CRB2

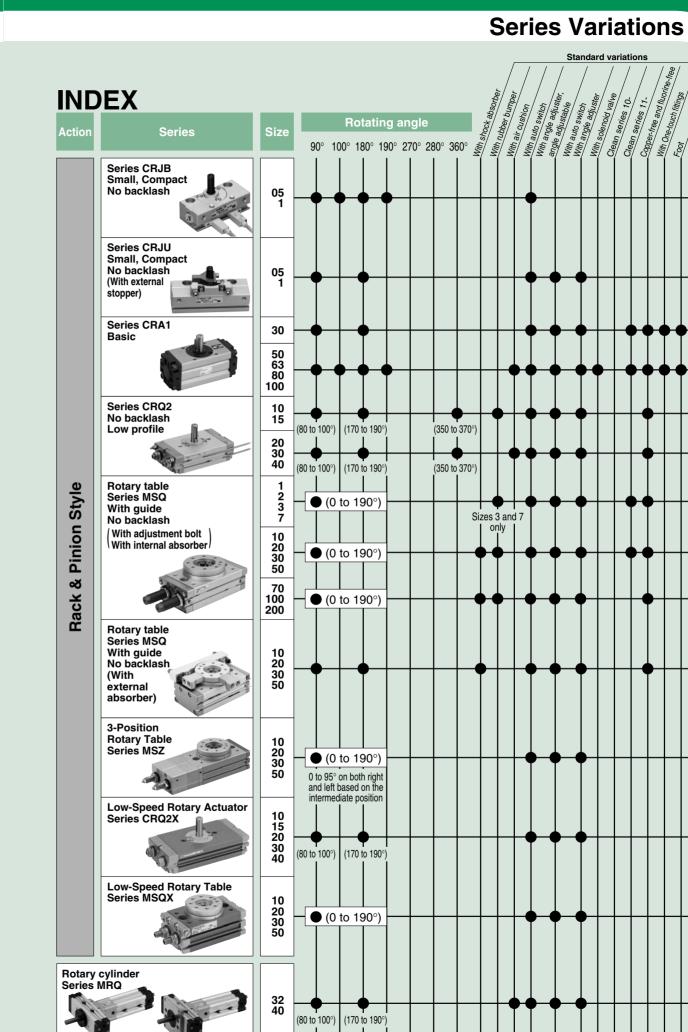
271

287

288

295

297


309

311 to


334

335

to 353 **D**-□

SMC

(85 to 95°)

Vane Style/Rotary Actuators Series Variations

Vane Style Rotary Actuators **Series Variations**

SMC

★ Conditions: 0.5 MPa

	Dointo of hourts aslast					г	Rotating	n anala			Tffactive torque	Chood row letter reserve	Allowable kinetie and were								
Exterior	Fea	atures	Points of how to select a rotary actuator		Action	Size	90°		180°			280°	★ Effective torque (N·m)	(s/90°)	Allowable kinetic energy (J)	Page					
Series CRB2			,,			10		100	100	100	270	200	0.12	(0,00)	0.00015						
Size 10 , 15 , 20 , 30 , 40			Suitable for applications in			15							0.32	0.03 to 0.3	0.0001						
			which compactness of the actuator is particularly		Single	20							0.70	1	0.003						
_			important. • Can be used as a part of a		vane	30							1.83	0.04 to 0.3	0.020		CRB2				
			robot arm, due to its compact and lightweight	robot arm, due to its			40							3.73	0.07 to 0.5	0.040		CRRII2			
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Round and compact type	package.			10							0.25		0.0003	45 to 80					
			protrusion in the	protrusion in the	protrusion in the	protrusion in the	protrusion in the			15							0.65	0.03 to 0.3	0.0012		CRB1
	• Has a compact body		radial direction even if a switch unit or an		Double	20							1.45	1	0.0033		MSU				
_	Has a compact body with exterior dimensions that do not change		angle adjustment unit is installed.		vane	30							3.70	0.04 to 0.3	0.020						
_	regardless of the					40							7.59	0.07 to 0.5	0.040		LKJ				
Series CRBU2	rotation angle, up to a maximum of 280°.					10							0.12		0.00015		CRA1				
Size 10 , 15 , 20 , 30 , 40	No backlash in terms of construction.					15							0.32	0.03 to 0.3	0.0001		CBU3				
	• The piping outlets are available in two				Single vane	20							0.70	1	0.003	1					
	directions: the body side or the axial direction.		Suitable for applications in		varie	30							1.83	0.04 to 0.3	0.020		MSQ				
	If a double vane style is	 Can be mounted in the vertical, horizontal and 	which compactness of the actuator is important due			40							3.73	0.07 to 0.5	0.040	01 to 114	MSZ				
200	used, twice the torque of the single vane can be	axial directions.	to constraints in the			10							0.25		0.0003	01 10 114					
	attained while the external configuration		mounting direction.			15							0.65	0.03 to 0.3	0.0012		MSQX				
<u>e</u>	remains identical to that of the single vane				Double vane	20							1.45		0.0033		CRB2 CRB1 MSU CRJ CRA1 CRQ2 MSQ MSQ MSQ MRQ O to 161				
(except for size 10). • The amount of leakage				vano	30							3.70	0.04 to 0.3	0.020		CRB2 CRBU2 CRB1 MSU CRJ CRQ2 MSQ MSZ CRQ2X MSQX MRQ					
Vane Style	is extremely small due to					40							7.59	0.07 to 0.5	0.040						
Series CRB1	the adoption of a special seal construction.								50							5.69		0.082			
Size 50 , 63 , 80 , 100					Single	63							10.8		0.120						
		• Even if it is equipped with	Provides a rotation angle of up to 280° and has a	Provides a rotation angle		vane	80							18.0		0.398					
		 Even if it is equipped with an auto switch, the piping outlets are available in two 	large torque. Suitable for				100							35.9	0.1 to 1	0.600	115 to 1/6				
		directions: the body side or the axial direction.	applications in which compactness of the			50			11.8	0.1101	0.112	113 10 140									
		and and an obtain.	actuator is important.		Double vane		Double 63		22.7		0.160										
													36.5		0.540						
						100							72.6		0.811						
Rotary table/High precision type						1							0.11		0.0065						
Series MSUA		Improved table top deflection 0.03 mm or less	When deflection accuracy for table top is required.		Single	3							0.31		0.017	150 to 161					
Size 1, 3, 7, 20	•	defiection 0.05 min or less	ioi table top is required.		vane	7							0.69		0.042	100 10 101					
180	• Has a compact body					20							1.78		0.073						
Rotary table	with exterior dimensions that do not change					1							0.11		0.005						
Series MSUB	regardless of the rotation angle, up to a	• A load can be mounted	Suitable for applications in		Single	3							0.31	0.07 to 0.3	0.013						
Size 1, 3, 7, 20	maximum of 190°. • No backlash in terms of construction. • The rotation range can be adjusted easily. • Angle adjustment is provided as standard.	which a table is required. • Suitable for applications in		vane	7							0.69	0.07 10 0.0	0.032	45 to 80 81 to 114						
		which compactness of the actuator is important due			20							1.78	_	0.056	C C C C C C C C C C C C C C C C C C C						
		to constraints in the mounting direction.			1							0.23		0.005							
		 The body can be centered easily during installation. 	Can be used as a part of a		Double	3							0.62	_	0.013		D- □				
			robot arm.		vane	7							1.42	1	0.032						
					20							3.63		0.056							

Remarks: 1. Effective torque: The values given in the table above, which are representative values, could vary according to usage conditions and thus they are not guaranteed.

- Adjustable speed range: If the product is used below the low-speed range, it could cause the product to stick.
- 3. Series MSU, Single vane type is angle adjustable $\pm 5^{\circ}$ at the edge of rotation of the angle range and $\pm 2.5^{\circ}$ for double vane type.
- 4. For the Series MSU, take the moment of inertia of the table in consideration in calculating the kinetic energy of the load.

Rack & Pinion Style Rotary Actuators Series Variations

Rack & Pinion Style/Rotary Actuators Series Variations

★ Conditions: 0.5 MPa

			★ Conditions: 0.5 MPa Points of how to select Action Size Rotating angle ★ Effective torque Speed regulation range Allowable kinetic energy							Alle alde 12 P																			
Exterior	Fea	atures	Points of how to select		Action	Size	000								Page														
00/0			a rotary actuator				90°	100°	180°	190°	360°	(N·m)	(s/90°)	(J)															
Series CRJB Size 05, 1 (Basic Type)	Lightweight, compact	Can be mounted from three directions: top and	Suitable for applications in which compactness of the actuator is particularly			05						0.042	0.1 to 0.5	0.00025															
(Eddie Type)	Able to integrate the wiring and the piping in the front side or lateral	bottom of the main body and the back side	important.		Single	1						0.095		0.001	179 to 190	90													
Series CRJU Size 05, 1	side. No backlash.	Can be mounted from two directions: top of the main body and the back	Suitable for applications in which compactness of the actuator is particularly	1	rack pinion	05						0.042	0.1 to 0.5	0.0004															
(With external stopper)		side • Angle adjustment is possible.	important. • When angle adjustment is required.			1						0.095		0.002		_													
Series CRA1		There is a slight backlash				30						1.91	0.2 to 1	0.010															
Size 30 , 50 , 63 , 80 , 100		of less than 1° due to the	Suitable for applications			50						9.27	0.2 to 2	0.050 0.98 *															
		single piston construction.	that require a wide		Single	63						17.2	0.04-0	0.12															
		A wide variety, from small to large models, are available.	range of speed adjustment.		rack pinion	- 63						17.2	0.2 to 3	1.5*	191 to 242	2													
	 Can be used at relatively slower speeds, 	These can be used with the	Suitable for air- hydro applications.			80						31.7	0.2 to 4	0.16															
	as compared with the	air-hydro specifications. (Except size 30)	, , ,			400						7	001-	2.0 * 0.54															
	vane style.	(=//000/10/20/00/				100						74.3	0.2 to 5	2.9*															
Series CRQ2	 Can be selected with air cushion. 					10						0.3	0.2 to 0.7	0.00025		_													
Size 10 , 15 , 20 , 30 , 40	/CRA1: 30 excepted		Suitable for applications			15						0.75		0.00039 0.025															
	CRQ2: 10,15	There is no backlash because the double piston	in which a thin profile		Double	20						1.84		0.12 *	0404 070														
3	style has been adopted.	is required. • Suitable for applications requiring no backlash.		rack pinion	30						3.11	0.2 to 1	0.048 0.25 *	243 to 270	0														
1						40						5.3		0.081															
						1						0.087		0.4 * 0.001		_													
Rotary table	. 1400					2						0.18	0.2 to 0.7	0.001															
	A thin rotary table unit		Suitable for applications in which a table is required.			3						0.29		0.002															
Size 1, 2, 3, 7, 10, 20, 30, 50, 70, 100, 200	with a low table top height.	• The body can be		required.	required.	required.			7						0.56	0.2 to 1	0.006												
50, 70, 100, 200	No backlash.	centered easily during installation.					required.	required.	required.	required.	required.	required. • Suitable for applications	required.	Suitable for applications which a table is	Suitable for applications in which a table is	Suitable for applications in which a table is			10						0.89	_	0.007 0.039*		
	Piping direction is selectable from the edge side of the main body	A load can be mounted directly. The angle can be													Double	20						1.84	0.2 to 1	0.025 0.116* 0.048					
	and the lateral side. • Actuator with internal	adjusted as desired.	in which a thin profile		rack pinion	30						2.73	absorber:	0.116*	271 to 295	15													
Size 10, 20, 30, 50	shock absorber is	(Between 0° and 190°) (Adjustor bolt, Internal	is required particularly. • Suitable for applications			50						4.64	0.2 to 0.7	0.081															
(With external shock absorber)	selectable. (Size 10, 20, 30, 50, 70, 100, 200)	absorber)	requiring no backlash.										0.2 to 1.5	0.294* 0.24															
	 Actuator with external 	The body can be used as a flange.				70						6.79	With shock absorber: 0.2 to 1	1.1*															
Company	shock absorber is selectable. (Size 10, 20,					100						10.1	0.2 to 2 With shock absorber:	0.32 1.6*															
	30, 50)												0.2 to 1 / 0.2 to 2.5	0.56															
						200						19.8	0.2 to 2.5 With shock absorber: 0.2 to 1	2.9*															
3-position rotary table	 Can be controlled with a solenoid valve located in 	Right and left rotation ends				10						0.90	-	0.007															
Series MSZ	the 3 position pressure	can be adjustable at 0 to	Suitable for 3 position stopping		Double	20						1.78	0.2 to 1	0.025	297 to 309)9													
Size 10 , 20 , 30 , 50	center. • No backlash. 95° from the central position.		stopping.	The state of the s	rack pinion	30 50						2.65 4.75		0.048															
						10						0.3		0.081		_													
Low-speed rotary actuator Series CRQ2X		. Dimensional II			D	15						0.75	0.7 to 5	0.00025															
Size 10 , 15 ,		Dimensions the same as Series CRQ2.			Double	20						1.84		0.025															
20, 30, 40	Stable operation possible	3	Suitable for low-speed		rack pinion	30						3.11	1 to 5	0.048	044 : ==														
	at 5 s/90°.		operation.	10	5.3 0.89		0.081 0.007	311 to 334																					
Low-speed rotary table Series MSQX		Dimensions the same as			Double	20						1.84	44.5	0.025															
Size 10 , 20 , 30 , 50		Series MSQ.		1	rack pinion	30						2.73	1 to 5	0.048															
4 31/8 TU, ZU, 3U, 3U					1	50					1	4.64	1	0.081															

