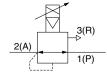

This hybrid regulator combines a regulator and a solenoid valve.

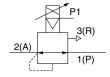
Stepless control through electric signals

Port sizes M5 to 2 inches can be covered by combining an ultra-compact electro-pneumatic pilot valve and a 3 port high-capacity exhaust main regulator.

Simple circuit configuration


SMC

 \cong



JIS Symbol

Internal pilot

How to Order Pilot type E-P HYREG Maximum operating pressure: 0.9 MPa 0 Internal pilot 1 External pilot Note) Note) Except body size D VY1 01 Thread type Nil Rc Power source/Command signal F G Symbol Power source voltage DC Command signal DC Input impedance Ν NPT Т NPTF Nil 1 to 5 V 67 kΩ 0 to 10V 10 k Ω 1 24 V 2 4 to 20 mA **120** Ω 3 0 to 20 mA 5 1 to 5 V 67 kΩ 6 0 to 10 V $10 \ k\Omega$ 12 V 7 4 to 20 mA 120 Ω 8 0 to 20 mA Body size Port size Rc Option • Mounting Symbol Symbol Port 1(P), 2(A) Port 3(R) B (Bracket) F (Foot) G (Pressure gauge) N (Silencer) Applicable pilot valve (3) 00 Without sub-plate D M5 M5 • 00 Without sub-plate в M5 M5 1/8 01 Without sub-plate 00 Base 2 01 • mounted 02 VY1D00-00 Without sub-plate **□00** (3) 02 1 4 03 3/8 04 1/2 • (1) • (1) Α M5 M5 01 $\frac{1}{\epsilon}$ • (1) • (1) 1 • • 02 02 1/4 3 03 3/8 $\frac{1}{2}$ $\frac{1}{2}$ 04 Body ported 04 5 06 3/4 . 10 1 VY1B00-10 1 7 11/4 • • **□00** (3) • 12 11/4 14 $1\frac{1}{2}$ 9 2 • • • ____ 20 2

Note 1) Only bracket or foot may be mounted.

Note 2) When replacing the pilot valve, it may not satisfy characteristics such as accuracy, etc. Confirm the product works under the operating conditions before using. If SMC is requested to repair the product, SMC confirms whether characteristics are satisfied.

Note 3) \square in the applicable pilot valve part number is designated for the power source/command signal.

Standard Specifications

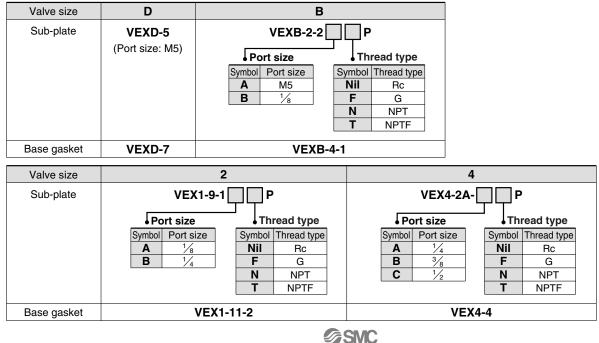
Model		VY1D00	VY1A0 ⁰	VY1	B0 ⁰	VY1	10 ⁰	VY	120 ⁰	V	Y13	0 ⁰	٧١	/14	01	٧١	/150	D ⁰	VY1	70 ⁰	VY1	1 90 1
	Port	M5	M5	M5	01	01	02	01	02	02	03	04	02	03	04	04	06	10	10	12	14	20
Port size	1(P)																		4		- 1/	
Port size	2(A)	M5	M5	M5	1/8	1/8	1⁄4	1/8	1⁄4	1⁄4	3/8	1/2	1⁄4	³ ⁄8	1/2	1/2	3⁄4	1		11/4	1 ¹ / ₂	2
	3(R)																		11/4		2	
Mass (kg) (1)		0.11	0.16	0.	19	0.	25	0.	35		0.55	5		0.75			1.5		2	2		4
Hysteresis (2)		0.009 MPa				0.023	8 MPa						0.0	27 N	IPa				0.045	5 MPa		
Sensitivity (2)		0.005 MPa				0.009) MPa						0.0	14 N	IPa				0.018	8 MPa		
Repeatability (2)		± 0.005 MPa			-	± 0.00	9 MPa	a					± 0.	009 I	MPa		± 0.018 MPa					
Response time (2)		10 ms							30	ms												
Fluid									A	ir												
Ambient and fluid ter	nperature						0 t	o 50°(C (No	con	den	satic	on)									
Maximum operating	pressure								0.9 l	MPa	ı											
Regulating pressu	re range						to 0.8		· ·						,							
External pilot pre	ssure	- (Direct operated)					press								-							
Command signal	(3)				1 to	5 VDC	c, 0 to	10 VE	C, 4 t	o 20) mA	A DC	C, 0 t	o 20) mA	DC	;					
Power supply						12 \	/DC±1	0%, 2	4 VDO	C ±1	0%,	, 1.8	Wc	or le	SS							
Electrical entry									DIN te	rmir	nal											
Applicable cable		Cable O.D. ø4 to 6.5																				
Bleed air flow (Po	rt P2)		When no	ot ope	rating	Zero,	Wher	n oper	ating:	10 e	/mir	۱ (AN	NR)	(Sup	ply	pres	ssure	e 0.8	88 MF	Pa)		
Installation									Univ	ersa	al											
Lubrication								N	ot req	uire	d (4)											

Note 2) All property values indicate maximum values.

