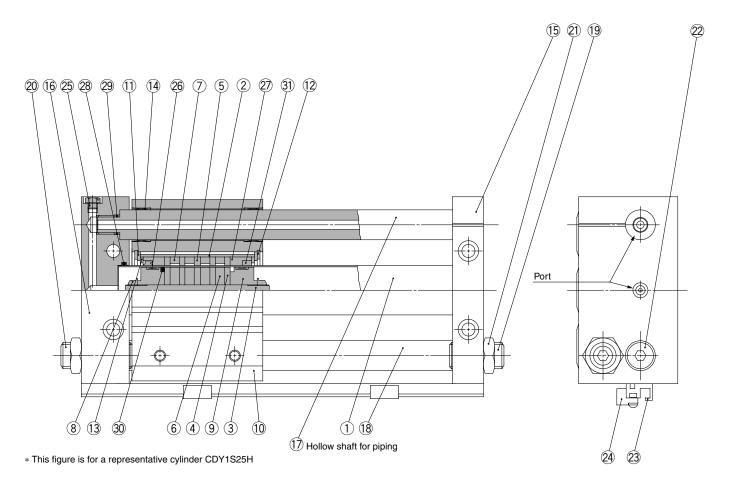
CY1H

CY1F

CYP

Individual -X□ Technical

data



Construction

Slider type/Slide bearing

CY1S6 to 40

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Stainless steel	
2	External slider tube	Aluminum alloy	
3	Shaft	Stainless steel	
4	Piston side yoke	Rolled steel	Zinc chromated
5	External slider side yoke	Rolled steel	Zinc chromated
6	Magnet A	_	
7	Magnet B	_	
8	Piston nut	Carbon steel	Zinc chromated
9	Piston	Aluminum alloy Note 1)	Chromated
10	Slide block	Aluminum alloy	Anodized
11	Slider spacer	Rolled steel	Nickel plated
12	Retaining ring	Carbon tool steel	Phosphate coated
13	Spacer	Rolled steel	Nickel plated
14	Bushing	Oil retaining bearing material	
15	Plate A	Aluminum alloy	Anodized
16	Plate B	Aluminum alloy	Anodized
17	Guide shaft A	Carbon steel	Hard chrome plated
18	Guide shaft B	Carbon steel	Hard chrome plated
19	Adjusting bolt A	Chromium molybdenum steel	
20	Adjusting bolt B	Chromium molybdenum steel	
21	Hexagon nut	Carbon steel	Nickel plated
22	Hexagon socket head cap screw	Chromium molybdenum steel	
23	Switch mounting rail	Aluminum alloy	
Nista 1	Dunne for aC		

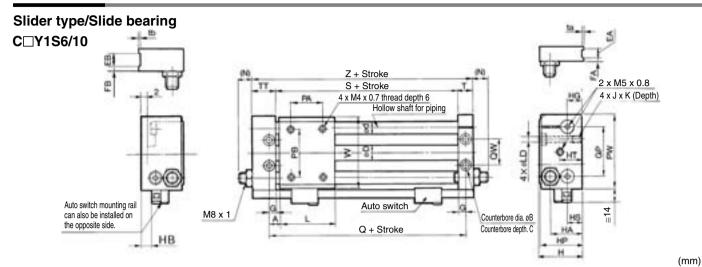
Note 1) Brass for ø6

Note 2) Piston nuts are not included	I for ø6, ø10 and ø15.
--------------------------------------	------------------------

No.	Description	Material	Note
24	Auto switch	_	
25	Plug	Brass	
26*	Wear ring A	Special resin	
27*	Wear ring B	Special resin	
28*	Cylinder tube gasket	NBR	
29*	Guide shaft gasket	NBR	
30*	Piston seal	NBR	
31*	Scraper	NBR	

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Contents
6	CY1S6-PS-N	Set of nos. above 27, 28, 29,30
10	CY1S10-PS-N	
15	CY1S15-PS-N	
20	CY1S20-PS-N	Nos. above
25	CY1S25-PS-N	26, 27, 28, 29, 30, 31
32	CY1S32-PS-N	
40	CY1S40-PS-N	


^{*} Seal kit includes $\ensuremath{\mathfrak{D}}$ to $\ensuremath{\mathfrak{Y}}$ to $\ensuremath{\mathfrak{Y}}$ for $\ensuremath{\mathfrak{g}}$ 6. $\ensuremath{\mathfrak{E}}$ 6 to $\ensuremath{\mathfrak{Y}}$ 1 are for $\ensuremath{\mathfrak{g}}$ 10 to $\ensuremath{\mathfrak{g}}$ 40. Order the seal kit, based on each bore size.

^{*} Seal kit includes a grease pack (ø6, ø10: 5 and 10 g, ø15 to ø40: 10 g). Order with the following part number when only the grease pack is needed. Grease pack part no. for ø6, ø10: GR-F-005 (5 g) for external sliding parts, GR-S-010 (10 g) for tube interior Grease pack part no. for ø15 to ø40: GR-S-010 (10 g)

Magnetically Coupled Rodless Cylinder Slider Type: Slide Bearing Series CY1S

Dimensions

Model	Α	В	С	D	d	EA	EB	FA	FB	G	GP	Н	HA	HB*	HG	HP	HS	HT
CY1S6 CDY1S6	6	6.5	3	7.6	8	_	_	_	_	5	32	27	19	4	8	26	8	17
CY1S10 CDY1S10	7.5	8	4	12	10	6	12	3	5	6.5	40	34	25.5	10	12	33	14	18
		17			(5.1)	D4 :		D144		0111		_				107	7	
Model	J >	(K	L	LD	(N)	PA*	PB	PW	Q	QW	S			ta	tb	W	Z	
CY1S6 CDY1S6	M4 x 0	.7 x 6.5	40	3.5	11	25	25	50	52	16	42	10	16	_	_	46	68	•
CY1S10 CDY1S10	M5 x 0	.8 x 9.5	45	4.3	10.5	25	38	60	60	24	47	12.5	20.5	0.5	1.0	58	80	

* PA dimensions are for split from center. HB dimensions are for CDY1S.