Rotary cylinder Series MRQ Size 32, 40 p. 335 to 353

A direct rotary unit in which a thin cylinder and a rotary actuator have been integrated in a compact package.

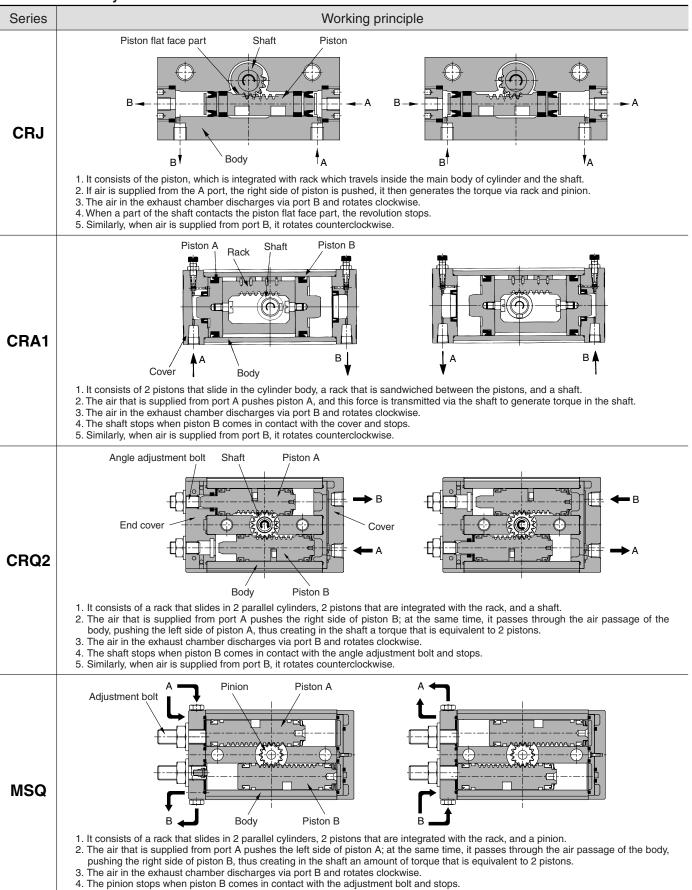
- Rotation angle/80 to 100°, 170 to 190°

• Linear stroke/5, 10, 15, 20, 25, 30, 40, 50, 75, 100 mm

SMC

are not guaranteed.

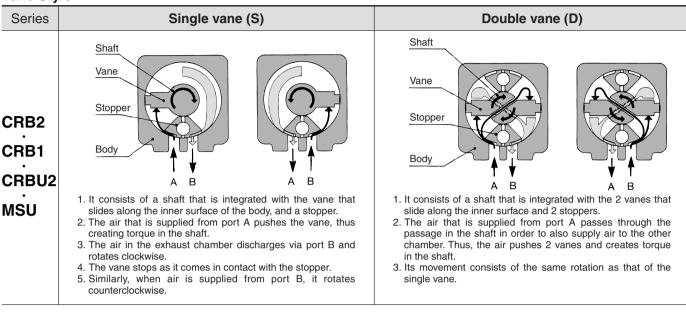
2. Adjustable speed range: If the product is used at a speed lower than the adjustment range, it may cause the product to stick or stop.


^{*} Symbol: The * symbol in the allowable energy for the Series CRA1 and the Series CRQ2 indicates the value of an actuator that is equipped

with an air cushion.
For the Series MSQ, the * symbol indicates the value of an actuator that is equipped with a shock absorber.

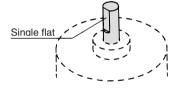
4. Refer to page 289 for allowable energy of the external shock absorber type (L type, H type) for the Series MSQ.

Working Principle


Rack & Pinion Style

5. Similarly, when air is supplied from port B, it rotates counterclockwise.

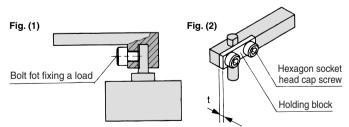
Working Principle: How to Mount Loads


Vane Style

How to Mount Loads

How to connect a load directly to a single flat shaft

To secure the load, select a bolt of an appropriate size from those listed in tables 1 and 2 by taking the shaft's single flat bearing stress strength into consideration.


Table (1) Directly Fixed with Bolts (Refer to Figure (1).)

Model	Size	Shaft bore size	Screw
CRQ2	10	5	M5 or larger
ChQZ	15	6	MS of larger
	10	4	M4 or larger
CRB2	15	5	M5 or larger
CNDZ	20	6	Wio of larger
	30	8	M6 or larger
	10	4	M4 or larger
CRBU2	15	5	M5 or larger
Chbuz	20	6	Wio or larger
	30	8	M6 or larger
CRJ	05	5	M5 or larger
ChJ	1	6	wo or larger

Table (2) Fixed with a Holding Block (Refer to Figure (2).)

Model	Size	Shaft bore size	Screw	Plate thickness (t)
CRQ2	10	5	M3 or larger	2.3 or wider
Chuz	15	6	M4 or larger	3.6 or wider
	10	4	M3 or larger	2 or wider
CRB2	15	5	IVIS OF larger	2.3 or wider
CRBZ	20	6	M4 or larger	3.6 or wider
	30	8	M5 or larger	4 or wider
	10	4	M3 or larger	2 or wider
CRBU2	15	5	IVIS OF larger	2.3 or wider
CRBUZ	20	6	M4 or larger	3.6 or wider
	30	8	M5 or larger	4 or wider
CRJ	05	5	M3 or larger	2.3 or wider
ChJ	1	6	M4 or larger	3.6 or wider

The plate thickness (t) in the table above indicates a reference value when a carbon steel is used. Besides, we do not manufacture a holding block.

CRB2

CRBU2

CRB1

MSU

CRJ

CRA1

CRQ2

MSQ

MSZ CRO2X

MSQX

MRQ

Calculation of Moment of Inertia	P.22
1-1 Equation Table of Moment of Inertia	P.23
1-2 Calculation Example of Moment of Inertia	P.24
1-3 Graph for Calculating the Moment of Inertia	P.26
2 Calculation of Required Torque	P.28
2-1 Load Type	P.28
2-2 Effective Torque	P.29
2-3 Effective Torque for Each Equipment	P.29
Confirmation of Rotation Time	P.31
4 Calculation of Kinetic Energy	P.32
4-1 Allowable Kinetic Energy and Rotation Time Adjustn	nent Range ······ P.33
4-2 Moment of Inertia and Rotation Time	P.34
6 Confirmation of Allowable Load	P.37
6 Calculation of Air Consumption and Required Air F	low Capacity P.38
3 -1 Inner Volume and Air Consumption	P.39
6-2 Air Consumption Calculation Graph	P.41

Refer to pages 312 to 317 for the selection of low-speed rotary actuators Series CRQ2X/MSQX.

Selection Procedures

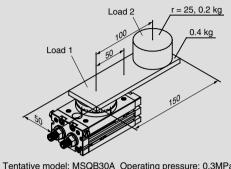
Note

Selection Example

♦ Operating conditions are as follows:

Operating conditions are as follows:

- Tentative models
- Operating pressure (MPa)
- Mounting orientation
- Load type


Static load Resistance load Inertial load

- Load dimensions (m)
- Load mass (kg)
- Rotation time (s)
- Rotation angle (rad)

- Refer to page 28 for the load type.
- The unit for the rotation angle is radian.

 $180^{\circ} = \pi \text{rad}$

 $90^{\circ} = \pi/2$ rad

Tentative model: MSQB30A Operating pressure: 0.3MPa Mounting orientation: Vertical Load type: Inertial load Rotation time: 1.5s Rotation angle: πrad (180°)

Calculation of Moment of Inertia

Calculate the inertial moment of load.

• Loads are generated from multiple parts. The inertial moment of each load is calculated, and then totaled. Inertial moment of load 1 I_1

$$I_1 = 0.4 \times \frac{0.15^2 + 0.05^2}{12} + 0.4 \times 0.05^2 = 0.001833$$

Inertial moment of load 2 I2

$$I_2 = 0.2 \times \frac{0.025^2}{2} + 0.2 \times 0.1^2 = 0.002063$$

Total inertial moment I

 $I = I_1 + I_2 = 0.003896 \text{ [kg} \cdot \text{m}^2\text{]}$

Calculation of Required Torque

Calculate the required torque for each load type and confirm whether the values fall in the effective torque range.

