FEP Tubing (Fluoropolymer) Metric Size **Series TH**

Heat-resistant: 200°C

Varies depending on the operating pressure. Refer to the maximum operating pressure graph (pages 390 and 391).

Complies with Food Sanitation Law

- Complies with the test conforming to Japan's Food Sanitation Law based on the 370th notice given by the Ministry of Health and Welfare in 1959.
- Complies with FDA (Food and Drug Administration) §177-1550 dissolution test.

How to measure the minimum bending radius.

At a temperature of 20°C, bend the tubing into a U shape. Fix one end and gradually move the other end closer. Measure 2R at the point where the outside diameter's rate of change is 5%.

Max. Operating Pressure

Note) The maximum operating pressure varies dependant on the I.D. bore size even if the O.D. is the same.

RoHS

 Operating temperature
 Air, Inert gas: -20 to 200°C
 Water: 0 to 100°C (No freezing)

 Material
 FEP (Fluorinated Ethylene Propylene Resin)

 Note 1) When using a fluid in liquid form, the surge pressure must not exceed the maximum operating pressure. A surge pressure higher than the maximum operating pressure can cause breakage of the fittings, or rupture of the tubing.

Furthermore, an abnormal temperature increase due to adiabatic compression can also result in ruptured tubing. Note 2) Do not use in locations where the FEP tubing will move.

Be sure to operate under the maximum operating pressure conditions using the lower maximum operating specification of either the tubing or fittings.

After long term use or under high temperatures, some fittings leakage may occur due to material deterioration with age. Perform periodic inspections, and if any leakage is detected, replace with a new product immediately. When the insert and miniature fittings are used over extended periods of time, it may cause leakage due to the material deterioration of age. In such a case, give an additional tightening to the tube connection part. If leakage still occurs after giving an additional tightening, replace the fitting with a new product.

Note 3) TH0402, TH0425, TH1075 and TH1209 are not available because of different internal diameters

Note 4) Minimum bending radius is measured as shown left as representative values.

多SMC

Allow extra length when piping since the tubing may crush if bent more than the min. bending radius.

How to Order Metric size TH0604 20 Indication of tubing model Length per roll Roll size Symbol Color indication 20 20 m roll Symbol Color 100 Note) 100 m roll Ν Translucent Note) 100 m roll is available with R Red (Translucent) translucent (color indication: N) BU Blue (Translucent) only. в Black (Opaque)

FEP Tubing (Fluoropolymer) **Inch Size** Series TIH

Heat-resistant: 200°C

Varies depending on the operating pressure. Refer to the maximum operating pressure graph (pages 390 and 391).

Compatible with the Food Sanitation Law

- Compatible with the test conforming to the Food Sanitation Law based on the 370th notice given by the Ministry of Health and Welfare in 1959.
- Compatible with the §177-1550 dissolution test approved by FDA (Food and Drug Administration).

How to measure the minimum bending radius.

At a temperature of 20°C, bend the tubing into a U shape. Fix one end and gradually move the other end closer. Measure 2R at the point where the outside diameter's rate of change is 5%.

Max. Operating Pressure

Note) The maximum operating pressure varies dependant on the I.D. bore size even if the O.D. is the same.

			Inch size								K∟			
Model		TIHA01	TIHB01	TIHC01	TIHA05	TIHB05	TIHA07	TIHB07	TIHA11	TIHB11	TIH13	TIH19	M	
	inch	1/8"			3/16"		1/4"		3/8"		1/2"	3/4"		
Tubing O.D.	mm		3.18		4.	75	6.	35	9.	53	12.7	19.05	H	
Tubing I.D.	inch	0.093"	0.086"	0.065"	0.137"	0.124" (1/8")	0.18"	0.156" (5/32")	0.275"	0.25" (1/4")	0.374" (3/8")	0.624" (5/8")	KK	
	mm	2.36	2.18	1.65	3.48	3.15	4.57	3.95	6.99	6.33	9.5	15.85	D	
Color	Symbol												MS	
Translucent	Ν		-•	-•	-•	-•	-•	-•	-•	•	-•	-•		
Red (Translucent)	R	-•	-•	-•	-•	-•	-•	-•	-•	-•	-•	-•	LQ	
Blue (Translucent)	BU		-•	-•	-•	-•	-•	-•	-•	-•	-•	-•	MC	
Black (Opaque)	В		-•	-•	-•	-•	-•	-•-	-•	-•-	-•			

RoHS

<u> </u>															
Fluid		Air, Water Note 1), Inert gas													
Applicable fittings Note 2)		One-touch fittings, Fluoropolymer fittings: Series LQ1, LQ2, LQ3 Note 3)													
Max. operating pressure (MPa)	20°C	1		2	.3	1	1.5	1	1	.7	1	1.	5	1	0.7
	100°C	0.4		0.	85 (0.4	0.55	0.4	+ 0	.6	0.4	0.5	5	0.4	0.25
	200°C	0.2		0	.4 (0.2	0.3	0.2	2 0	.3	0.2	0.	3	0.2	0.1
	Refer to below "Max. Operating Pressure."														
Min. bending radius (mm)	Note 4)	25	20	1	0	35	25	55	3	5	85	60)	95	220
Operating temperature		Air, Inert gas: -20 to 200°C Water: 0 to 100°C (No freezing)													
Material		FEP (Fluorinated Ethylene Propylene Resin)													

Note 1) When using a fluid in liquid form, the surge pressure must not exceed the maximum operating pressure. A surge pressure higher than the maximum operating pressure can cause breakage of the fittings, or rupture of the tubing. Furthermore, an abnormal temperature increase due to adiabatic compression can also result in ruptured tubing. Note 2) Do not use in locations where the FEP tubing will move.