																					(mm)
Model	Α	В	С	D	d	EA	EB	FA	FB	G	GP	Н	HA	HB*	HG	HP	HS	HT	Jx	K	L
CY1S15 CDY1S15	7.5	9.5	5	16.6	12	6	13	3	6	6.5	52	40	29	1	13	39	15	21	M6 x 1.	0 x 9.5	60
CY1S20 CDY1S20	10	9.5	5.2	21.6	16	-	ı	ı	-	8.5	62	46	36	4.5	17	45	25.5	20	M6 x 1.	0 x 9.5	70
CY1S25 CDY1S25	10	11	6.5	26.4	16	8	14	4	7	8.5	70	54	40	9	20	53	23	20	M8 x 1.	25 x 10	70
CY1S32 CDY1S32	12.5	14	8	33.6	20	8	16	5	7	9.5	86	66	46	13	24	64	27	24	M10 x 1	.5 x 15	85
CY1S40 CDY1S40	12.5	14	8	41.6	25	10	20	5	10	10.5	104	76	57	17	25	74	31	25	M10 x 1	.5 x 15	95
Model	LD	M	M	IM	(N)	N	N	ŀ	•	PA*	PB	PW	Q	QW	S	Т	TT	ta	tb	W	Z
CY1S15 CDY1S15	5.6	8	M5 :	8.0 x	8.5	M8 :	< 1.0	M5 >	k 0.8	30	50	75	75	30	62	12.5	22.5	0.5	1	72	97
CY1S20 CDY1S20	5.6	10	M6:	x 1.0	10	M10	x 1.0	Rc	1/8	40	70	90	90	38	73	16.5	25.5	-	_	87	115
CY1S25 CDY1S25	7	10	M6 :	x 1.0	12	M14	x 1.5	Rc	1/8	40	70	100	90	42	73	16.5	25.5	0.5	1	97	115
CY1S32 CDY1S32	8.7	12	M8 x	1.25	11.5	M20	x 1.5	Rc	1/8	40	75	122	110	50	91	18.5	28.5	0.5	1	119	138
CY1S40 CDY1S40	8.7	12	M8 x	1.25	11.5	M20	x 1.5	Rc	1/4	65	105	145	120	64	99	20.5	35.5	1	1	142	155

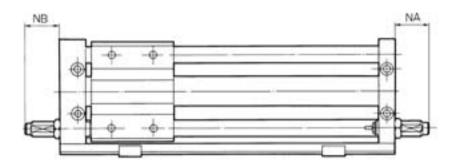
* PA dimensions are for split from center. HB dimensions are for CDY1S.

CY3B CY3R

CY1S

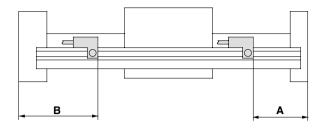
CY1L

CY1H


CY1F

CYP

Individual -X -



Dimensions: With Shock Absorber

			(mm)
Model	Applicable shock absorber	NA	NB
C□Y1S 6		30	24
C□Y1S10	RB0805	27	19
C□Y1S15		27	17
C□Y1S20	RB1006	29	20
C□Y1S25	RB1411	49.5	40.5
C□Y1S32	RB2015	52	42
C□Y1S40	1152013	51	36

Proper Auto Switch Mounting Position (Detection at stroke end)

(mm)

			Applicable	auto switch			
Bore size (mm)	D-A73	3, A80	D-A72/ A7□H/ A D-A80C/ F7□/ J' D-F7□W/ J79W/ D-F7BAL/ F7BA	79/ F7□V/ J79C ′ F7□WV	D-F7NTL		
	Α	В	Α	В	Α	В	
6	27.5	40.5	28	40	33	35	
10	35	35 45		44.5	40.5	39.5	
15	34.5	62.5	35	62	40	57	
20	64	50	64.5	49.5	69.5	44.5	
25	44	71	44.5	70.5	49.5	65.5	
32	55	83	55.5	82.5	60.5	77.5	
40	61	94	61.5	93.5	66.5	88.5	

Note 1) 50 mm is the minimum stroke available with 2 auto switches mounted. In the case of a stroke less than this, please contact SMC.

Note 2) Adjust the auto switch after confirming the operating conditions in the actual setting.

Operating Range

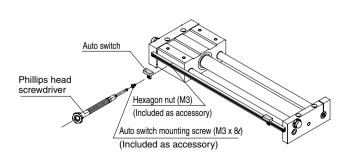
Operating mange	operating nange (mm)										
Auto switch model	Bore size (mm)										
Auto Switch model	6	10	15	20	25	32	40				
D-A7□/ A8□	6	6	6	6	6	6	6				
D-F7□/ J7□	3	3	4	3	3	3	3.5				
D-F79F	4.5	4.5	4.5	4.5	4.5	4.5	4.5				

Since this is a guideline including hysteresis, not meant to be guaranteed.

(Assuming approximately ±30% dispersion)

There may be the case it will vary substantially depending on an ambient environment.

Other than the models listed in "How to Order", the following auto switches are applicable.


For detailed specifications, refer to page 1314.

Туре	Model	Electrical entry (Fetching direction)	Features	
Solid state auto switch	D-F7NTL	Grommet (In-line)	With timer	

* With pre-wired connector is available for D-F7NTL type, too. For details, refer to pages 1328 and 1329.

Mounting of Auto Switch

When mounting an auto switch, the auto switch mounting screw should be screwed into a hexagon nut (M3 x 0.5) which has been inserted into the groove of the switch mounting rail. (Tightening torque: Approx. 0.5 to 0.7 N-m.)

D
-X

Individual

CY3B CY3R

CY1S

CY1L

CY1H

CY1F

CYP

SMC

1199

Series CY1S Specific Product Precautions

Be sure to read before handling. Refer to front matters 54 and 55 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Operation

⚠ Warning

 Be aware of the space between the plates and the slide block.

Take sufficient care to avoid getting your hands or fingers caught when the cylinder is operated.

2. Do not apply a load to a cylinder which is greater than the allowable value stated in the "Model Selection" pages.

This may cause malfunctions.

- When the cylinder is used in a place where water or cutting oil may splash or the lubrication condition on the cylinder sliding parts would be deteriorated, please consult SMC.
- 4. When applying grease to the cylinder, use the grease that has already been applied to the product. Contact SMC for available grease packs.

Mounting

⚠ Caution

1. Avoid operation with the external slider fixed to the mounting surface.

The cylinder should be operated with the plates fixed to the mounting surface.

2. Make sure that the cylinder mounting surface is a flatness of 0.2 mm or less.

If the flatness of the cylinder mounting surface is not appropriate, 2 guide shafts may be twisted. This may adversely affect the operating conditions and shorten the service life due to the increase of sliding resistance and the early abrasion of bearings.

The cylinder mounting surface must be a flatness of 0.2 mm or less, and the cylinder must be mounted as it smoothly operates through the full stroke at the minimum operating pressure (0.18 MPa or less).

Service Life and Replacement Period of Shock Absorber

⚠ Caution

1. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08□□

2 million times RB10□□ to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C).

The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Disassembly and Maintenance

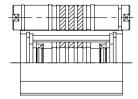
⚠ Warning

1. Use caution as the attractive force of the magnets is very strong.

When removing the external slider and piston slider from the cylinder tube for maintenance, etc., handle with caution, since the magnets installed in each slider have a very strong attractive force.