Static load (Ts)

Required torque: T = Ts

Resistance load (Tf)
 Required torque: T = Tf (3 to 5)

Inertial load (Ta)

Required torque: T = Ta x 10

⇒P.28

 When the resistance load is rotated, the required torque calculated from the inertial load must be added.

Required torque

T = Tf x (3 to 5) + Ta x 10

Inertial load: Ta

$$\dot{\omega} = \frac{2\theta}{t^2} [\text{rad/s}^2]$$

Required torque: T

= 0.003896 x $\frac{2 \times \pi}{1.5^2}$ x 10 = 0.109 [N·m]

0.109 Nm < Effective torque OK

Confirmation of Rotation Time

Confirm whether the time falls in the rotation time adjustment range.

⇒P.31

63

• Consider the time after converted in the time per 90°.

(1.0 s/180° is converted in 0.5 s/90°.)

 $0.2 \le t \le 1.0$ $t = 0.75 \text{s}/90^{\circ} \text{OK}$

Calculation of Kinetic Energy

Calculate the kinetic energy of the load and confirm whether the energy is below the allowable range.

Can confirm referring to the inertial moment and rotation time graph. (Pages 34 to 36)

⇒P.32

 If the energy exceeds the allowable range, a suitable cushioning mechanism such as a shock absorber must be externally installed. Kinetic energy: E

$$E = \frac{1}{2} I \cdot \omega^2$$

$$E = \frac{1}{2} 0.003896 \times \left(\frac{2 \times \pi}{1.5}\right)^2 = 0.03414 \text{ [J]}$$

0.03414 [J] < Allowable energy OK

Confirmation of Allowable Load

Confirm whether the load applied to the product is within the allowable range. ⇒P.37

 If the load exceeds the allowable range, a bearing or similar must be externally installed. Moment load: M

 $M = 0.4 \times 9.8 \times 0.05 + 0.2 \times 9.8 \times 0.1$

= 0.392 [N·m]

0.392 [N·m] < Allowable moment load OK

Calculation of Air Consumption and Required Air Flow Capacity

Air consumption and required air flow capacity are calculated when necessary. ⇒P.38

CRB2

CRBU2

CRB1

MSU

CRJ

CRA1

CRO₂

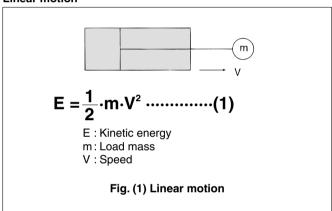
MSQ

MSZ

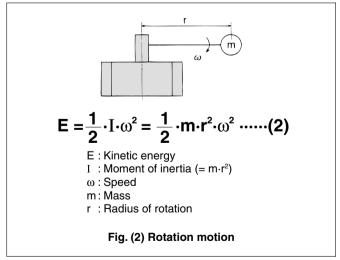
CRQ2X MSQX

MRQ

1 Calculation of Moment of Inertia


The moment of inertia is a value indicating the inertia of a rotating body, and expresses the degree to which the body is difficult to rotate, or difficult to stop.

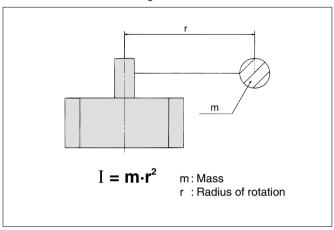
It is necessary to know the moment of inertia of the load in order to determine the value of necessary torque or kinetic energy when selecting a rotary actuator.


Moving the load with the actuator creates kinetic energy in the load. When stopping the moving load, it is necessary to absorb the kinetic energy of the load with a stopper or a shock absorber. The kinetic energy of the load can be calculated using the formulas shown in Figure 1 (for linear motion) and Figure 2 (for rotation motion).

In the case of the kinetic energy for linear motion, the formula (1) shows that when the velocity v is constant, it is proportional to the mass m. In the case of rotation motion, the formula (2) shows that when the angular velocity is constant, it is proportional to the moment of inertia.

Linear motion

Rotation motion



As the moment of inertia is proportional to the squares of the mass and the radius of rotation, even when the load mass is the same, the moment of inertia will be squared as the radius of rotation grows bigger. This will create greater kinetic energy, which may result in damage to the product.

When there is rotation motion, product selection should be based not on the load mass of the load, but on the moment of inertia.

Moment of Inertia Formula

The basic formula for obtaining a moment of inertia is shown below.

This formula represents the moment of inertia for the shaft with mass m, which is located at distance r from the shaft.

For actual loads, the values of the moment of inertia are calculated depending on configurations, as shown on the following page.

⇒P.23 Equation table of moment of inertia

⇒P.24 and 25 Calculation example of moment of inertia

⇒P.26 and 27 Graph for calculating the moment of inertia

1-1 Equation Table of Moment of Inertia

I: Moment of inertia m: Load mass

CRB2

CRBU2

CRB1

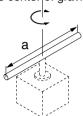
MSU

CRJ

CRA1

CR02

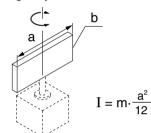
MSQ


MSZ

CRQ2X MSQX

MRQ

1. Thin shaft

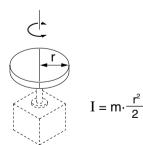

Position of rotational axis: Perpendicular to the shaft through the center of gravity

$$I = m \cdot \frac{a^2}{12}$$

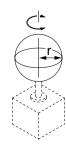
2. Thin rectangular plate

Position of rotational axis: Parallel to side b and through the center of gravity

3. Thin rectangular plate (Including Rectangular parallelepiped)

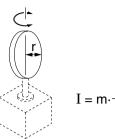

Position of rotational axis: Perpendicular to the plate through the center of gravity

$$I = m \cdot \frac{a^2 + b^2}{12}$$

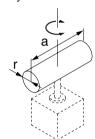

4. Round plate (Including column)

Position of rotational axis: Through the center axis

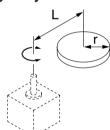
5. Solid sphere


Position of rotational axis: Through the center of diameter

$$I = m \cdot \frac{2r^2}{5}$$

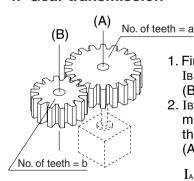

6. Thin round plate

Position of rotational axis: Through the center of diameter


7. Cylinder

Position of rotational axis: Through the center of diameter and gravity.

$$I = m \cdot \frac{3r^2 + a^2}{12}$$

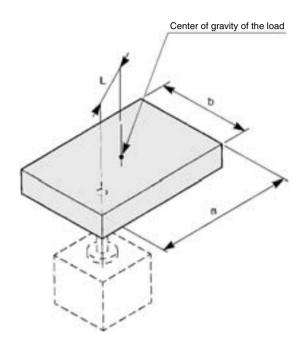

8. When the rotational axis and load center of gravity are not consistent

$$I = K + m \cdot L^2$$

- K: Moment of inertia around the load center of gravity
- 4. Round plate $K = m \cdot \frac{r^2}{2}$

4. Gear transmission

- 1. Find the moment of inertia IB for the rotation of shaft (B).
- 2. IB is converted to the moment of inertia IA for the rotation of the shaft (A).


$$I_A = \left(\frac{a}{b}\right)^2 \cdot I_B$$

1-2 Calculation Example of Moment of Inertia

If the shaft is located at a desired point of the load:

Example: 1) If the load is the thin rectangular plate:

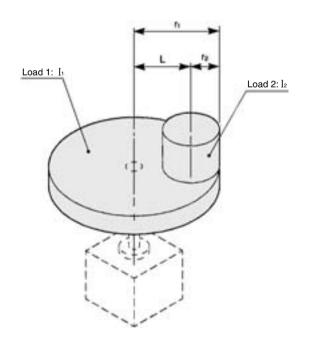
Obtain the center of gravity of the load as I₁, a provisional shaft.

$$I_1 = m \cdot \frac{a^2 + b^2}{12}$$

2 Obtain the actual moment of inertia I2 around the shaft, with the premise that the mass of the load itself is concentrated in the load's center of gravity point.

$$I_2 = m \cdot L^2$$

 $\ensuremath{\mathfrak{G}}$ Obtain the actual moment of inertia I.


$$\begin{split} I &= I_1 + I_2 \\ \text{m: mass of the load} \\ L &: \text{distance from the shaft to the load's} \\ &\quad \text{center of gravity} \end{split}$$

Calculation Example

$$a = 0.2 \text{ m}, b = 0.1 \text{ m}, L = 0.05 \text{ m}, m = 1.5 \text{ kg}$$

$$\begin{split} I_1 &= 1.5 \text{ x } \frac{0.2^2 + 0.1^2}{12} = 6.25 \text{ x } 10^3 & \text{kg} \cdot \text{m}^2 \\ I_2 &= 1.5 \text{ x } 0.05^2 = 3.75 \text{ x } 10^{\cdot 3} & \text{kg} \cdot \text{m}^2 \\ I &= (6.25 + 3.75) \text{ x } 10^{\cdot 3} = 0.01 & \text{kg} \cdot \text{m}^2 \end{split}$$

2 If the load is divided into multiple loads:

Example: 1) If the load is divided into the 2 cylinders:

The center of gravity of load 1 matches the shaft The center of gravity of load 2 differs from the shaft Obtain the moment of inertia of load 1:

 $I_1 = m_1 \cdot \frac{r_1^2}{2}$

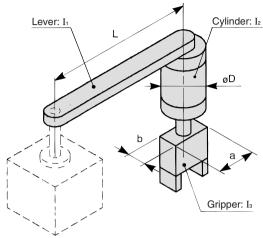
2 Obtain the moment of inertia of load 2:

$$I_2 = m_2 \cdot \frac{r_2^2}{2} + m_2 \cdot L^2$$

③ Obtain the actual moment of inertia I:

$$I = I_1 + I_2$$

m₁, m₂: mass of loads 1, and 2 r₁, r₂: radius of loads 1, and 2 L: distance from the shaft to the center of gravity of load 2


Calculation Example

$$m_1 = 2.5 \text{ kg}, \ m_2 = 0.5 \text{ kg}, \ r_1 = 0.1 \text{ m}, \ r_2 = 0.02 \text{ m}, \ L = 0.08 \text{ m}$$

$$\begin{split} I_1 &= 2.5 \text{ x } \frac{0.1^2}{2} = 1.25 \text{ x } 10^{\cdot 2} & \text{kg} \cdot \text{m}^2 \\ I_2 &= 0.5 \text{ x } \frac{0.02^2}{2} + 0.5 \text{ x } 0.08^2 = 0.33 \text{ x } 10^{\cdot 2} & \text{kg} \cdot \text{m}^2 \\ I &= (1.25 + 0.33) \text{ x } 10^{\cdot 2} = 1.58 \text{ x } 10^{\cdot 2} & \text{kg} \cdot \text{m}^2 \end{split}$$