Note 3) Cut off the command signal when the pressure control on the outlet side is not required, such as when the line is temporarily halted, etc. Refer to Specific Product Precautions on page 17.

Note 4) To lubricate the outlet side of "VY", use "VY" as an external pilot. Avoid lubrication to the pilot air.

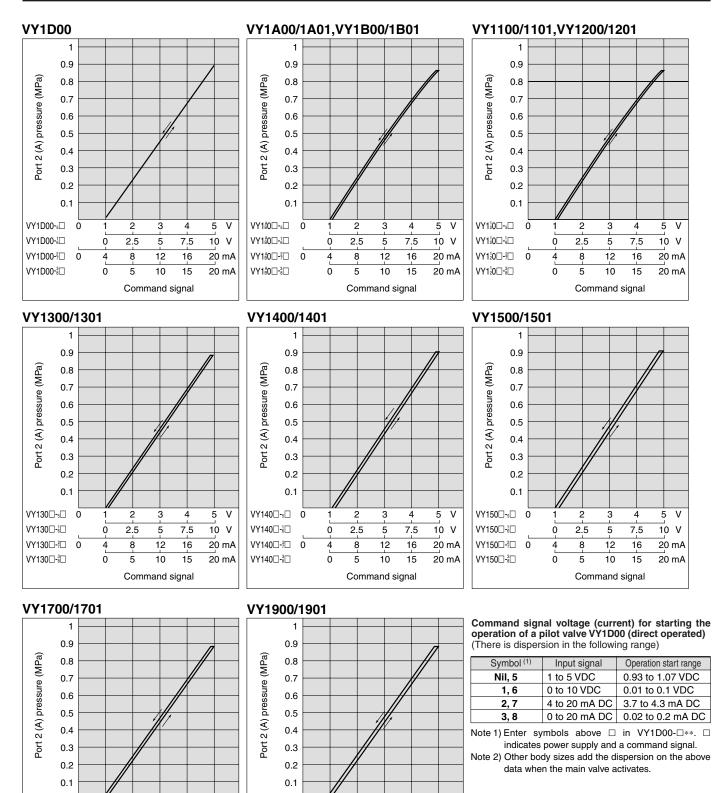
Note 5) The non-lubricated specification is not applicable to these models.


Note 6) The service life is approximately 4000 to 5000 operating hours. (When using AF + AFM)

This may be approximately 3000 hours with ultra-dry air (dew point -40°C or equivalent).

Option

			Part no.									
Description		VY1D00	VY1A01	VY1B01	VY1101	VY1201	VY1301	VY1401	VY1501	VY170 ⁰	VY190 ⁰	
Bracket	В		VEXA-18-2A		VEX1-18-1A		VEX3-32A		VEX5-32A	VEX7-32A	VEX9-32A	
(With bolt, washer)	F	—	VEXA-18-3A	—	VEX1-18-2A	_	—	_			_	
Pressure gauge	G	_		G27-10-R1-X207	G27-10-01		G36-10-01	6-10-01 —		G46-10-01		
Pilot EXH port silencer	Ν	AN120-M5		_	AN120-M5		AN101-01	AN120-M5	AN210-02			


Sub-plate and Base Gasket Part No.

Characteristics

Command Signal — Outlet Pressure Characteristics (Characteristics of pressure setting)