∧ Caution

1. Use caution when removing the external slider, as the piston slider will be directly attracted to it.


When removing the external slider or piston slider from the cylinder tube, first force the sliders out of their magnetically coupled positions, and then remove them individually when there is no longer any holding force. If they are removed while still magnetically coupled, they will be directly attracted to one another and will not come apart.

- 2. Since the magnetic holding force can be changed (for example, from CY1S25L to CY1S25H), please contact SMC if this is necessary.
- 3. Do not disassemble the magnetic components (piston slider, external slider).

This can cause a loss of holding force and malfunction.

- When disassembling to replace the seals and wear ring, refer to the separate disassembly instructions.
- Use caution to the direction of the external slider and the piston slider.

Since the external slider and piston slider are directional for \emptyset 6, \emptyset 10 and holding force type L, refer to the figures below when performing disassembly or maintenance. Put the external slider and piston slider together, and insert the piston slider into the cylinder tube so that they will have the correct positional relationship as shown in Fig. (1). If they align as shown in Fig. (2), insert the piston slider after turning it around 180°. If the direction is not correct, it will be impossible to obtain the specified holding force.

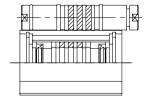


Fig. (1) Correct position

Fig. (2) Incorrect position

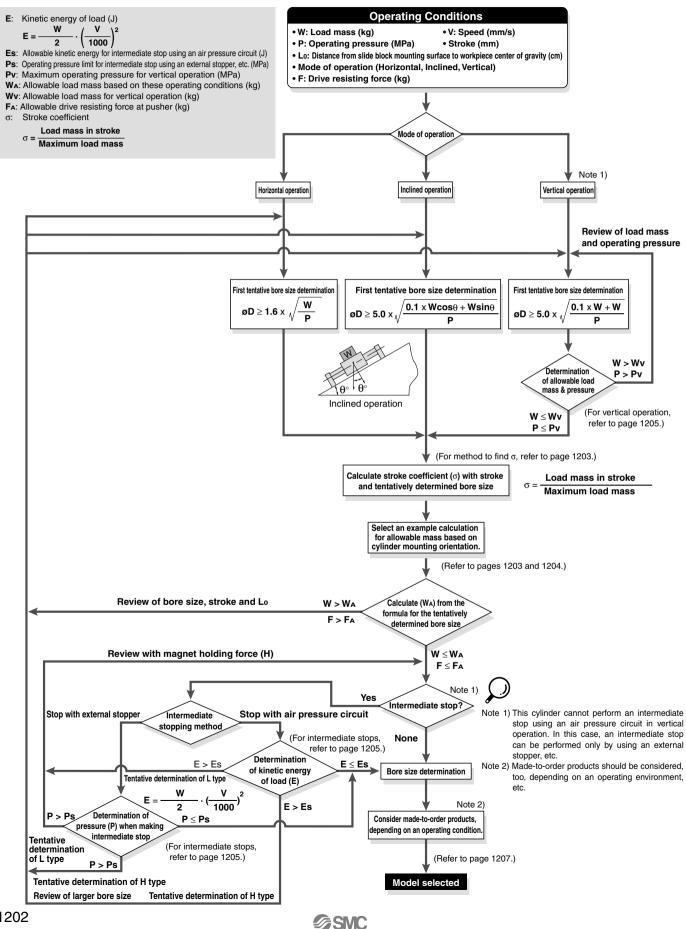
Example of ø15 with holding force type L

Slider Type/Ball Bushing Bearing Series CY1L

Ø6, Ø10, Ø15, Ø20, Ø25, Ø32, Ø40

CY3B CY3R

CY1L CY1H


CY1F CYP

D-□

-X□

Individual -X -

Model Selection 1

Model Selection 2

Caution on Design (1)

How to Find σ when Selecting the Allowable Load Mass

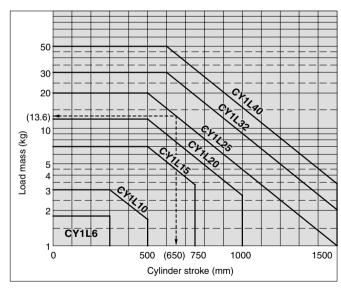
Since the maximum load mass with respect to the cylinder stroke changes as shown in the table below. σ should be considered as a coefficient determined in accordance with each stroke.

Example) CY1L25□-650

- (1) Maximum load mass = 20 kg
- (2) Load mass for 650 st = 13.6 kg

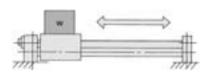
(3)
$$\sigma = \frac{13.6}{20} = 0.68$$
 is the result.

Calculation Formula for σ ($\sigma \le 1$)


ST: Stroke (mm)

Model	CY1L6	CY1L10	CY1L15
σ=	1	$\frac{10^{(0.86-1.3\times10^{-3}\times\text{ST})}}{3}$	$\frac{10^{(1.5-1.3\times10^{-3}\times\text{ST})}}{7}$

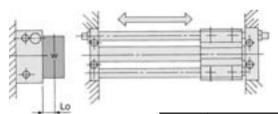
Model	CY1L20	CY1L25	CY1L32
σ=	10 ^(1.71 - 1.3 x 10⁻³ x ST)	10 ^(1.98 - 1.3 x 10⁻³ x ST)	10 ^(2.26 - 1.3 x 10⁻³ x ST)
0 -	12	20	30


Model	CY1L40
σ=	10 ^(2.48 - 1.3 x 10⁻³ x ST)
	50

Note) Calculate with $\sigma = 1$ for all applications up to Ø10 – 300 mmST, Ø15 – 500 mmST, ø20 - 500 mmST, ø25 - 500 mmST, ø32 - 600 mmST and ø40 - 600 mmST.