Be sure to operate under the maximum operating pressure conditions using the lower maximum operating specification of either the tubing or fittings.

After long term use or under high temperatures, some fittings leakage may occur due to material deterioration with age. Perform periodic inspections, and if any leakage is detected, replace with a new product immediately. When the insert and miniature fittings are used over extended periods of time, it may cause leakage due to the material deterioration of age. In such a case, give an additional tightening to the tube connection part. If leakage still occurs after giving an additional tightening, replace the fitting with a new product.

Note 3) TIHA01, TIHC01, TIHA05, TIHA07 and TIHA11 are not available because of different internal diameters. Note 4) Minimum bending radius is measured as shown left as representative values.

Allow extra length when piping since the tubing may crush if bent more than the min. bending radius.

Chemical Resistance of the Fluoropolymer FEP Material

Chemicals in this table are inactive against FEP material Note 1), however physical properties may be effected by temperature or pressure change. Please make sure that operating conditions do not cause problems since the use of FEP tubing under

chemical environment is unsecured.

2-nitro-2-methyl propanol	Chloroform	Nitromethane
	Paraffinum liquidum	Perchloroethylene
Pentabasic benzamide	Allyl acetate	Perphloroxylene
N-butylamine	Ethyl acetate	Unsymmetrical dimethylhydrazine
N-octadecanol	Potassium	Hydrazine
		Pinene
N-butyl acetate O-cresol	Butyl acetate Sodium hypochlorite	Piperidine
Di-isobutyl adipate	Carbon tetrachloride	Glacial acetic acid (Acetic acid)
Acetophenone	Dioxane	Pyridine
Acetone	Cyclohexanone	Phenol
Alniline	Cyclohexane	Phthalic acid
Abietic acid	Dimethyl ether	Dybutyl phthalate
Sulfuric chloride	Dimethylsulfoxide	Dimethyl phthalate
Isooctane	Dimethylformamide	Hydrofluoric acid
Liquid ammonia	Bromine	Naphthalene fluoride
Ethyl alcohol	Deionized water	Nitrobenzene fluoride
Ethyl ether	Nitric acid	Furan
Ethylene glycol	Mercury	Hexachlorethane
Ethylenediamine	Ammonium hydroxide	Hexane
Zinc chloride	Potassium hydroxide	Ethyl hexanoate
Aluminum chloride	Sodium hydroxide	Phenylcarbinol
Ammonium chloride	Cetane	Benzaldehyde
Calcium chloride	Soap, detergent	Benzonitrile
Sulfuric chloride	Dibutyl sebacate	Borax
Iron chloride (III)	Diethyl carbonate	Boric acid
Benzoyl chloride	Tetrachloroethylene	Formic aldehyde (Formalin)
Magnesium chloride	Tetrahydrofuran	Acrylic anhydride
Hydrochloric acid	Tetrabromoethane	Acetic anhydride
Chlorine (absolute)	Triethanolamine	Methacrylic acid
Aqua regia	Trichloroethylene	Allyl methacrylate
Ozone	Trichloroacetic acid	Vinyl methacrylate
Hydrogen peroxide	Toluene	Methyl alcohol
Natrium peroxide	Naphtha	Methyl ethyl ketone
Gasoline	Naphthalene	Methylene chloride
Permanganate	Naphthol	Sulphuric acid
Formic acid	Lead	Phosphoric acid
Xylene	Carbon dioxide	Iron phosphate (III)
Chromic acid	Nitrogen dioxide	Tri-n-butyl phosphate
Chlorosulfonic acid	Nitrobenzene	Tricresyl phosphate

Note 1) "Inactive in chemistry terminology" means - not to cause any chemical reaction.

Reference cited: Teflon®, the fluoropolymer handbook, Manual for the chemical applications of Teflon®. Du Pond-Mitsui Fluorochemicals Co., Ltd.

Teflon® is a registered trademark for the fluoropolymer produced by E.I du Pond de Nemours & Company (Inc.) and Du Pond-Mitsui Fluorochemicals Co., Ltd.

A Precautions

Be sure to read before handling. Refer to front matters 58 and 59 for Safety Instructions, pages 13 to 16 for Fittings and Tubing Precautions and pages 314, 315, 351 and 352 for Fluoropolymer Fittings Precautions.

SMC