Port 1(P) Pressure 0.9 MPa

0

4 8

0

2

25

5

3 4

5

12

10

Command signal

7.5

16

15

5 V

10 V

20 mA

20 mA

VY190□-₅□ 0

VY190□-¦□

VY190□-3□

V

5

10 V

20 mA

20 mA

VY170□-₅□ 0

VY170□-²□ 0

VY170□-¦□

VY170 -3

2

25

8

5

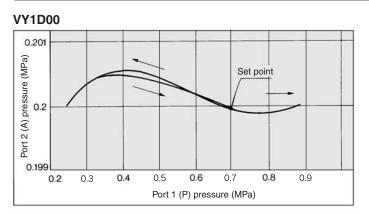
0

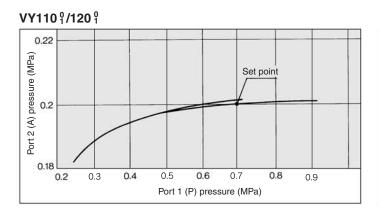
4

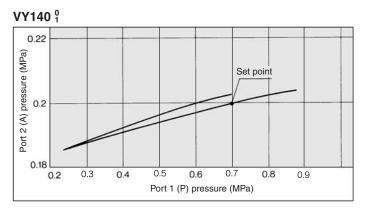
0

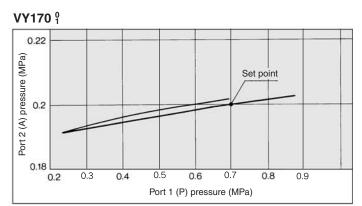
3 4

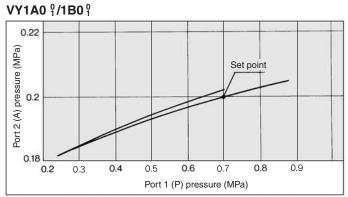
5 75

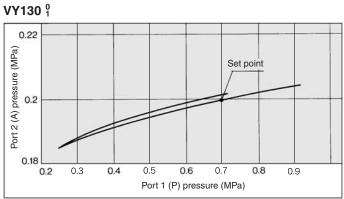

12 16

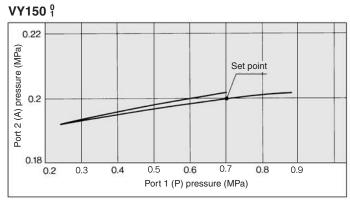

10

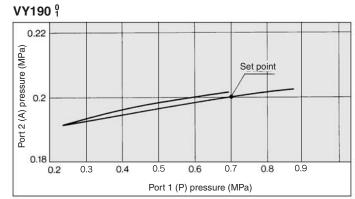

Command signal

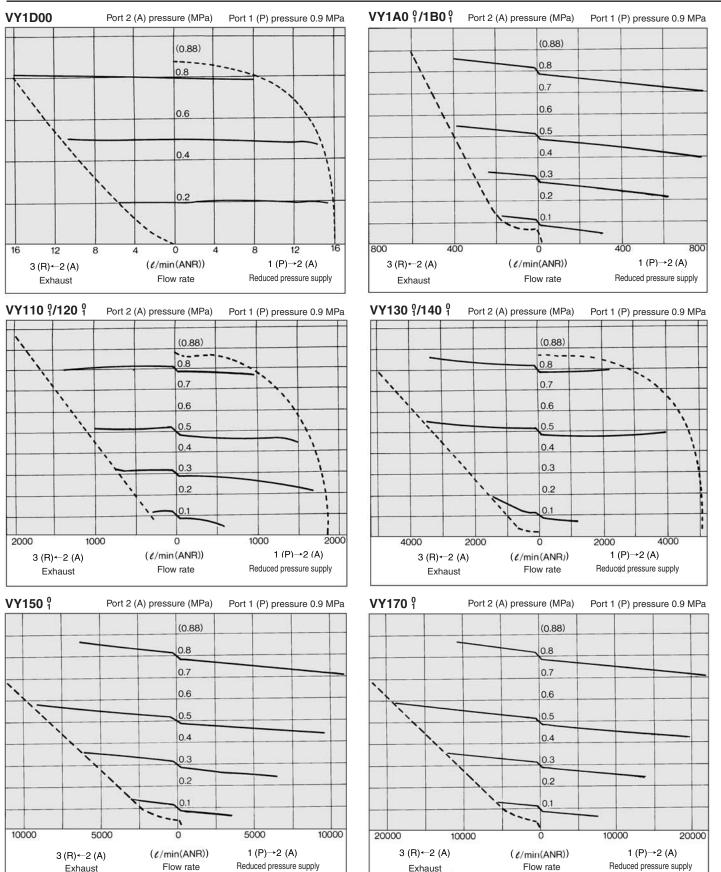

15



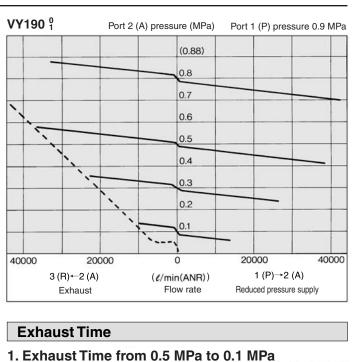