Examples of Allowable Load Mass Calculation Based on Cylinder Mounting Orientation

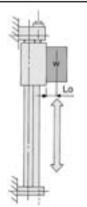
1. Horizontal Operation (Floor mounting)


Maximum Load Mass (Center of slide block)

IVIAXIIII L	Waxiiiaii Load Wass (Ceriter of Slide Block)										
Bore size (mm)	6	10	15	20	25	32	40				
Max. load mass (kg)	1.8	3	7	12	20	30	50				
Stroke (Max)	Up to 300 st	Up to 300 st	Up to 500 st	Up to 500 st	Up to 500 st	Up to 600 st	Up to 600 st				

The above maximum load mass values will change with the stroke length for each cylinder size, due to limitation from warping of the guide shafts. (Take

Moreover, depending on the operating direction, the allowable load mass may


2. Horizontal Operation (Wall mounting)

Lo: Distance from mounting surface to load center of gravity (cm)

Bore size (mm)	Allowable load mass (WA) (kg
6	σ⋅6.48
U	6.8 + 2 Lo
10	<u></u> σ⋅15.0
10	8.9 + 2 Lo
15	σ·45.5
15	11.3 + 2 Lo
20	σ·101
20	13.6 + 2 Lo
25	σ ⋅180
25	15.2 + 2 Lo
32	σ⋅330
32	18.9 + 2 Lo
40	σ⋅624
40	22.5 + 2 Lo

3. Vertical Operation

Bore size (mm)	Allowable load mass (Wv) (kg)
6	<u> </u>
10	
15	<u> </u>
20	<u> </u>
25	<u> </u>
32	<u>σ⋅112.57</u> 3.95 + Lo
40	<u>σ⋅212.09</u> 4.75 + Lo

Lo: Distance from mounting surface to load center of gravity (cm)

Note) Operating pressure should be equal to or less than the maximum operating pressure in the article, "Vertical Operation" listed on page 1205

CY3B CY3R

CY1S

CY1L

CY1H

CY1F

CYP

Model Selection 3

Allowable load mass (Wa) (kg) $\frac{\sigma \cdot 4.05 \cdot K}{1.7 \cos\theta + 2 (1.6 + \text{Lo}) \sin\theta}$ $\frac{\sigma \cdot 10.2 \cdot K}{\sigma \cdot 10.2 \cdot K}$

2.8 $\cos \theta$ + 2 (1.95 + **Lo**) $\sin \theta$ σ -31.1·K
2.9 $\cos \theta$ + 2 (2.4 + **Lo**) $\sin \theta$ σ -86.4·K $6 \cos \theta$ + 2 (2.8 + **Lo**) $\sin \theta$ σ -105.4·K

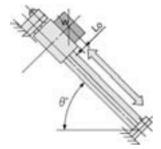
 $3.55 \cos \theta + 2 (3.1 + Lo) \sin \theta$

σ.178·K

 $4\cos\theta + 2(3.95 +$ **Lo** $)\sin\theta$

σ.361.9·K

 $5.7 \cos \theta + 2 (4.75 +$ **Lo** $) \sin \theta$

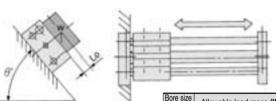

10

25

Caution on Design (2)

Example of Allowable Load Mass Calculation Based on Cylinder Mounting Orientation

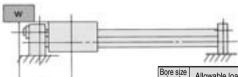
4. Inclined Operation (In operating direction)



Angle	up to 45°	up to 60°	up to 75°	up to 90°
k	1	0.9	0.8	0.7

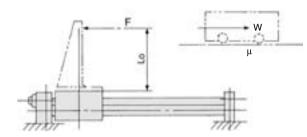
Angle coefficient (k) : k = [to 45° (= θ)] = 1, [to 60°] = 0.9, [to 75°] = 0.8, [to 90°] = 0.7

Lo: Distance from mounting surface to load center of gravity (cm)


5. Inclined Operation (At a right angle to operating direction)

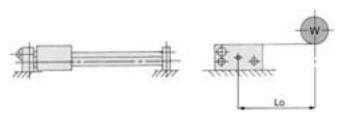
Lo: Distance from mounting surface to load center of gravity (cm)

(mm)	Allowable load mass (WA) (kg)
6	<u></u> σ.6.48
0	$3.6 + 2 (1.6 + Lo) sin\theta$
10	σ.15
10	$5 + 2 (1.95 + Lo) sin\theta$
15	σ.45.5
15	$6.5 + 2 (2.4 + Lo) sin\theta$
20	<u></u> σ.115
20	$8 + 2 (2.8 + Lo) sin\theta$
25	σ.180
25	9 + 2 (3.1 + Lo) sinθ
32	σ.330
32	$11 + 2 (3.95 + Lo) sin\theta$
40	σ.624
40	$13 + 2 (4.75 + Lo) sin\theta$


6. Load Center Offset in Operating Direction (Lo)

Lo: Distance from center of slide block to load's center of gravity (cm)

6	Bore size (mm)	Allowable load mass (Wa) (kg)
10	6	
10		
15	10	
20	15	
20		Lo + 2.9
25	20	
25	20	Lo + 6
32	25	σ .46.15
Lo + 4 Δ0 <u>σ.188.1</u>	23	Lo + 3.55
Lo + 4 Δ0 <u>σ.188.1</u>	22	_ σ.80
40	32	Lo + 4
Lo + 5.7	40	σ.188.1
	40	Lo + 5.7


7. Horizontal Operation (Pushing load, Pusher)

F: Drive (from slide block to position **Lo**) resistance force W x μ (kg) **Lo**: Distance from mounting surface to load center of gravity (cm) μ : Friction coefficient

Bore size (mm)	6	10	15	20
Allowable drive resisting force (Fa) (kg)	$\frac{\sigma \cdot 2.72}{1.6 + \mathbf{Lo}}$	<u>σ⋅5.55</u> 1.95 + Lo	<u>σ⋅15.96</u> 2.4 + Lo	$\frac{\text{O.41.7}}{2.8 + \text{Lo}}$
Bore size (mm)	25	32	40	
Allowable drive resisting force (Fa) (kg)	<u>σ⋅58.9</u> 3.1 + Lo	<u>σ⋅106.65</u> 3.95 + Lo	<u>σ⋅228</u> 4.75 + Lo	

8. Horizontal Operation (Load, Lateral offset Lo)

Lo: Distance from center of side block to load's center of gravity (cm)

Bore size (mm)	6	10	15	20
Allowable load mass (Wa) (kg)	<u> </u>	<u>σ⋅15</u> 5 + Lo	<u>σ.45.5</u> 6.5 + Lo	<u>σ⋅80.7</u> 8 + Lo

Bore size (mm)	25	32	40
Allowable load mass	σ.144	σ.275	σ.520
(W _A) (kg)	9 + Lo	11 + Lo	13 + Lo

Series CY1L Model Selection 4

Caution on Design (3)

Vertical Operation

When operating a load vertically, it should be operated within the allowable load mass and maximum operating pressures shown in the table below. Use caution, as operating above the prescribed values may lead to dropping of the load.

When the cylinder is mounted vertically or sidelong, sliders may move downwards due to the self-weight or workpiece mass. If an accurate stopping position is required at the stroke end or the middle-stroke, use an external stopper to secure accurate positioning.