3 If a lever is attached to the shaft and a cylinder and a gripper are mounted to the tip of the lever:

Example: 1) Obtain the lever's moment of inertia:

$$I_1 = m_1 \cdot \frac{L^2}{3}$$

② Obtain the cylinder's moment of inertia:

$$I_2 = m_2 \cdot \frac{(D/2)^2}{2} + m_2 \cdot L^2$$

3 Obtain the gripper's moment of inertia:

$$I_3 = m_3 \cdot \frac{a^2 + b^2}{12} + m_3 \cdot L^2$$

(4) Obtain the actual moment of inertia:

$$I = I_1 + I_2 + I_3$$

$$\begin{cases} m_1 \text{: mass of lever} \\ m_2 \text{: mass of cylinder} \\ m_3 \text{: mass of gripper} \end{cases}$$

Calculation Example

 $L=0.2~m,\, \text{ØD}=0.06~m,\, a=0.06~m,\, b=0.03~m,\, m_1=0.5~kg,\, m_2=0.4~kg,\, m_3=0.2~kg$

$$I_1 = 0.5 \text{ x } \frac{0.2^2}{3} = 0.67 \text{ x } 10^{-2}$$

$$I_3 = 0.2 \text{ x} \frac{0.06^2 + 0.03^2}{12} + 0.2 \text{ x} 0.2^2 = 0.81 \text{ x} 10^{-2}$$

CRB2

CRBU2

CRB1

MSU

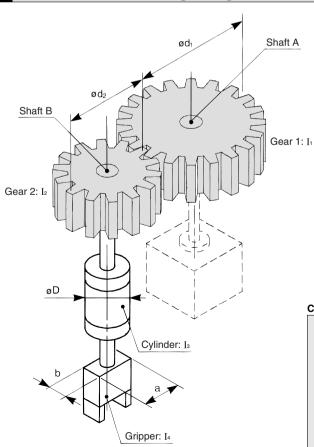
CRJ

CRA1

CR02

MSQ

MSZ


CRQ2X MSQX

MRQ

$$I_2 = 0.4 \text{ x} \frac{(0.06/2)^2}{8} + 0.4 \text{ x} 0.2^2 = 1.62 \text{ x} 10^{-2} \text{ kg} \cdot \text{m}^2$$

$$I = (0.67 + 1.62 + 0.81) \times 10^{-2} = 3.1 \times 10^{-2}$$

4 If a load is rotated through the gears:

Example: 1 Obtain the moment of inertia I_1 around shaft A:

$$I_1=m_1{\cdot}\frac{\left(d_1/2\right)^2}{2}$$

2 Obtain moment of inertias I2, I3, and I4 around shaft B:

Obtain moment of inertias
$$I_2$$
, I_3 , and I_4 aroun
$$I_2 = m_2 \cdot \frac{\left(d_2/2\right)^2}{2} \qquad \qquad I_3 = m_3 \cdot \frac{\left(D/2\right)^2}{2}$$

$$I_4 = m_4 \cdot \frac{a^2 + b^2}{12} \qquad \qquad I_B = I_2 + I_3 + I_4$$

$$I_3 = m_3 \cdot \frac{(D/2)^3}{2}$$

$$I_4 = m_4 \cdot \frac{a^2 + b^2}{10}$$

$$I_B = I_2 + I_3 + I_4$$

③ Replace the moment of inertia I_B around shaft B with the moment of inertia IA around shaft A.

 $I_A = (A/B)^2 \cdot I_B$ [A/B: ratio of the number of teeth]

4 Obtain the actual moment of inertia:

$$I = I_1 + I_A$$
 $/ m_1$: mass

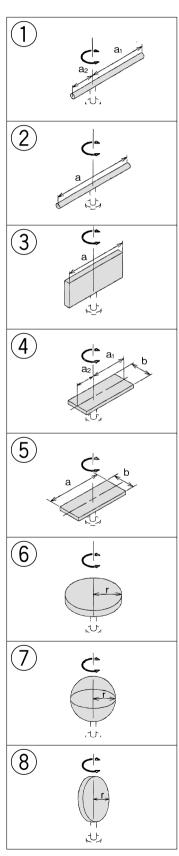
m₃: mass of cylinder m₄: mass of gripper

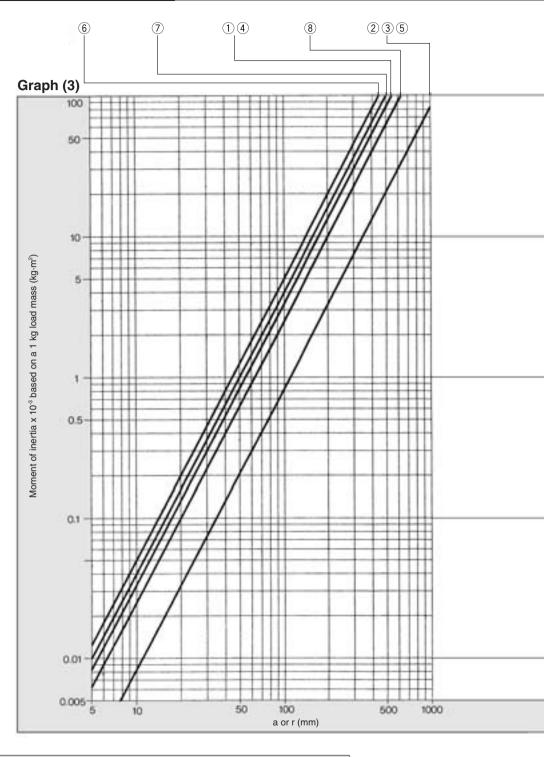
Calculation Example

 $d_1 = 0.1 \text{ m}$, $d_2 = 0.05 \text{ m}$, D = 0.04 m, a = 0.04 m, b = 0.02 m $m_1=1~kg,~m_2=0.4~kg,~m_3=0.5~kg,~m_4=0.2~kg,~tooth~count~ratio=2$

$${\rm I}_1 = 1 \quad x \ \frac{(0.1/2)^2}{8} = 1.25 \, x \, 10^3 \ kg \cdot m^2 \quad {\rm I}_4 = 0.2 \ x \, \frac{0.04^2 + 0.02^2}{12} \qquad = 0.03 \, x \, 10^{-3} \, kg \cdot m^2$$

$$I_{2} = 0.4 \times \frac{(0.05/2)^{2}}{2} = 0.13 \times 10^{-3} \text{ kg·m}^{2}$$

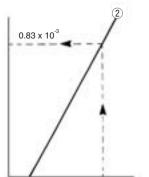

$$I_{B} = (0.13 + 0.1 + 0.03) \times 10^{-3} = 0.26 \times 10^{-3} \text{ kg·m}^{2}$$


$$I_{A} = 2^{2} \times 0.26 \times 10^{-3} = 1.04 \times 10^{-3} \text{ kg·m}^{2}$$

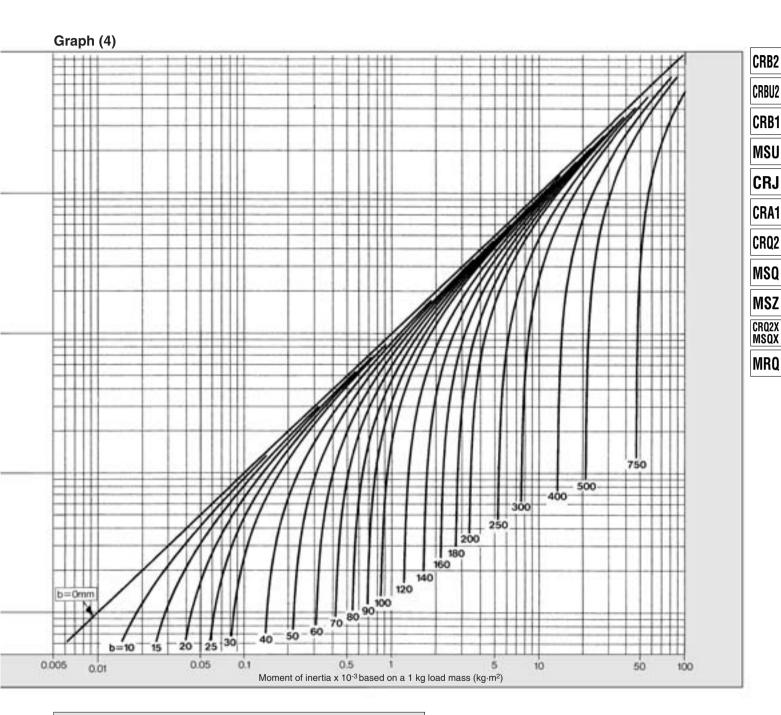
$$I_3 = 0.5 \times \frac{(0.04/2)^2}{2} = 0.1 \times 10^3 \text{ kg·m}^2$$
 $I_1 = (1.25 + 1.04) \times 10^3 = 2.29 \times 10^3 \text{ kg·m}^2$

D-□

1-3 Graph for Calculating the Moment of Inertia

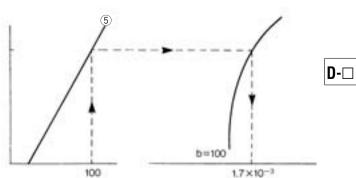

How to read the graph: only when the dimension of the load is "a" or "r"

[Example] When the load shape is ②, a = 100 mm, and the load mass is 0.1 kg.


In Graph (3), the point at which the vertical line of a = 100 mm and the line of the load shape ② intersect indicates that the moment of inertia of the 1 kg mass is 0.83 x 10⁻³ kg·m².

Because the mass of the load is 0.1 kg, the actual moment of inertia is $0.83 \times 10^{-3} \times 0.1 = 0.083 \times 10^{-3} \, kg \cdot m^2$. (Note: If "a" is divided into "a¹a²", the moment of inertia can be obtained by

calculating them separately.)



How to read the graph: when the dimension of the load contains both "a" and "b".

[Example] When the load shape is 5, a = 100 mm, b = 100 mm, and the load mass is 0.5 kg.

In Graph (3), obtain the point at which the vertical line of a = 100 mm and the line of the load shape 5 intersect. Move this intersection point to Graph (4), and the point at which it intersects with the curve of b = 100 mm indicates that the moment of inertia of the 1 kg mass is $1.7 \times 10^{-3} \, \text{kg} \cdot \text{m}^2$.

Since the load mass is 0.5 kg, the actual moment of inertia is $1.7 \times 10^{-3} \times 0.5 = 0.85 \times 10^{-3} \text{ kg} \cdot \text{m}^2$.

2 Calculation of Required Torque

2-1 Load Type

The calculation method of required torque varies depending on the load type. Obtain the required torque referring to the table below.