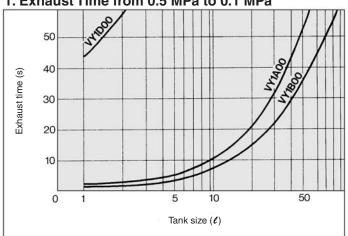


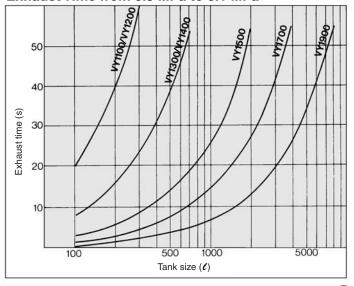


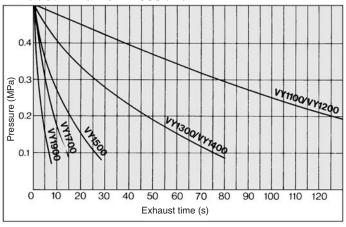


SMC

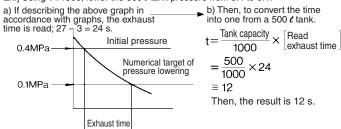

Characteristics


Flow Characteristics

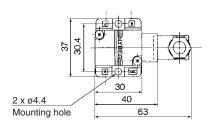

a 6

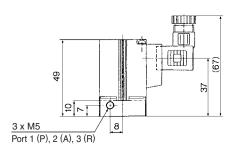

Exhaust Time from 0.5 MPa to 0.1 MPa

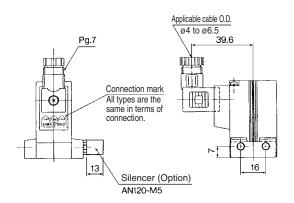
2. Exhaust Time from 10 *l* Tank

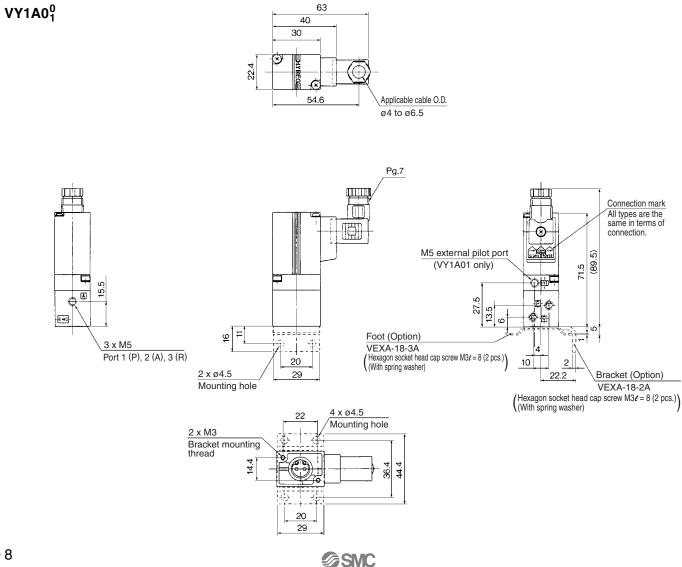


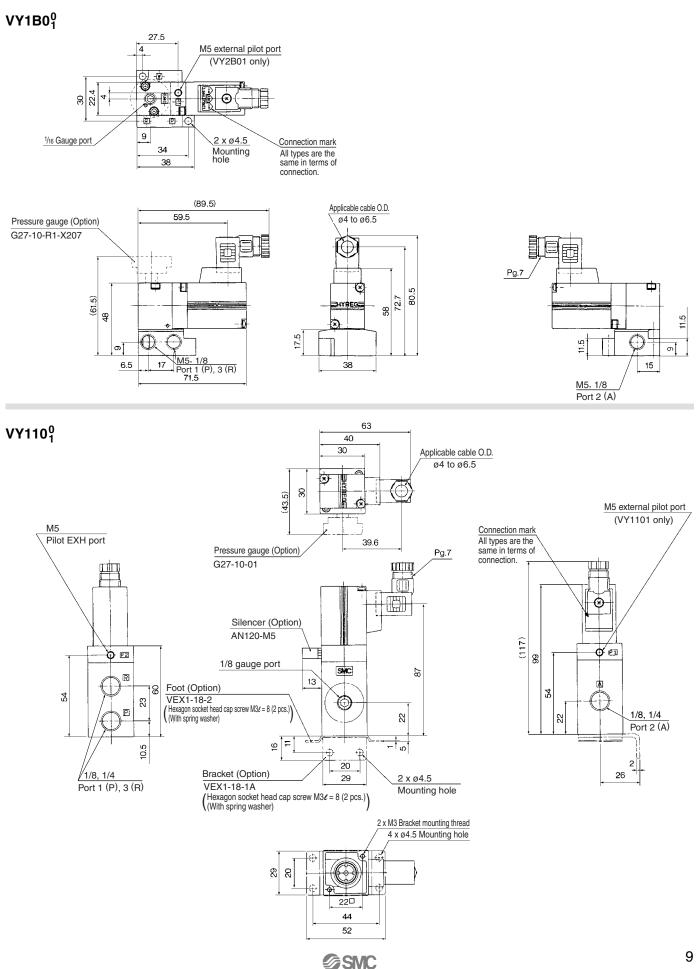
Exhaust Time from 1000 *l* Tank

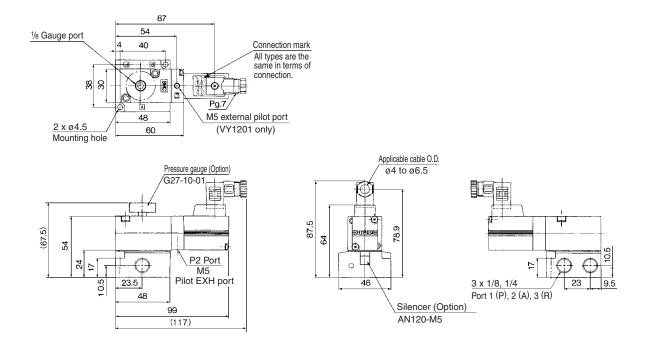

3. Exhaust time from optional pressure point

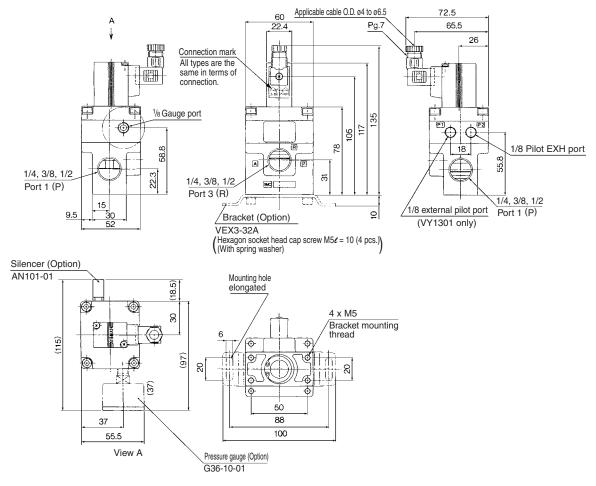

Ex.] Using VY1500, lower the 500 ℓ tank pressure from 0.4 to 0.1.