Bore size (mm)	Model	Allowable load mass (Wv) (kg)	Maximum operating pressure (Pv) (MPa)			
6	CY1L 6H	1.0	0.55			
10	CY1L10H	2.7	0.55			
15	CY1L15H	7.0	0.65			
15	CY1L15L	4.1	0.40			
20	CY1L20H	11.0	0.65			
20	CY1L20L	7.0	0.40			
25	CY1L25H	18.5	0.65			
25	CY1L25L	11.2	0.40			
32	CY1L32H	30.0	0.65			
32	CY1L32L	18.2	0.40			
40	CY1L40H	47.0	0.65			
40	CY1L40L	29.0	0.40			

Note 1) Use caution, since the magnetic coupling may be dislocated if it is used over the maximum operating pressure.

Note 2) Allowable load mass above indicates the maximum load mass when loaded. The actual loadable mass must be determined referring to the flow chart in the Model Selection 1.

Intermediate Stop

1. Intermediate stopping of load with an external stopper, etc.

When stopping a load in mid-stroke using an external stopper (adjusting bolt, etc.), operate within the operating pressure limits shown in the table below. Use caution, as operation at a pressure exceeding these limits can result in breaking of the magnetic coupling.

Bore size (mm)	Model	Operating pressure limit for intermediate stop (Ps) (MPa)					
6	CY1L 6H	0.55					
10	CY1L10H	0.55					
15	CY1L15H	0.65					
15	CY1L15L	0.40					
20	CY1L20H	0.65					
20	CY1L20L	0.40					
25	CY1L25H	0.65					
25	CY1L25L	0.40					
32	CY1L32H	0.65					
32	CY1L32L	0.40					
40	CY1L40H	0.65					
40	CY1L40L	0.40					

2. Intermediate stopping of load with an air pressure circuit

When stopping a load using an air pressure circuit, operate at or below the kinetic energy shown in the table below. Use caution, as operation when exceeding the allowable value can result in breaking of the magnetic coupling.

(Reference values)

Bore size (mm)	Model	Allowable kinetic energy for intermediate stop (Es) (J)
6	CY1L 6H	0.007
10	CY1L10H	0.03
15	CY1L15H	0.13
15	CY1L15L	0.076
20	CY1L20H	0.24
20	CY1L20L	0.16
25	CY1L25H	0.45
25	CY1L25L	0.27
32	CY1L32H	0.88
32	CY1L32L	0.53
40	CY1L40H	1.53
40	CY1L40L	0.95

CY3B CY3R

CY1L

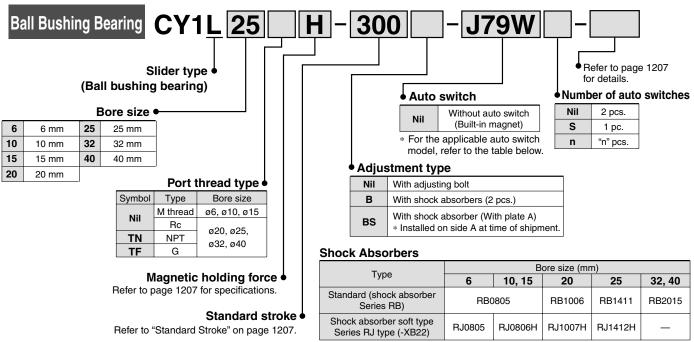
CY1H

CY1F

CYP

-X - Technical

Individual



Magnetically Coupled Rodless Cylinder Slider Type: Ball Bushing Bearing

Series CY1L

ø6, ø10, ø15, ø20, ø25, ø32, ø40

How to Order

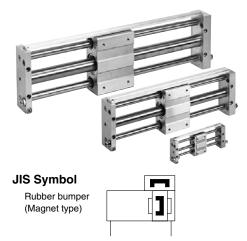
- * The shock absorber service life is different from that of the CY1L cylinder.

 Refer to "Specific Product Precautions" for each shock absorber for the replacement
- * The shock absorber soft type Series RJ type (-XB22) is a made to order specification. For details, refer to page 1415-1.

Applicable Auto Switch/Refer to pages 1263 to 1371 for further information on auto switches.

			light	Wiring		Load vol	tage	Auto switch	sh modal	Lead v	vire le	ngth	(m) *										
Type	Special function	Electrical entry	ndicator light	(Output)		С	AC			0.5	3	5	None	Pre-wired connector	Applica	ble load							
			Pul					Perpendicular	In-line	(Nil)	(L)	(Z)	(N)	00111100101									
				3-wire (NPN)		5 V, 12 V		F7NV	F79	•		0	_	0	IC								
		Grommet		3-wire (PNP)		5 V, 12 V		F7PV	F7P	•		0	_	0	circuit								
듯	_			2-wire		10.1/		F7BV	J79			0	_	0									
switch		Connector		Z-WIIE		12 V		J79C	_	•	•	•		_		Dolov							
S	Diagnostic indication			3-wire (NPN)		F.V. 10.V	_	F7NWV	F79W			0	_	0	IC	Relay, PLC							
state	Diagnostic indication (2-color indication)		Yes	3-wire (PNP)	24 V	24 V	24 V	5 V, 12 V	V	_	F7PW			0	_	0	circuit	[
st	(2-color indication)								1				F7BWV	J79W		•	0	_	0				
Solid	Water resistant (2-color indication)	Grommet	Grommet	Grommet	Grommet	Grommet	ı		2-wire					12 V		F7BAV	F7BA	_	•	0	_	0	_
	With diagnostic output (2-color indication)			4-wire (NPN)			5 V, 12 V		_	F79F	•	•	0	_	0	IC circuit							
ch			Yes	3-wire (NPN equivalent)	_	5 V	_	_	A76H	•	•	_	_	_	IC circuit	_							
switch		Grommet	۶		_	_	200 V	A72	A72H				_	_									
	_						12 V	100 V	A73	A73H		•	•	_	_		D-1						
Reed			2	2-wire	24 V	5 V, 12 V	100 V or less	A80	A80H	•	•	-	_	_	IC circuit	Relay, PLC							
Œ		Connector	No Yes		24 V	12 V		A73C	_	•	•	•		_	_	PLC							
		Connector	N			5 V, 12 V		A80C	_		•	•		_	IC circuit								

^{*} Lead wire length symbols: 0.5 m----- Nil


0.5 m------ Nii 3 m----- L 5 m---- Z None---- N (Example) J79W (Example) J79WL (Example) J79WZ (Example) J79CN * Solid state auto switches marked with "O" are produced upon receipt of order.

[•] Since there are other applicable auto switches than listed, refer to page 1210 for details.

[•] For details about auto switches with pre-wired connector, refer to pages 1328 and 1329.

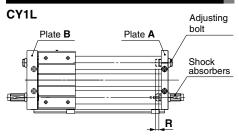
^{*}Auto switches are shipped together, (but not assembled).

Magnetically Coupled Rodless Cylinder Slider Type: Ball Bushing Bearing Series CY1L

Easy piping and wiring

Hollow shafts are used, and centralization of ports on one side makes piping easy. Auto switches can be mounted through the use of special switch rails.