	Load type	
Static load: Ts	Resistance load: Tf	Inertial load: Ta
When the pressing force is necessary (clamp, etc.)	When friction force or gravity is applied to the rotation direction	When the load with inertia is rotated
F	Gravity acts Friction force acts	The center of rotation and the center of gravity are corresponding The rotational axis is vertical (up and down)
Ts = F-ℓ Ts: Static load (N·m) F: Clamp force (N) ℓ: Distance from the center of rotation to clamp (m)	When gravity acts to the rotation direction Tf = m·g·ℓ When friction force acts to the rotation direction Tf = μ·m·g·ℓ Tf : Resistance load (N·m) m : Mass of load (kg) g : Gravitational acceleration 9.8 (m/s²) ℓ : Distance from the center of rotation to the gravity or friction force acting point (m) μ : Coefficient of friction	$ \begin{aligned} &\textbf{Ta} = \textbf{I} \cdot \dot{\boldsymbol{\omega}} = \textbf{I} \cdot \frac{\textbf{2}\theta}{\textbf{t}^2} \\ &\textbf{Ta: Inertial load (N·m)} \\ &\textbf{I} : \textbf{Moment of inertia (kg·m²)} \\ &\dot{\boldsymbol{\omega}} : \textbf{Angular acceleration (rad/s²)} \\ &\theta : \textbf{Rotating angle (rad)} \\ &\textbf{t} : \textbf{Rotation time (s)} \end{aligned} $
Required torque T = Ts	Required torque T = Tf x (3 to 5) Note 1)	Required torque T = Ta x 10 Note 1)

Resistance loads → Gravity or friction applies in the rotation direction.
 Example 1) The axis of rotation is in a horizontal (lateral) direction, and the center of rotation and center of gravity of the load are not the same.
 Example 2) The load slips against the floor while rotating.

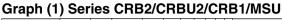
*The necessary torque equals the total of the resistance load and inertial load.

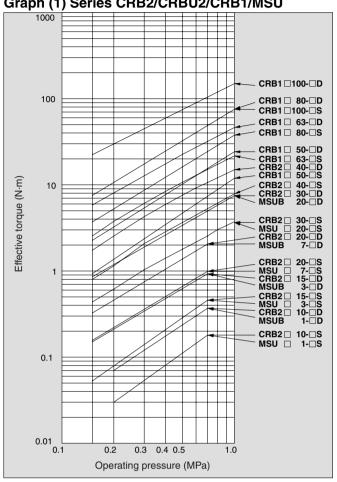
T = Tf x (3 to 5) + Ta x 10

Non-resistance loads → Gravity or friction does not apply in the rotation direction.
 Example 1) The axis of rotation is in a perpendicular (vertical) direction.

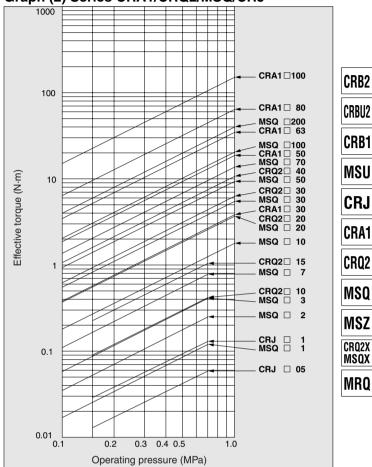
 Example 2) The axis of rotation is in a horizontal (lateral) direction, and the center of rotation and center of gravity of the load are the same.

*The necessary torque equals the inertial load only.


T = **Ta** x 10


Note 1) In order to adjust the velocity, it is necessary to have a margin of adjustment for Tf and Ta.

⇒P.29 Effective torque


⇒P.29 and 30 Effective torque for each equipment

2-2 Effective Torque

Graph (2) Series CRA1/CRQ2/MSQ/CRJ

2-3 Effective Torque for Each Equipment

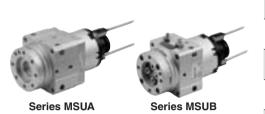
Vane Style: Series CRB2□/CRBU2□/CRB1□

Series CRB2

Series CRBU2

Series CRB1

Vano typo			Op	perating	pressu	re (MP	a)	0.8 0.9 3.03 3.40 6.09 6.83 6.20 7.03 12.5 14.1 9.5 10.7 19.4 21.8 17.8 20.2 37.10 41.9 30.0 33.8		
varie type	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Single vane	_	0.03	0.06	0.09	0.12	0.15	0.18	_	-	_
Double vane	_	0.07	0.13	0.19	0.25	0.31	0.37	_	ı	_
Single vane	0.06	0.10	0.17	0.24	0.32	0.39	0.46	-	ı	_
Double vane	0.13	0.20	0.34	0.48	0.65	0.79	0.93	_	ı	_
Single vane	0.16	0.23	0.39	0.54	0.70	0.84	0.99	_	-	_
Double vane	0.33	0.47	0.81	1.13	1.45	1.76	2.06	_	ı	_
Single vane	0.44	0.62	1.04	1.39	1.83	2.19	2.58	3.03	3.40	3.73
Double vane	0.90	1.26	2.10	2.80	3.70	4.40	5.20	6.09	6.83	7.49
Single vane	0.81	1.21	2.07	2.90	3.73	4.55	5.38	6.20	7.03	7.86
Double vane	1.78	2.58	4.3	5.94	7.59	9.24	10.89	12.5	14.1	15.8
Single vane	1.20	1.86	3.14	4.46	5.69	6.92	8.14	9.5	10.7	11.9
Double vane	2.70	4.02	6.60	9.21	11.8	14.3	16.7	19.4	21.8	24.2
Single vane	2.59	3.77	6.11	8.45	10.8	13.1	15.5	17.8	20.2	22.5
Double vane	5.85	8.28	13.1	17.9	22.7	27.5	32.3	37.10	41.9	46.7
Single vane	4.26	6.18	10.4	14.2	18.0	21.9	25.7	30.0	33.8	37.6
Double vane	8.70	12.6	21.1	28.8	36.5	44.2	51.8	60.4	68.0	75.6
Single vane	8.6	12.2	20.6	28.3	35.9	43.6	51.2	59.7	67.3	75
Double vane	17.9	25.2	42.0	57.3	72.6	87.9	103	120	135	150
	Double vane Single vane Single vane Single vane	0.15	Single vane	Vane type 0.15 0.2 0.3 Single vane - 0.03 0.06 Double vane - 0.07 0.13 Single vane 0.06 0.10 0.17 Double vane 0.13 0.20 0.34 Single vane 0.16 0.23 0.39 Double vane 0.33 0.47 0.81 Single vane 0.44 0.62 1.04 Double vane 0.90 1.26 2.10 Single vane 0.81 1.21 2.07 Double vane 1.78 2.58 4.3 Single vane 1.20 1.86 3.14 Double vane 2.70 4.02 6.60 Single vane 2.59 3.77 6.11 Double vane 5.85 8.28 13.1 Single vane 4.26 6.18 10.4 Double vane 8.70 12.6 21.1 Single vane 8.6 12.2 20.6 <th>Vane type 0.15 0.2 0.3 0.4 Single vane - 0.03 0.06 0.09 Double vane - 0.07 0.13 0.19 Single vane 0.06 0.10 0.17 0.24 Double vane 0.13 0.20 0.34 0.48 Single vane 0.16 0.23 0.39 0.54 Double vane 0.33 0.47 0.81 1.13 Single vane 0.44 0.62 1.04 1.39 Double vane 0.90 1.26 2.10 2.80 Single vane 0.81 1.21 2.07 2.90 Double vane 1.78 2.58 4.3 5.94 Single vane 1.20 1.86 3.14 4.46 Double vane 2.70 4.02 6.60 9.21 Single vane 2.59 3.77 6.11 8.45 Double vane 5.85 8.28 13.1 17.9</th> <th>Vane type 0.15 0.2 0.3 0.4 0.5 Single vane - 0.03 0.06 0.09 0.12 Double vane - 0.07 0.13 0.19 0.25 Single vane 0.06 0.10 0.17 0.24 0.32 Double vane 0.13 0.20 0.34 0.48 0.65 Single vane 0.16 0.23 0.39 0.54 0.70 Double vane 0.33 0.47 0.81 1.13 1.45 Single vane 0.44 0.62 1.04 1.39 1.83 Double vane 0.90 1.26 2.10 2.80 3.70 Single vane 0.81 1.21 2.07 2.90 3.73 Double vane 1.78 2.58 4.3 5.94 7.59 Single vane 1.20 1.86 3.14 4.46 5.69 Double vane 2.70 4.02 6.60 9.21 11.8</th> <th>Vane type 0.15 0.2 0.3 0.4 0.5 0.6 Single vane - 0.03 0.06 0.09 0.12 0.15 Double vane - 0.07 0.13 0.19 0.25 0.31 Single vane 0.06 0.10 0.17 0.24 0.32 0.39 Double vane 0.13 0.20 0.34 0.48 0.65 0.79 Single vane 0.16 0.23 0.39 0.54 0.70 0.84 Double vane 0.33 0.47 0.81 1.13 1.45 1.76 Single vane 0.44 0.62 1.04 1.39 1.83 2.19 Double vane 0.90 1.26 2.10 2.80 3.70 4.40 Single vane 0.81 1.21 2.07 2.90 3.73 4.55 Double vane 1.78 2.58 4.3 5.94 7.59 9.24 Single vane 1.20 1.86<!--</th--><th>Single vane</th><th>Vane type 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Single vane - 0.03 0.06 0.09 0.12 0.15 0.18 - Double vane - 0.07 0.13 0.19 0.25 0.31 0.37 - Single vane 0.06 0.10 0.17 0.24 0.32 0.39 0.46 - Double vane 0.13 0.20 0.34 0.48 0.65 0.79 0.93 - Single vane 0.16 0.23 0.39 0.54 0.70 0.84 0.99 - Double vane 0.33 0.47 0.81 1.13 1.45 1.76 2.06 - Single vane 0.44 0.62 1.04 1.39 1.83 2.19 2.58 3.03 Double vane 0.90 1.26 2.10 2.80 3.70 4.40 5.20 6.09 Single vane 1.78</th><th>Vane type 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Single vane - 0.03 0.06 0.09 0.12 0.15 0.18 - - Double vane - 0.07 0.13 0.19 0.25 0.31 0.37 - - - Single vane 0.06 0.10 0.17 0.24 0.32 0.39 0.46 - - - Double vane 0.13 0.20 0.34 0.48 0.65 0.79 0.93 - - Single vane 0.16 0.23 0.39 0.54 0.70 0.84 0.99 - - Double vane 0.33 0.47 0.81 1.13 1.45 1.76 2.06 - - Single vane 0.44 0.62 1.04 1.39 1.83 2.19 2.58 3.03 3.40 Double vane 0.81 1.21</th></th>	Vane type 0.15 0.2 0.3 0.4 Single vane - 0.03 0.06 0.09 Double vane - 0.07 0.13 0.19 Single vane 0.06 0.10 0.17 0.24 Double vane 0.13 0.20 0.34 0.48 Single vane 0.16 0.23 0.39 0.54 Double vane 0.33 0.47 0.81 1.13 Single vane 0.44 0.62 1.04 1.39 Double vane 0.90 1.26 2.10 2.80 Single vane 0.81 1.21 2.07 2.90 Double vane 1.78 2.58 4.3 5.94 Single vane 1.20 1.86 3.14 4.46 Double vane 2.70 4.02 6.60 9.21 Single vane 2.59 3.77 6.11 8.45 Double vane 5.85 8.28 13.1 17.9	Vane type 0.15 0.2 0.3 0.4 0.5 Single vane - 0.03 0.06 0.09 0.12 Double vane - 0.07 0.13 0.19 0.25 Single vane 0.06 0.10 0.17 0.24 0.32 Double vane 0.13 0.20 0.34 0.48 0.65 Single vane 0.16 0.23 0.39 0.54 0.70 Double vane 0.33 0.47 0.81 1.13 1.45 Single vane 0.44 0.62 1.04 1.39 1.83 Double vane 0.90 1.26 2.10 2.80 3.70 Single vane 0.81 1.21 2.07 2.90 3.73 Double vane 1.78 2.58 4.3 5.94 7.59 Single vane 1.20 1.86 3.14 4.46 5.69 Double vane 2.70 4.02 6.60 9.21 11.8	Vane type 0.15 0.2 0.3 0.4 0.5 0.6 Single vane - 0.03 0.06 0.09 0.12 0.15 Double vane - 0.07 0.13 0.19 0.25 0.31 Single vane 0.06 0.10 0.17 0.24 0.32 0.39 Double vane 0.13 0.20 0.34 0.48 0.65 0.79 Single vane 0.16 0.23 0.39 0.54 0.70 0.84 Double vane 0.33 0.47 0.81 1.13 1.45 1.76 Single vane 0.44 0.62 1.04 1.39 1.83 2.19 Double vane 0.90 1.26 2.10 2.80 3.70 4.40 Single vane 0.81 1.21 2.07 2.90 3.73 4.55 Double vane 1.78 2.58 4.3 5.94 7.59 9.24 Single vane 1.20 1.86 </th <th>Single vane</th> <th>Vane type 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Single vane - 0.03 0.06 0.09 0.12 0.15 0.18 - Double vane - 0.07 0.13 0.19 0.25 0.31 0.37 - Single vane 0.06 0.10 0.17 0.24 0.32 0.39 0.46 - Double vane 0.13 0.20 0.34 0.48 0.65 0.79 0.93 - Single vane 0.16 0.23 0.39 0.54 0.70 0.84 0.99 - Double vane 0.33 0.47 0.81 1.13 1.45 1.76 2.06 - Single vane 0.44 0.62 1.04 1.39 1.83 2.19 2.58 3.03 Double vane 0.90 1.26 2.10 2.80 3.70 4.40 5.20 6.09 Single vane 1.78</th> <th>Vane type 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Single vane - 0.03 0.06 0.09 0.12 0.15 0.18 - - Double vane - 0.07 0.13 0.19 0.25 0.31 0.37 - - - Single vane 0.06 0.10 0.17 0.24 0.32 0.39 0.46 - - - Double vane 0.13 0.20 0.34 0.48 0.65 0.79 0.93 - - Single vane 0.16 0.23 0.39 0.54 0.70 0.84 0.99 - - Double vane 0.33 0.47 0.81 1.13 1.45 1.76 2.06 - - Single vane 0.44 0.62 1.04 1.39 1.83 2.19 2.58 3.03 3.40 Double vane 0.81 1.21</th>	Single vane	Vane type 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Single vane - 0.03 0.06 0.09 0.12 0.15 0.18 - Double vane - 0.07 0.13 0.19 0.25 0.31 0.37 - Single vane 0.06 0.10 0.17 0.24 0.32 0.39 0.46 - Double vane 0.13 0.20 0.34 0.48 0.65 0.79 0.93 - Single vane 0.16 0.23 0.39 0.54 0.70 0.84 0.99 - Double vane 0.33 0.47 0.81 1.13 1.45 1.76 2.06 - Single vane 0.44 0.62 1.04 1.39 1.83 2.19 2.58 3.03 Double vane 0.90 1.26 2.10 2.80 3.70 4.40 5.20 6.09 Single vane 1.78	Vane type 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Single vane - 0.03 0.06 0.09 0.12 0.15 0.18 - - Double vane - 0.07 0.13 0.19 0.25 0.31 0.37 - - - Single vane 0.06 0.10 0.17 0.24 0.32 0.39 0.46 - - - Double vane 0.13 0.20 0.34 0.48 0.65 0.79 0.93 - - Single vane 0.16 0.23 0.39 0.54 0.70 0.84 0.99 - - Double vane 0.33 0.47 0.81 1.13 1.45 1.76 2.06 - - Single vane 0.44 0.62 1.04 1.39 1.83 2.19 2.58 3.03 3.40 Double vane 0.81 1.21