Dimensions

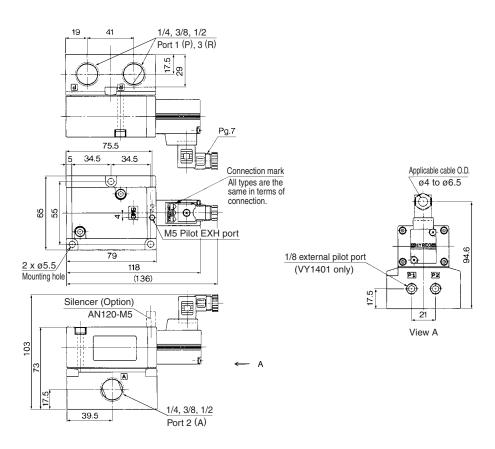

VY1D00



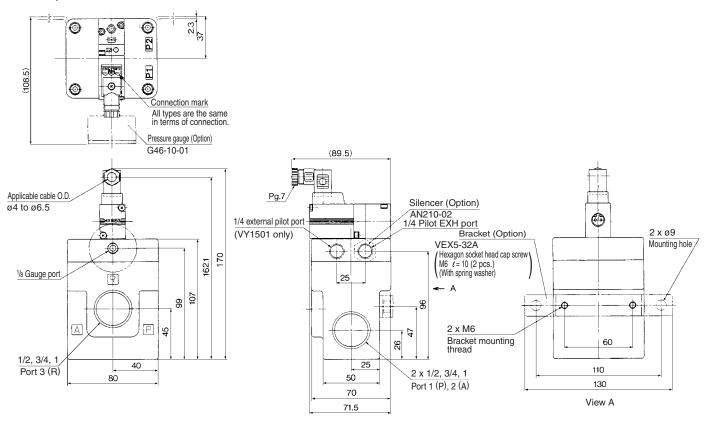


Dimensions

VY1201

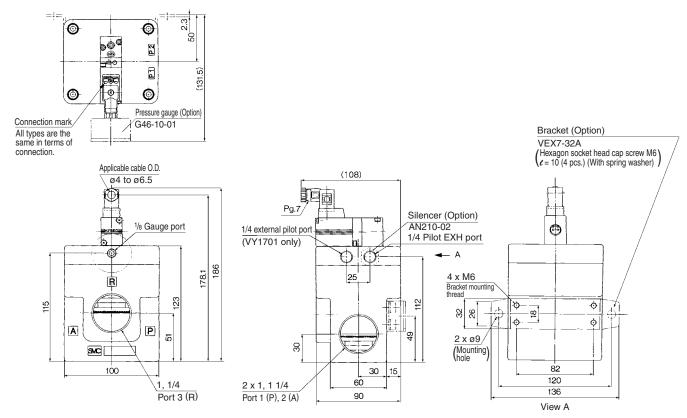


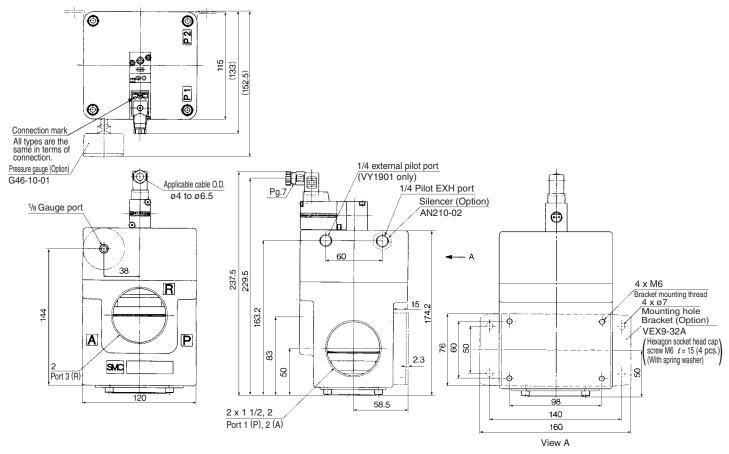
VY1301



SMC

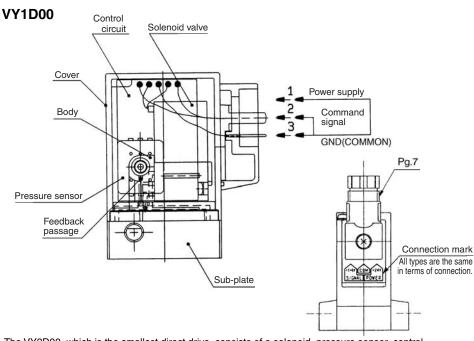
VY140⁰


VY150⁰

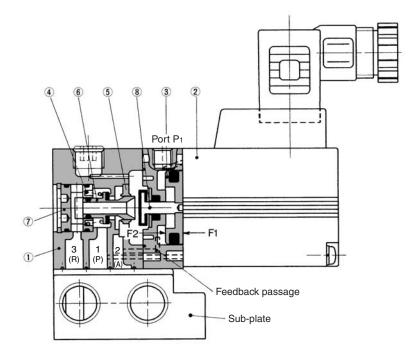

SMC

Dimensions

VY1701

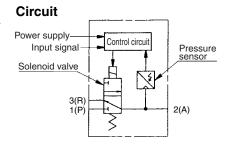


VY1901



Construction/Component Parts/Working Principle

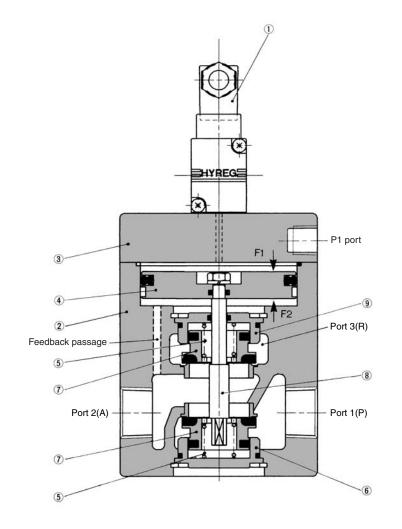
The VY2D00, which is the smallest direct drive, consists of a solenoid, pressure sensor, control circuit, body cover, and a sub plate. The type with sub-plate can be used alone, and the type without sub-plate can also be used as a pilot valve.


VY1A0⁰₁, VY1B0⁰₁ (Pilot valve: VY1D00- \Box 00)

Working principle

- When the command signal is below 1 VDC, (refer to page 4) the solenoid valve is inactive, and the port 2(A) pressure is zero.
- When a command signal between 1 and 5 VDC is provided, the solenoid is activated.
- The port 2(A) pressure is fed back to the control circuit by the pressure sensor. The control circuit compares the feedback
- signal with the size of the command signal
- 1) If the feedback signal is smaller, current is supplied to the solenoid valve to raise the port 2(A) pressure [from 1(P) to 2(A)j.
- If the feedback signal is greater, current is not supplied to valve to reduce the port 2(A) pressure [from 2(A) to 3(R)].

The above processes 1) and 2) are repeated at high speeds to set the port 2(A) pressure.


Working principle

- The supply [1(P) to 2(A)] valve of valve 6 and the exhaust [2(A) to 3(R)] valve close and the exhaust [2(A) to 3(A)] value close due to the balance between actuating forces F1 and F2. Actuating force F1 is applied to the right surface of pressure regulation piston (3) by the pilot pressure (pilot value assembly (2): **VY1D00**- \Box **00**), and actuating force F2 is applied to the left surface of the pressure regulation piston by the port and pressure that passes through the feedback passage. Thus, the port 2(A) pressure that coprresponds to the pilot pressure is established.
- When the port 2(A) pressure becomes higher than the pilot pressure, F2 becomes greater than F1. This causes only the pressure regulation piston to move to the right, and the exhaust valve seat to open, allowing the air to be discharged from port 2(A) to port 3(R). When the port 2(A)pressure drops to reach a balance, the regulator returns to the set state.