Shock absorbers and adjusting bolt are standard equipment


Impacts at stroke end due to high speed use can be absorbed, and fine adjustment of the stroke is possible.

Made to Order Specifications (For details, refer to pages 1395 to 1565.)

Symbol	Specifications
—ХВ9	Low speed cylinder (15 to 50 mm/s)
—XB13	Low speed cylinder (7 to 50 mm/s)
—XB22	Shock absorber soft type Series RJ type
—X116	Hydro specifications rodless cylinder
—X168	Helical insert thread specifications
—X322	Outside of cylinder tube with hard chrome plated

Amount of Adjustment by Adjusting Bolt

Bore size	Amount of adjustment b	y adjusting bolt: R (mm)
(mm)	Single side	Both sides
6	6	12
10	5.5	11
15	3.5	7
20	5.5	11
25	5	10
32	5.5	11
40	4.5	9

- * Since the cylinder is in an intermediate stop condition when stroke adjustment is performed, use caution regarding the operating pressure and the kinetic energy of the load.
- * The amount of adjustment for adjustment bolts is the total amount when adjusted on both plate ends. For the adjustment on a single plate end, the amount of adjustment is half of the figures in the table above.
- Adjust the stroke adjustment with an adjustment bolt. It cannot be adjusted by a shock absorber.

Specifications

Bore size (mm)	6	10	15	20	25	32	40				
Fluid		Air										
Proof pressure					1.05 MPa							
Maximum operatin	g pressure				0.7 MPa							
Minimum operating	g pressure				0.18 MPa							
Ambient and fluid	temperature			-10 to 6	0°C (No fi	reezing)						
Piston speed *				50	to 500 mr	n/s						
Cushion			R	ubber bun	nper/Shoo	k absorb	er					
Lubrication				Not req	uired (No	n-lube)						
Stroke length tole	rance (mm)	0 to	250 st: +1	^{.0} , 251 to	1000 st: +	^{1.4} , 1001 s	st and up:	+1.8				
Halding faces (N)	Type H	19.6	53.9	137	231	363	588	922				
Holding force (N)	Type L	81.4 154 221 358 5										
Standard equipm	ent	Auto switch mounting rail										

^{*} In the case of setting an auto switch at the intermediate position, the maximum piston speed is subject to restrict for detection upon the response time of a load (Relays, Sequence controller, etc.).

Standard Stroke

Bore size (mm)	Standard stroke (mm)	Maximum available stroke (mm)
6	50, 100, 150, 200	300
10	50, 100, 150, 200, 250, 300	500
15	50, 100, 150, 200, 250, 300, 350 400, 450, 500	750
20	100 150 000 050 000 050	1000
25 32	100, 150, 200, 250, 300, 350 400, 450, 500, 600, 700, 800	1500
40	100, 150, 200, 250, 300, 350 400, 450, 500, 600, 700, 800 900, 1000	1500

Note) Intermediate stroke is available by the 1 mm interval.

Mass

								(kg)
Number of magne	Bore size (mm)	6	10	15	20	25	32	40
Basic mass	CY1L□H	0.324	0.580	1.10	1.85	2.21	4.36	4.83
Dasic Illass	CY1L□L	_	_	1.02	1.66	2.04	4.18	4.61
	nass per each of stroke	0.044	0.077	0.104	0.138	0.172	0.267	0.406

Calculation

(Example) CY1L32H-500

Shock Absorber Specifications

Refer to the Series RB in Best Pneumatics No. 3 for the details on shock absorbers.

					SHOOK ADSOLDERS.		
Applicable rodles	ss cylinder	6 CY1L10 15	CY1L20	CY1L25	CY1L ₄₀ ³²		
Shock absorber r	model	RB0805	RB1006	RB1411	RB2015		
Maximum energy al	bsorption: (J)	0.98	3.92	14.7	58.8		
Stroke absorption	n: (mm)	5	6	11	15		
Collision speed: ((m/s)		0.05	to 5			
Max. operating frequen	cy: (cycle/min) *	80	70	45	25		
Ambient tempera	ture range		-10 to	80 °C			
Caring forces (NI)	Extended	1.96	4.22	6.86	8.34		
Spring force: (N)	Retracted	3.83	6.18	15.3	20.50		

^{*} It denotes the values at the maximum energy absorption per one cycle. Therefore, the operating frequency can be increased according to the energy absorption.

The shock absorber service life is different from that of the CY1L cylinder. Refer to the Specific Product Precautions for the replacement period.

D-□ -X□

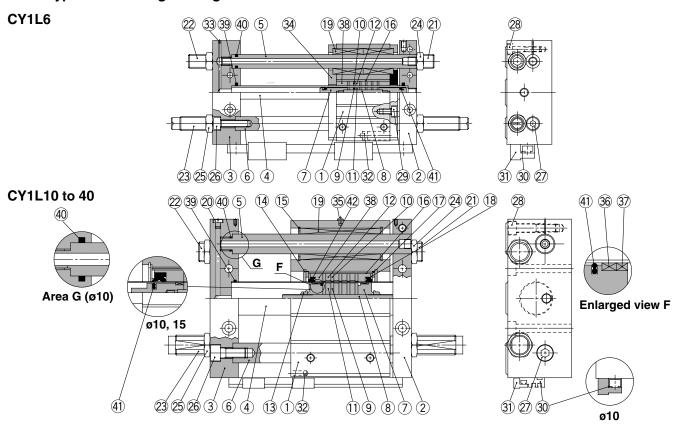
CY3B CY3R

CY1L

CY1H

CY1F

CYP


Individual -X□

Technical data

[•] Basic mass \cdots 4.36 kg • Additional mass \cdots 0.267/50 st • Cylinder stroke \cdots 500 st 4.36 + 0.267 x 500 ÷ 50 = 7.03 kg

Construction

Slider type/Ball bushing bearing

Component Parts

COIII	polielit Parts		
No.	Description	Material	Note
1	Slide block	Aluminum alloy	Anodized
2	Plate A	Aluminum alloy	Anodized
3	Plate B	Aluminum alloy	Anodized
4	Cylinder tube	Stainless steel	
5	Guide shaft A	Carbon steel	Hard chrome plated
6	Guide shaft B	Carbon steel	Hard chrome plated
7	Piston	Aluminum alloy Note 1)	Chromated
8	Shaft	Stainless steel	
9	Piston side yoke	Rolled steel	Zinc chromated
10	External slider side yoke	Rolled steel	Zinc chromated
11	Magnet A		
12	Magnet B		
13	Piston nut	Carbon steel	Zinc chromated ø25 to ø40
14	Retaining ring	Carbon tool steel	Phosphate coated
15	Retaining ring	Carbon tool steel	Phosphate coated
16	External slider tube	Aluminum alloy	
17	Slider spacer	Rolled steel	Nickel plated
18	Spacer	Rolled steel	Nickel plated
19	Ball bushing		
20	Plug	Brass	ø25, ø32, ø40 only
21	Adjusting bolt A	Chromium molybdenum steel	Nickel plated
22	Adjusting bolt B	Chromium molybdenum steel	Nickel plated
23	Shock absorber		
24	Hexagon nut	Carbon steel	Nickel plated
25	Hexagon nut	Carbon steel	Nickel plated
26	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
27	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
28	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated

Note 1	I) Brass f	for ø6
--------	------------	--------

	5	Mart - 2-1	NI I
No.	Description	Material	Note
29	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
30	Switch mounting rail	Aluminum alloy	
31	Auto switch		
32	Magnet for auto switch		
33	Steel ball		ø6, ø10, ø15 only
34	Side cover	Carbon steel	ø6 only
35	Grease cup	Carbon steel	ø15 or larger
36 *	Wear ring A	Special resin	
37*	Wear ring	Special resin	
38*	Wear ring B	Special resin	
39*	Cylinder tube gasket	NBR	
40 *	Guide shaft gasket	NBR	
41 *	Piston seal	NBR	
42*	Scraper	NBR	

Replacement Parts: Seal Kit

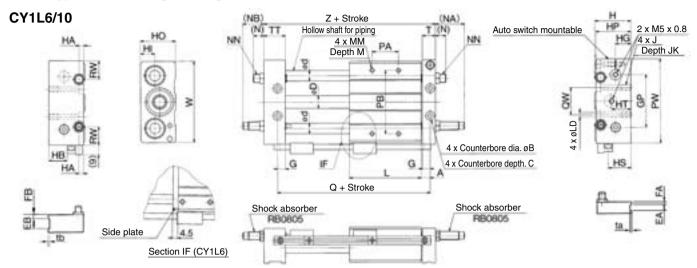
Bore size (mm)	Kit no.	Contents
6	CY1S6-PS-N	Set of nos. above 38, 39, 40, 41)
10	CY1L10-PS-N	Set of nos. above
15	CY1L15-PS-N	36, 38, 39, 40, 41, 42
20	CY1L20-PS-N	Set of nos. above
25	CY1L25-PS-N	36, 37, 38, 39, 40,
32	CY1L32-PS-N	41, 42
40	CY1L40-PS-N	

- * Seal kit includes 38, 39, 40, 41 for ø6.36, 38 to 42 are for ø10, ø15.36 to 42 are for ø20 to ø40. Order the seal kit, based on each bore size.
- * ø6: Same for CY1S6
- Seal kit includes a grease pack (ø6, ø10: 5 and 10 g, ø15 to ø40: 10 g).

 Order with the following part number when only the grease pack is needed.

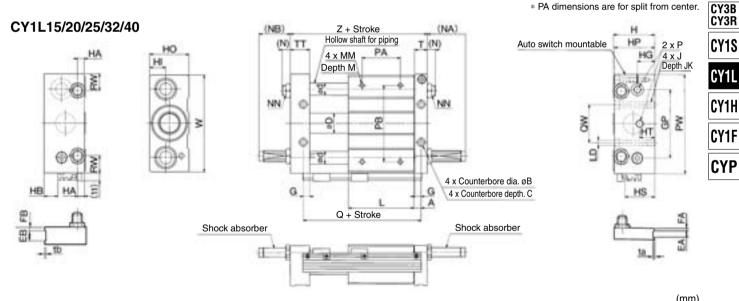
 Grease pack part no. for ø6, ø10: GR-F-005 (5 g) for external sliding parts,

 GR-S-010 (10 g) for tube interior


Grease pack part no. for ø15 to ø40: GR-S-010 (10 g)

Magnetically Coupled Rodless Cylinder Slider Type: Ball Bushing Bearing Series CY1L

Dimensions

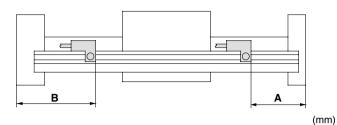

Slider type/Ball bushing bearing

Model	Α	В	C	D	d	EA	EB	FA	FB	G	GP	Н	HA	HB	HG	HI	но	HP	HS	НТ		J	JK
CY1L6	7	6.5	3	7.6	8	_	_	_	_	6	36	27	6	10	11	9	25	26	14	16	M4	x 0.7	6.5
CY1L10	8.5	8	4	12	10	6	12	3	5	7.5	50	34	6	17.5	14.5	13.5	33	33	21.	5 18	M5	8.0 x	9.5
Model	L	LD	М	MI	И	(N)	(NA)	(NB))	NN	P	A *	РВ	PW	Q (QW I	RW	Т	TT	ta	tb	W	Z
Model CY1L6	L 40	LD 3.5	M	MI M4 x		(N)	(NA) 30	(NB)		NN //8 x 1.0	_							T 10	TT 16	ta —	tb	W 56	Z 68

* PA dimensions are for split from center.

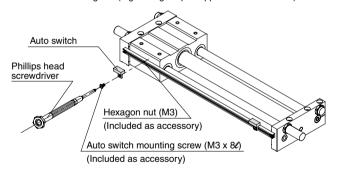
(mm)