 $(N \cdot m)$

2-3 Effective Torque for Each Equipment

Vane Style/Rotary Table: Series MSU□

(Nl.m)

											(14-111)				
Size	Vane type		Operating pressure (MPa)												
Size	varie type	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0				
-1	Single vane	_	0.03	0.06	0.09	0.11	0.14	0.17	_	_	_				
_ '	Double vane	_	0.06	0.12	0.18	0.23	0.29	0.35	_	_	_				
3	Single vane	0.05	0.09	0.16	0.23	0.31	0.38	0.45	_	-	_				
3	Double vane	0.11	0.18	0.32	0.46	0.62	0.77	0.91	_	_	_				
7	Single vane	0.14	0.21	0.37	0.52	0.69	0.83	0.98	_	_	_				
,	Double vane	0.29	0.44	0.78	1.10	1.42	1.74	2.04	_	_	_				
20	Single vane	0.40	0.58	0.99	1.38	1.78	2.19	2.58	2.99	3.39	3.73				
20	Double vane	0.86	1.22	2.04	2.82	3.63	4.43	5.22	6.04	6.83	7.49				

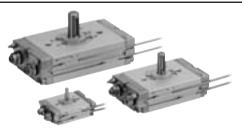
^{*} Double vane type is Series MSUB only.

Rack & Pinion Style: Series CRJ□

(N·m)

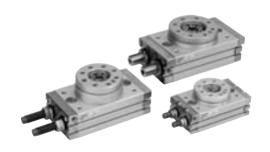
Sizo	Operating pressure (MPa)											
Size	0.15	0.2	0.3	0.4	0.5	0.6	0.7					
05	0.013	0.017	0.026	0.034	0.042	0.050	0.059					
1	0.029	0.038	0.057	0.076	0.095	0.11	0.13					

Rack & Pinion Style: Series CRA1□


(N·m

0:	Operating pressure (MPa)												
Size	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00			
30	0.38	0.76	1.14	1.53	1.91	2.29	2.67	3.05	3.44	3.82			
50	1.85	3.71	5.57	7.43	9.27	11.2	13.0	14.9	16.7	18.5			
63	3.44	6.88	10.4	13.8	17.2	20.6	24.0	27.5	31.0	34.4			
80	6.34	12.7	19.0	25.3	31.7	38.0	44.4	50.7	57.0	63.4			
100	14.9	29.7	44.6	59.4	74.3	89.1	104	119	133	149			

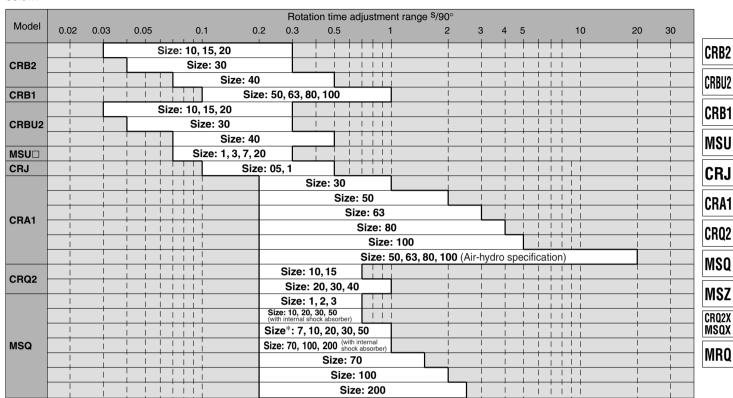
Rack & Pinion Style: Series CRQ2□


(N·m)

0.1		Operating pressure (MPa)												
Size	0.10	0.15	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00			
10	-	0.09	0.12	0.18	0.24	0.30	0.36	0.42	_	_	_			
15	_	0.22	0.30	0.45	0.60	0.75	0.90	1.04	_	-	_			
20	0.37	0.55	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66			
30	0.62	0.94	1.25	1.87	2.49	3.11	3.74	4.37	4.99	5.60	6.24			
40	1.06	1.59	2.11	3.18	4.24	5.30	6.36	7.43	8.48	9.54	10.6			

Rack & Pinion Style/Rotary Table: Series MSQ□

 $(N \cdot m)$



0:	Operating pressure (MPa)											
Size	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00		
1	0.017	0.035	0.052	0.070	0.087	0.10	0.12	_	_	_		
2	0.035	0.071	0.11	0.14	0.18	0.21	0.25	_	_	_		
3	0.058	0.12	0.17	0.23	0.29	0.35	0.41	_	_	-		
7	0.11	0.22	0.33	0.45	0.56	0.67	0.78	_	_	_		
10	0.18	0.36	0.53	0.71	0.89	1.07	1.25	1.42	1.60	1.78		
20	0.37	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66		
30	0.55	1.09	1.64	2.18	2.73	3.19	3.82	4.37	4.91	5.45		
50	0.93	1.85	2.78	3.71	4.64	5.57	6.50	7.43	8.35	9.28		
70	1.36	2.72	4.07	5.43	6.79	8.15	9.50	10.9	12.2	13.6		
100	2.03	4.05	6.08	8.11	10.1	12.2	14.2	16.2	18.2	20.3		
200	3.96	7.92	11.9	15.8	19.8	23.8	27.7	31.7	35.6	39.6		

3 Confirmation of Rotation Time

Rotation time adjustment range is specified for each product for stable operation. Set the rotation time within the rotation time specified below.

^{*:} In case of basic type/with external shock absorber.

If the product is used in a low speed range which is outside the adjustment range, it may cause the stick-slip phenomenon, or the product to stick or stop.

Calculation of Kinetic Energy

Kinetic energy is generated when the load rotates. Kinetic energy applies on the product at the operating end as inertial force, and may cause the product to damage. In order to avoid this, the value of allowable kinetic energy is determined for each product. Find the kinetic energy of the load, and verify that it is within the allowable range for the product in use.

Kinetic Energy

Use the following formula to calculate the kinetic energy of the load.

$$\mathbf{E} = \frac{1}{2} \cdot I \cdot \omega^2$$

E: Kinetic energy (J)

I: Moment of inertia (kg·m²)

ω: Angle speed (rad/s)

* For the MSU Series, add the values shown in the table below to the moment of inertia of the load when calculating.