- Conversely, if the port 2(A) pressure is lower than the pilot pressure, F2 becomes lower than F1. This causes the pressure regulating piston to move the valve to the left, and the supply valve seat to open, allowing the air to be supplied from port 1(P) to port 2(A). When the port 2(A) pressure balances, the regulator reuturns to the set state.

Component Parts

	Description	Material
1	Body	Zinc alloy die-casted
2	Pilot valve assembly	—
3	Adjusting piston	Aluminum alloy
4	Spring	Stainless steel
5	Valve guide	Stainless steel
6	Valve	Aluminum alloy/Rubber
7	Retainer	Aluminum alloy
8	Rod	Stainless steel/Rubber

Working principle

- The pair of poppet valves ⑦ close due to the balance between actuating forces F1 and F2. Actuating force F1 is applied to the top surface of pressure regulation piston ④ by the pilot pressure (pilot valve assembly ①: VY1800-□00), and actuating force F2 is applied to the bottom surface of the piston by the port 2(A) pressure that pases through the pilot pressure is established. The poppet valve, which maintains a pressure balance with the port 2(A) pressure, is backed up by spring ⑤ (refer to the diagram on the left).
- When the port 2(A) pressure becomes higher than the pilot pressure, F2 becomes higher than F1. This causes the pressure regulation piston to move upward, and the top poppet valve to open, allowing the air to be discharged from port 2(A) to port 3(R). When the port 2(A) pressure drops to reach a balance, the regulator returns to the state shown in the diagram to the left.
- Conversely, if the port 2(A) pressure is lower than the pilot pressure, F2 becomes less than F1. This causes the pressure regulation piston to move downward, and the lower poppet valve to open, allowing the air to be supplied from port 1(P) to port 2(A). When the port 2(A) pressure rises to reach a balance, the regulator returns to the state shown in the diagram to the left.

Component Parts

No.	Description	Material
1	Pilot valve assembly	—
2	Body	Aluminum alloy
3	Cover	Aluminum alloy
4	Adjusting piston	Aluminum alloy
5	Spring	Stainless steel
6	Valve guide	Aluminum alloy
7	Poppet valve	Aluminum alloy/Rubber
8	Shaft	Stainless steel
9	Valve guide	Aluminum alloy

E-P HYREG® Manifold Specifications

Using the series VVEXB/2/4, a maximum of 10 stations manifold is possible.