Model	Α	В	С	D	d	EA	ЕВ	FA	FB	G	GP	Н	НА	НВ	HG	HI	но	HP	HS	нт		J		JK	L	LD
CY1L15	7.5	9.5	5	16.6	12	6	13	3	6	6.5	65	40	6.5	4	16	14	38	39	25	16		M6 x 1	.0	9.5	75	5.6
CY1L20	9.5	9.5	5.2	21.6	16	_	_	_	_	8.5	80	46	9	10	18	16	44	45	31	20		M6 x 1	.0	10	86	5.6
CY1L25	9.5	11	6.5	26.4	16	8	14	4	7	8.5	90	54	9	18	23	21	52	53	39	20	N	/l8 x 1.	25	10	86	7
CY1L32	10.5	14	8	33.6	20	8	16	5	7	9.5	110	66	12	26.5	26.5	24.5	64	64	47.5	25	N	/10 x 1	.5	15	100	9.2
CY1L40	11.5	14	8	41.6	25	10	20	5	10	10.5	130	78	12	35	30.5	28.5	76	74	56	30	N	/110 x 1	.5	15	136	9.2
	•						_											-	-							
Model	М	MN	И	(N)	(NA)	(NE	3)	NN	1		Р	PA ³	P	В Г	w	Q	QW	RW	Т	ta	tb	TT	W	Z	Shock a	absorber
Model CY1L15	M	MN M5 x		(N) 8.5	(NA) 27	(NE	-	NN //8 х	-		P	PA ³			W 95	-			T 12.5	ta 0.5	tb	TT 22.5	W 92	Z 112	Shock a	
			0.8	` _	• •	<u> </u>	N		1.0	M5	-		7	0	95	90	30	15	T 12.5 16.5						RB0	
CY1L15	8	M5 x	0.8	8.5	27	17	N	/18 x	1.0	M5 Ro	x 0.8	45	7	'0 0 1	95 20 1	90	30	15	-	0.5		22.5	92	112	RB0	0805
CY1L15 CY1L20	8 10 10	M5 x M6 x	0.8 1.0 1.0	8.5	27 29	17	N N	/18 х 110 х	1.0	M5 Ro	x 0.8	45 50	7 9	0 1 0 1	95 20 1 30 1	90 05 05	30 40 50	15 28 22	16.5	0.5	1.0	22.5 25.5	92 117	112 130	RB0 RB1 RB1	0805 0006 411
CY1L15 CY1L20 CY1L25	8 10 10 12	M5 x M6 x M6 x	0.8 1.0 1.0 1.25	8.5 10.5 12.5	27 29 49	17 20 40	N N N	//8 x //10 x //14 x	1.0 1.0 1.5 1.5	M5 Rc Rc	x 0.8 ; 1/8 ; 1/8	45 50 60	7 9	70 90 1 90 1	95 20 1 30 1 60 1	90 05 05	30 40 50 60	15 28 22 33	16.5 16.5	0.5 — 0.5	1.0	22.5 25.5 25.5	92 117 127	112 130 130	RB0 RB1 RB1	0805


* PA dimensions are for split from center.

Individual -X□ Technical

Proper Auto Switch Mounting Position (Detection at stroke end)


	Applicable auto switch						
Bore size (mm)	D-A73/A80		D-A72 D-A7□H/A80H D-A73C/A80C D-F7□/J79 D-F7□W/J79C D-F7□W/J79W D-F7□WV D-F7□HVV D-F7BAL/F7BAVL D-F79F		D-F7NTL		
	Α	В	Α	В	Α	В	
6	23	45	23.5	44.5	28.5	39.5	
10	58	45	58.5	44.5	63.5	39.5	
15	65	47	65.5	46.5	70.5	41.5	
20	76	54	76.5	53.5	81.5	48.5	
25	76	54	76.5	53.5	81.5	48.5	
32	92	57	92.5	56.5	97.5	51.5	
40	130	64	130.5	63.5	135.5	58.5	

Note 1) 50 mm is the minimum stroke available with 2 auto switches mounted. In the case of a stroke less than this, please contact SMC.

Note 2) Adjust the auto switch after confirming the operating conditions in the actual setting.

Mounting of Auto Switch

When mounting an auto switch, the auto switch mounting screw should be screwed into a hexagon nut (M3 x 0.5) which has been inserted into the groove of the switch mounting rail. (Tightening torque: Approx. 0.5 to 0.7 N•m)

Operating Range

(mm) Bore size Auto switch model 10 32 40 6 15 20 25 D-A7□/A8□ 6 6 6 D-F7□/J7□ 3 3 3 3 3 3.5 D-F79F 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion) There may be the case it will vary substantially depending on an ambient environment.

Other than the models listed in "How to Order", the following auto switches are applicable. For detailed specifications, refer to page 1314.

Туре	Model	Electrical entry (Fetching direction)	Features
Solid state auto switch	D-F7NTL	Grommet (In-line)	With timer

^{*} With pre-wired connector is available for D-F7NTL type, too. For details, refer to pages 1328 and 1329.

Series CY1L Specific Product Precautions

Be sure to read before handling. Refer to front matters 54 and 55 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Operation

 Be aware of the space between the plates and the slide block.

Take sufficient care to avoid getting your hands or fingers caught when the cylinder is operated.

2. Do not apply a load to a cylinder which is greater than the allowable value stated in the "Model Selection" pages.

This may cause malfunctions.

- When the cylinder is used in a place where water or cutting oil may splash or the lubrication condition on the cylinder sliding parts would be deteriorated, please consult with SMC.
- 4. When applying grease to the cylinder, use the grease that has already been applied to the product. Contact SMC for available grease packs.

Mounting

∧ Caution

1. Avoid operation with the external slider fixed to the mounting surface.

The cylinder should be operated with the plates fixed to the mounting surface.

2. Make sure that the cylinder mounting surface is a flatness of 0.2 mm or less.

If the flatness of the cylinder mounting surface is not appropriate, 2 guide shafts may be twisted. This may adversely affect the operating conditions and shorten the service life due to the increase of sliding resistance and the early abrasion of bearings.

The cylinder mounting surface must be a flatness of 0.2 mm or less, and the cylinder must be mounted as it smoothly operates through the full stroke at the minimum operating pressure (0.18 MPa or less).

Service Life and Replacement Period of Shock Absorber

∧ Caution

1. Allowable operating cycle under the specifications set in this catalog is shown below.

1.2 million times RB08□□

2 million times RB10□□ to RB2725

Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25°C).

The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Disassembly and Maintenance

⚠ Warning

1. Use caution as the attractive power of the magnets is very strong.

When removing the external slider and piston slider from the cylinder tube for maintenance, etc., handle with caution, since the magnets installed in each slider have a very strong attractive force.

⚠ Caution

1. Use caution when removing the external slider, as the piston slider will be directly attracted to it.

When removing the external slider or piston slider from the cylinder tube, first force the sliders out of their magnetically coupled positions, and then remove them individually when there is no longer any holding force. If they are removed while still magnetically coupled, they will be directly attracted to one another and will not come apart.

- Since the magnetic holding force can be changed (for example, from CY1L25L to CY1L25H), please contact SMC if this is necessary.
- 3. Do not disassemble the magnetic components (piston slider, external slider).

This can cause a loss of holding force and malfunction.

- When disassembling to replace the seals and wear ring, refer to the separate disassembly instructions.
- 5. Use caution to the direction of the external slider and the piston slider.

Since the external slider and piston slider are directional for Ø6, Ø10 and holding force type L, refer to the figures below when performing disassembly or maintenance. Put the external slider and piston slider together, and insert the piston slider into the cylinder tube so that they will have the correct positional relationship as shown in Fig. (1). If they align as shown in Fig. (2), insert the piston slider after turning it around 180°. If the direction is not correct, it will be impossible to obtain the specified holding force.

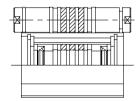
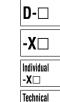



Fig. (1) Correct position

Fig. (2) Incorrect position

Example of ø15 with holding force type L

CY3B

CY3R

CY1S

CY1L

CY1H

CY1F

CYP