Model	Additional value of moment of inertia; Io
MSU□ 1	2.5 x 10 ⁻⁶
MSU□ 3	6.2 x 10 ⁻⁶
MSU□ 7	1.6 x 10 ⁻⁵
MSU□20	2.8 x 10 ⁻⁵

Kinetic energy formula for Series MSU

$$\mathbf{E} = \frac{1}{2} \left(\mathbf{I} + \mathbf{Io} \right) \, \mathbf{\omega}^2$$

Angle Speed

$$\omega = \frac{2\theta}{t}$$

ω: Angle speed (rad/s)

θ: Rotation angle (rad)

t: Rotation time (s)

However, for the air-hydro type, when the rotation time for 90° becomes longer than 2 seconds, use the following formula.

$$\omega = \frac{\theta}{t}$$

⇒P.33 Allowable kinetic energy and rotation time adjustment range

⇒P.34 to 36 Moment of inertia and rotation time

To find the rotation time when kinetic energy is within the allowable range for the product, use the following formula.

When the rotation angle is $\omega = \frac{2\theta}{t}$

$$t \! \geq \! \sqrt{\frac{2 \! \cdot \! I \! \cdot \! \theta^2}{\text{E}}}$$

t: Rotation time (s)

I: Moment of inertia (kg·m²)

θ: Rotation angle (rad)

E: Kinetic energy (J)

When the rotation angle is $\omega = \frac{\theta}{t}$

$$t \ge \sqrt{\frac{I \cdot \theta^2}{2E}}$$

4-1 Allowable Kinetic Energy and Rotation Time Adjustment Range

Table (1a) Allowable Kinetic Energy and Rotation Time Adjustment Range of the Single Vane

10000 (100) 10000	3,				
	Allowable kine	Allowable kinetic energy (J)			
Model	Without	With	rotation time safe in operation		
	rubber bumper	rubber bumper	(s/90°)		
CRB2 □ 10	0.00015				
CRB2 □ 15	0.00025	0.001	0.03 to 0.3		
CRB2 □ 20	0.00040	0.003			
CRB2 □ 30	0.015 0.020		0.04 to 0.3		
CRB2 □ 40	0.030	0.040	0.07 to 0.5		
CRB1 □ 50	0.0				
CRB1 □ 63	0.12	0.4.5.4			
CRB1 □ 80	0.3	0.1 to 1			
CRB1 □100	0.6				
CRBU2□ 10	0.00015	_			
CRBU2□ 15	0.00025	0.001	0.03 to 0.3		
CRBU2□ 20	0.0004	0.003			
CRBU2□ 30	0.015 0.02		0.04 to 0.3		
CRBU2□ 40	0.030 0.040		0.07 to 0.5		
MSUA 1	0.0065				
MSUA 3	0.017	I			
MSUA 7	0.042				
MSUA 20	0.073		0.07 to 0.0		
MSUB 1	0.005		0.07 to 0.3		
MSUB 3	0.013				
MSUB 7	0.032	_			
MSUB 20	0.056	_			

Table (1b) Allowable Kinetic Energy and Rotation Time Adjustment Range of the Double Vane

Tubic (1b) Allowabic I	tinotio Energy und Hotat	ion mino Aujuotinont m	ange of the bouble fune		
	Allowable kine	Allowable kinetic energy (J)			
Model	Without	With	rotation time safe in operation		
	rubber bumper	rubber bumper	(s/90°)		
CRB2 □ 10	0.0003	ı			
CRB2 □ 15	0.0005	0.0012	0.03 to 0.3		
CRB2 □ 20	0.0007	0.0033			
CRB2 □ 30	0.015	0.04 to 0.3			
CRB2 □ 40	0.030	0.07 to 0.5			
CRB1 □ 50	0.1				
CRB1 □ 63	0.1	0.4.5.4			
CRB1 □ 80	0.5	0.1 to 1			
CRB1 □100	9.0				
CRBU2□ 10	0.0003	I			
CRBU2□ 15	0.0005	0.0012	0.03 to 0.3		
CRBU2□ 20	0.0007	0.0033			
CRBU2□ 30	0.015	0.020	0.04 to 0.3		
CRBU2□ 40	0.030	0.040	0.07 to 0.5		
MSUB 1	0.005	_			
MSUB 3	0.013		0.074-0.0		
MSUB 7	0.032		0.07 to 0.3		
MSUB 20	0.056	_			

Note) Not using rubber bumper means that the rotary actuator is stopped in the middle of its rotation through the use of an external stopper.

Note) Using a rubber bumper means that the rotary actuator is stopped at the respective rotation ends by using an internal stopper.

Table (2) Allowable Kinetic Energy and Rotation Time Adjustment Range

	Allowable kine	etic energy (J)	Cushion	Adjustable range of
Model	Without	With		rotation time safe in operation
	rubber bumper	rubber bumper	angle	(s/90°)
CRJ □ 05	0.00025	_	_	
CHJ 🗆 05	0.001 *1	_		0.1 +0.0 5
CRJ □ 1	0.00040	_	_	0.1 to 0.5
CHJ 🗆 I	0.002*1	_	_	1
CRA1 □ 30	0.010	_	_	0.2 to 1
CRA1 □ 50	0.050	0.980*2		0.2 to 2
CRA1 □ 63	0.120	1.500 *2	050	0.2 to 3
CRA1 □ 80	0.160	2.000*2	35°	0.2 to 4
CRA1 □100	0.540	2.900 *2		0.2 to 5
CRQ2□ 10	0.00025			0.2 to 0.7
CRQ2□ 15	0.00039			0.2 10 0.7
CRQ2□ 20	0.025	0.120*2		
CRQ2□ 30	0.048	0.250 *2	40°	0.2 to 1
CRQ2□ 40	0.081	0.400*2		
MSQ □ 1	0.001	_	_	
MSQ □ 2	0.0015	_	_	0.2 to 0.7
MSQ □ 3	0.002	_		1
MSQ □ 7	0.006	_	_	0.2 to 1
		0.039*3	52°	0.2 to 0.7 *3
MSQ □ 10	0.007	0.161*4	7.1°	
		0.231*5	8.6°	0.2 to 1
		0.116* ³	43°	0.2 to 0.7 *3
MSQ □ 20	0.025	0.574*4	6.9°	
		1.060*5	8.0°	0.2 to 1
		0.116* ³	40°	0.2 to 0.7 *3
MSQ □ 30	0.048	0.805*4	6.2°	
		1.210*5	7.3°	0.2 to 1
		0.294*3	60°	0.2 to 0.7 *3
MSQ □ 50	0.081	1.310*4	9.6°	
		1.280*5	10.5°	0.2 to 1
MSQB 70	0.24	1.100*3	71°	0.2 to 1.5
MSQB 100	0.32	1.600* ³	62°	0.2 to 2 0.2 to 1*3
MSQB 200	0.56	2.900*3	82°	0.2 to 2.5
*1 Represents ext	ernal stopper			

Represents external stopper.

*2 When the cushion needle with air cushion is adjusted optimally.

*3 Represents internal shock absorber.

*4 Represents external and low energy type shock absorber. *5 Represents external and high energy type shock absorber.

Calculation Example

Load form: Round rod

Length of a₁ part: 0.12 m Rotation angle: 90°

Length of a2 part: Rotation time: 0.9 S/90°

Mass of a₁ part (= m₁): 0.09 kg

Mass of a2 part (= m2): 0.03 kg

$$I = m_1 \cdot \frac{a_1^2}{3} + m_2 \cdot \frac{a_2^2}{3}$$

(Step 1) Find the angle speed
$$\omega$$
.
$$\omega = \frac{2\theta}{t} = \frac{2}{0.9} \left(\frac{\pi}{2}\right)$$

= 3.489 rad/s

(Step 2) Find the moment of inertia I.

$$I = \frac{m_1 \cdot a_1^2}{3} + \frac{m_2 \cdot a_2^2}{3}$$

$$= \frac{0.09 \times 0.12^2}{3} + \frac{0.03 \times 0.04^2}{3}$$

$$= 4.48 \times 10^{-4} \text{ kg} \cdot \text{m}^2$$

(Step 3) Find the kinetic energy E.

$$E = \frac{1}{2} \cdot I \cdot \omega^2 = \frac{1}{2} x + 4.48 \times 10^{-4} \times 3.489^2$$


Calculation Example

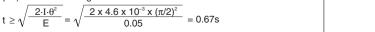
If the model to be used has been determined, obtain the threshold rotation time in which the rotary actuator can be used in accordance with

the allowable kinetic energy of that model.

Model used : CRA1□□50 (Without bumper) Allowable kinetic energy : 0.05 J (Refer to Table (2))

Load form : Refer to the figure below Rotation angle

(Step 1) Find the moment of inertia.


$$I = \frac{m_1 \cdot a_1^2}{3} + m_2 \cdot a_2^2 + \frac{m_2 \cdot 2r^2}{5}$$

$$= \frac{0.1 \times 0.12^2}{3} + 0.18 \times 0.15^2 + \frac{0.18 \times 2 \times 0.03^2}{5}$$

(Step 2) Find the rotating time.

$$t \ge \sqrt{\frac{2 \cdot I \cdot \theta^2}{E}} = \sqrt{\frac{2 \times 4.6 \times 10^{-3} \times (\pi/2)^2}{0.05}} = 0.67s$$

It is therefore evident that there will be no problem if it is used with a rotation time of less than 0.67s. However, according to table 2, the maximum value of rotation time for stable operation is 2s. Thus, the rotation time should be within the range

D-□

a₁:0.12 m

a₂: 0.15 m m₁: 0.1 kg

m₂: 0.18 kg

r : 0.03 m

CRB2

CRBU2

CRB1

MSU

CRJ

CRA1

CRO₂

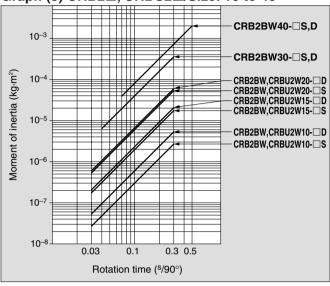
MSQ

MSZ CR02X MSQX MRQ

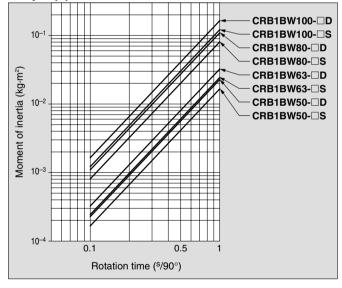
4-2 Moment of Inertia and Rotation Time

How to read the graph

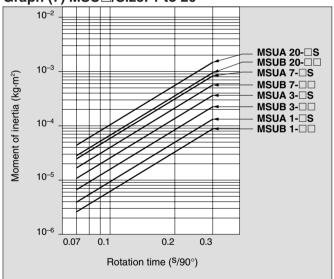
Example 1) When there are constraints for the moment of inertia of load and rotation time. From "Graph (5)", to operate at the load moment of inertia 1 x 10⁻⁴ kg⋅m² and at the rotation time setting of 0.3 S/90°, the models will be CRB□30-□S and CRB□30-□D.