Specifications

•	-	-	-		
Applicable valve	VY1B01	VY1201	VY1401		
Valve stations (1)	2 to 10 stations	2 to 8 stations	2 to 6 stations		
Passage	sage Common supply/exhaust				
Pilot type	Internal pilot, Common external pilot (2)				
Pilot port size		M5			
Port size port 1(P), 2(A), 3(R)	1⁄8	1⁄4	1/4, 3/8, 1/2		
Blanking plate assembly ⁽³⁾	VEXB-6	VEX1-17	VEX4-5		
	-0- · ··	0444004			

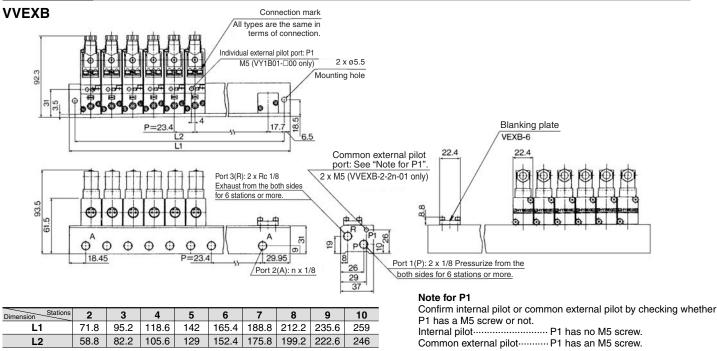
Note 1) VY1B0⁰₁6 stations or more, VY120⁰₅ stations or more, VY140⁰₁4 stations or more supply pressure to the ports 1(P) on both sides of the manifold and exhaust pressure from the port 3(R) on the both sides.

Note 2) When used as a common external pilot, select the internal pilot specification as an applicable valve. Note 3) Gasket and mounting bolts are equipped.

How to Order

,	VVEX B - 1 - 5 - 01										
	Body size Pilot type Valve stations Port size										
			1	Internal pilot	22 ^{Note)}	2 stations		1(P), 3(R)	2(A)		
	B	For VY1B01	2	Common external pilot	: 210 ^{Note)}	: 10 stations	01	1/	8		
ł			1	Internal pilot	2	2 stations					
	2	For VY1201	-		:	:	02	1/	4		
			2	Common external pilot	8	8 stations					
ſ			1	Internal pilot	2	2 stations	Α	3⁄8	1⁄4		
	4	For VY140 ⁰	-		1	:	В	3/	8		
l			2	Common external pilot	6	6 stations	С	1/2	³ ⁄8		

VY manifold pilot type Body size B, 2


Pilot type Manifold base part no. Applicable valve part no. Internal pilot manifold VVEX...-1-.... VY1...00 Common external pilot manifold VVEX...-2-.... VY1...00 Individual external pilot manifold VVEX...-... VY1...01

Note) It is recommended to use a common type when the external pilot type is used.

Body size 4

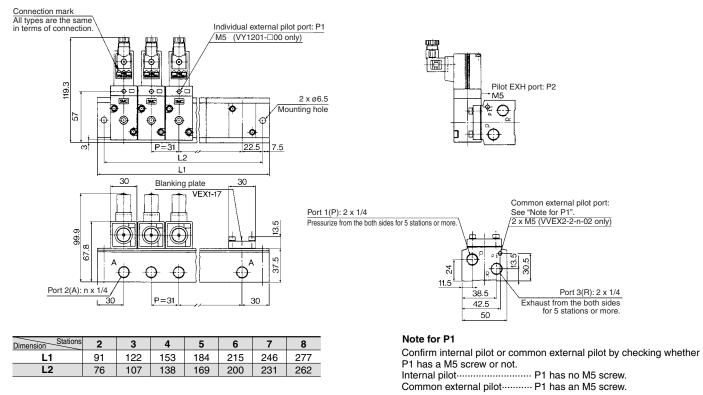
Pilot type	Manifold base part no.	Applicable valve part no.
Internal pilot manifold	VVEX4-1-D-DD	VY1400
Common external pilot manifold	VVEX4-2-D-DD	VY1401

Dimensions

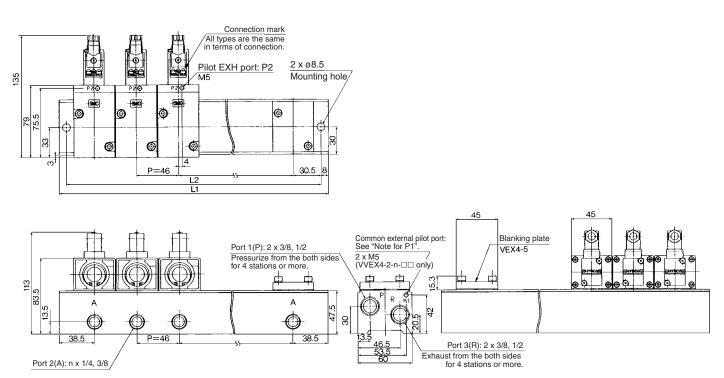
Enter the valves and the blank plates to be placed on a manifold in order, starting at the left side of the manifold base (with port 2(A) facing you).

Ex.) **VVEX2-2-5-02**

• VY1200-00-G - 4 pcs. • VEX1-17 ------ 1 pc.


Piping thread type

Nil	Rc
F	G
Ν	NPT
Т	NPTF


Note) In the case of VVEXB, the "2" in the first digit of the valve station number is a dummy part number.

Dimensions

VVEX4

Dimension	2	3	4	5	6
L1	123	169	215	261	307
L2	107	153	199	245	291

Note for P1

Confirm internal pilot or common external pilot by checking whether P1 has a M5 screw or not. Internal pilot..... P1 has no M5 screw.

Common external pilot P1 has an M5 screw.

a 16

Be sure to read before handling. Refer to "Handling Precautions for SMC I. Products" (M-E03-3) for Safety Instructions and Precautions on every series.

Piping

▲ Caution

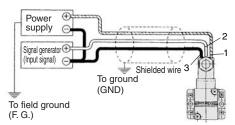
Tightening the fittings and their torque

When screwing fittings into the valves, make sure to tighten them to the proper torque values given below.

Tightening Torque when Piping

Connection thread	Applicable torque (N·m)
M5 x 0.8	1.5 to 2 ≅1/6 rotation
Rc ¹ / ₈	7 to 9
Rc 1/4	12 to 14
Rc ³ ⁄8	22 to 24
Rc 1/2	28 to 30
Rc $\frac{3}{4}$	28 to 30
Rc1	36 to 38
Rc1 1/4	40 to 42
Rc1 1/2	48 to 50
Rc2	48 to 50

Air Supply ▲ Caution


Poor quality air could enhance the spool's sliding resistance and may not achieve the specified properties. Use compressor oil with a minimal generation of oxidants and install a mist separator (SMC's Series AM/AFM). Refer to Best Pneumatics No. 5.

Pressure Gauge ▲ Caution

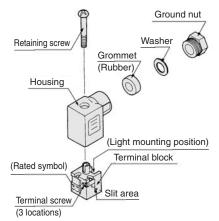
For products with pressure gauge, use caution about the durability of a pressure gauge, since it may be affected by the sudden pressure changes during operation.

Wires to be Used **∧** Caution

Use 3 core shielded wires measuring 0.5 (mm²) for the power supply and signal lines according to the respective number of conductors. When connecting the shielded braided wire, connect it to the ground of the signal generator. As a rule, the electro-pneumatic hybrid regulator should be installed in a location that is free of noise or is shielded. If it must be installed in an environment with poor noise conditions, eliminate the power supply noise by using a line filter, Z-wrap, or a spark killer on the 100 V power supply or signal source line. The length of the power suply and signal lines must be kept as short as possible.

Terminal no.	Details of wire connection
1	Power supply
2	Command signal
3	GND (COMMON)

How to Use DIN Terminal **▲** Caution


Wiring procedures 1. Loosen the retaining screw and pull the

- connector from the solenoid valve terminal block
- 2. Remove the retaining screw, insert a flat head screwdriver into the groove below the terminal block and pry it up to separate the terminal block from the housing.
- 3. Loosen the terminal screws (slot head screws) on the terminal block.
- Then, in accordance with the wiring procedure, insert the cord of the lead wires into the terminals and tighten the terminal screws to secure in place.
- 4. Tighten the ground nut to secure the cord. Outlet changing procedure

After the terminal block has been separated from its housing, reassemble the housing in the desired direction (in four 90° increments) to change the direction of the cord outlet.

- Precautions
- Kindly insert the connector straight in without tilting it, and pull it out straight.
- Applicable wire

Cord external diameter: ø4 to ø6.5 c.f. 0.5 mm² 3 core wire (JIS C 3306 equivalent)

• Connector part no.: VK300-82-1 Input Signal

▲ Caution

Input signal when out of operation

There is dispersion in operation start voltage (current) for the input signal. (Refer to page 4.) If the command signal when out of operation exceeds the lower limit of the operation start voltage (current), the solenoid valve inside the pilot valve starts to activate and may be in the operation state. The service life of this product varies depending on the operating time of the solenoid valve inside the pilot valve. Be sure to cut off the command signal when the pressure control on the outlet side is not required, such as when the line is temporarily halted, etc. (Refer to "Service Life" below.)

Service Life ▲ Caution

The pilot valve service life is approximately 4000 to 5000 operating hours. (When using AF + AFM) This may be approximately 3000 hours with ultra-dry air (dew point -40°C or equivalent).

Related Products:

Silencer (Series AN)

• Noise reducing effect: 30 dB or more. · Large effective area

Model	Connection R	Effective area (mm ²)
AN120	M5 x 0.8	5
AN110	1/8	35
AN200	1/4	35
AN300	3/8	60
AN400	1/2	90
AN500	3/4	160
AN600	1	270
AN700	11/4	440
AN800	1 1/2	590
AN900	2	960

· For details, refer to Best Pneumatics No. 6.

Exhaust cleaner (Series AMC)

· Provides noise reduction and oil mist collecting functions.

· Can also be used in a common piping system.

Model	Connection R	Effective area (mm ²)	Max. flow capacity (ℓ/min (ANR))
AMC310	3/8	16	300
AMC510	3⁄4	55	1,000
AMC610	1	165	3,000
AMC810	$1\frac{1}{2}$	330	6,000
AMC910	2	550	10.000

Oil mist recovering efficiency 99.9%

- Noise reduction efficiency 35 dB or more
 For details, refer to Best Pneumatics No. 6.