Example 2) When there are constraints for the moment of inertia of load, but not for rotation time. From "Graph (6)", to operate at the load moment of inertia 1 x 10⁻² kg·m²:

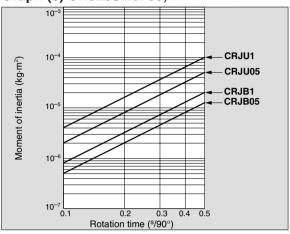
CRB1 \square 50- \square S will be 0.8 to 1 \$/90° CRB1 \square 80- \square S will be 0.35 to 1 \$/90° CRB1 \square 100- \square S will be 0.29 to 1 \$/90°


[Remarks] As for the rotation times in "Graphs (5) to (15)", the lines in the graph indicate the adjustable speed ranges. If the speed is adjusted towards the low-speed end beyond the range of the line, it could cause the actuator to stick, or, in the case of the vane style, it could stop its operation.

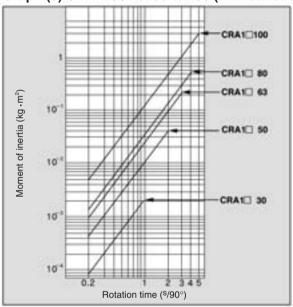
<Vane style: Series CRB2/CRBU2/CRB1/MSU>


Graph (5) CRB2□, CRBU2□/Size: 10 to 40

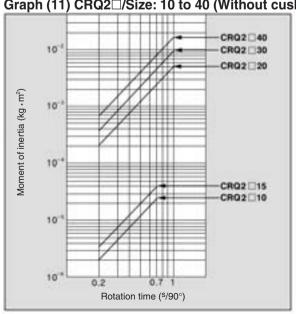
Graph (6) CRB1 □/Size: 50 to 100

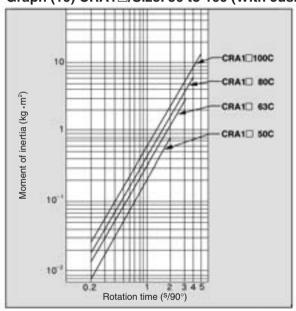


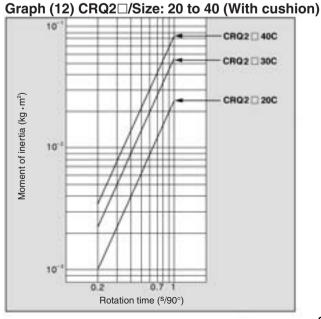
Graph (7) MSU□/Size: 1 to 20



<Rack & pinion style: Series CRJ/CRA1>


Graph (8) CRJ□/Size: 05, 1


Graph (9) CRA1□/Size: 30 to 100 (Without cushion)



<Rack & pinion style: Series CRQ2/MSQ> Graph (11) CRQ2□/Size: 10 to 40 (Without cushion)

Graph (10) CRA1□/Size: 50 to 100 (With cushion)

CRB2

CRBU2

CRB1

MSU

CRJ

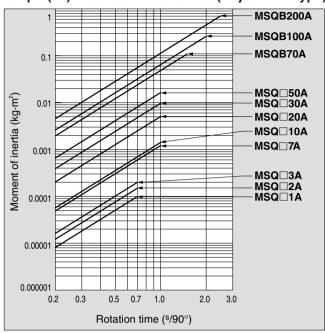
CRA1

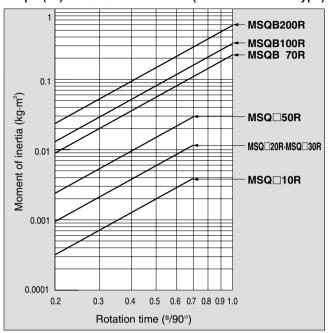
CRQ2

MSQ

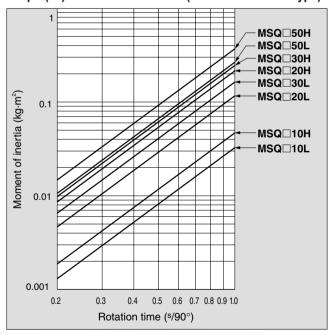
MSZ

CRQ2X MSQX

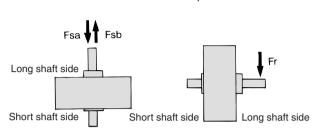

MRQ

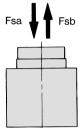


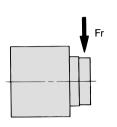
4-2 Moment of Inertia and Rotation Time

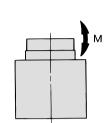

Graph (13) MSQ□/Size: 10 to 200 (Adjust bolt type)

Graph (14) MSQ□/Size: 10 to 200 (Internal absorber type)


Graph (15) MSQ□/Size: 10 to 50 (External absorber type)




6 Confirmation of Allowable Load


Provided that a dynamic load is not generated, a load in the axial direction can be applied up to the value that is indicated in the table below. However, applications in which the load is applied directly to the shaft should be avoided as much as possible.

(N)

CRB2

CRBU2 CRB1

MSU

CRJ

CRA1

CRQ2

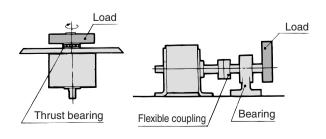
MSQ

MSZ CR02X

MSQX MRQ

(N)

Vane Style


vane Sty	yle (Single	, Double)		
Corioo	Model	Load direction		
Series Model	Model	Eca	Ech	

Series	Model	Load direction		
Series Model		Fsa	Fsb	Fr
	CRB2 □ 10	9.8	9.8	14.7
	CRB2 □ 15	9.8	9.8	14.7
	CRB2 □ 20	19.6	19.6	24.5
	CRB2 □ 30	24.5	24.5	29.4
CRB	CRB CRB2 \(\precedent{\precedent} \ 40 \)	40	40	60
	CRB1 □ 50	196	196	245
	CRB1 63	340	340	390
	CRB1 □ 80	490	490	490
	CRB1 □100	539	539	588
	CRBU2□ 10	9.8	9.8	14.7
	CRBU2□ 15	9.8	9.8	14.7
	CRBU2□ 20	19.6	19.6	24.5
	CRBU2□ 30	24.5	24.5	29.4
	CRBU2□ 40	40	40	60

Vane Style (Single, Double)

	, .c (Cg.c	g.c, <i>= ca.c.c,</i>			
Carias	Model		Load di	rection	
Series Model	iviodei	Fsa (N)	Fsb (N)	Fr (N)	M (N·m)
	MSUA 1	15	15	20	0.3
MSUA	MSUA 3	30	30	40	0.7
MSU	MSUA 7	60	60	50	0.9
	MSUA20	80	80	60	2.9
	MSUB 1	10	15	20	0.3
MSUB	MSUB 3	15	30	40	0.7
MISOR	MSUB 7	30	60	50	0.9
	MSUB20	40	80	60	2.9

Provided that a dynamic load is not generated, a load that is within the allowable radial/thrust load can be applied. However, applications in which the load is applied directly to the shaft should be avoided as much as possible. The methods such as those described below are recommended to prevent the load from being applied directly to the shaft in order to ensure a proper operating condition.

Rack & Pinion Style

Rack & Pinion Style (Single rack)

Series Model Load direction Fsa Fsb Fr CBJ 05 20 20 25	Rack & Pinion Style (Single rack) (N)				
Fsa Fsb Fr	Corios	Model		Load direction	
CRJ	Series IVIC	iviodei	Fsa	Fsb	Fr
(-D)	CRJ	CRJ□ 05	20	20	25
CRJ□ 1 25 25 30	CHJ	CRJ□ 1	25	25	30

Rack & Pinion Style (Single rack)

Rack & Pinion Style (Single rack) (N)					
Series	Model	Load direction			
Series	iviodei	Fsa	Fsb	Fr	
	CRA1□ 30	29.4	29.4	29.4	
	CRA1□ 50	490	196	196	
CRA1	CRA1□ 63	588	196	294	
	CRA1□ 80	882	196	392	
	CRA1 □ 100	980	196	588	

Rack & Pinion Style (Double rack)

	7	`	/	()
Series	Model		Load direction	
Series	iviodei	Fsa	Fsb	Fr
	CRQ2B□10	15.7	7.8	14.7
	CRQ2B□15	19.6	9.8	19.6
CRQ2	CRQ2B□20	49	29.4	49
	CRQ2B□30	98	49	78
	CRQ2B□40	108	59	98

Back & Pinion Style (Double rack)

MSQA 1□ 41 41 31 0.84 MSQA 2□ 45 45 32 1.2 MSQA 3□ 48 48 33 1.6 MSQA 7□ 71 71 54 2.2 MSQA 10□ 107 74 86 2.9 MSQA 20□ 197 137 166 4.8 MSQA 30□ 398 197 233 6.4 MSQA 50□ 517 296 378 12.0 MSQB 1□ 41 41 31 0.56 MSQB 2□ 45 45 32 0.82 MSQB 3□ 48 48 33 1.1 MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7	nack & Fillion Style (Double lack)					
MSQA 1□ 41 41 31 0.84 MSQA 2□ 45 45 32 1.2 MSQA 3□ 48 48 33 1.6 MSQA 1□ 107 71 54 2.2 MSQA 10□ 107 74 86 2.9 MSQA 3□ 398 197 233 6.4 MSQA 50□ 517 296 378 12.0 MSQB 1□ 41 41 31 0.56 MSQB 2□ 45 45 32 0.82 MSQB 1□ 41 41 31 0.56 MSQB 3□ 48 48 33 1.1 MSQB 1□ 71 71 71 54 1.5 MSQB 1□ 78 74 78 2.4 MSQB 3□ 78 74 78 2.4 MSQB 3□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7	Corios	Model		Load di	rection	
MSQA 2□ 45 45 32 1.2 MSQA 3□ 48 48 33 1.6 MSQA 7□ 71 71 54 2.2 MSQA 10□ 107 74 86 2.9 MSQA 20□ 197 137 166 4.8 MSQA 30□ 398 197 233 6.4 MSQA 50□ 517 296 378 12.0 MSQB 1□ 41 41 31 0.56 MSQB 2□ 45 45 32 0.82 MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7	Series	Series Model	Fsa (N)	Fsb (N)	Fr (N)	M (N·m)
MSQA 3□ 48 48 33 1.6 MSQA 7□ 71 71 54 2.2 MSQA 10□ 107 74 86 2.9 MSQA 20□ 197 137 166 4.8 MSQA 30□ 398 197 233 6.4 MSQA 50□ 517 296 378 12.0 MSQB 1□ 41 41 31 0.56 MSQB 2□ 45 45 32 0.82 MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQA 1□	41	41	31	0.84
MSQA 7□ 71 71 54 2.2 MSQA 10□ 107 74 86 2.9 MSQA 20□ 197 137 166 4.8 MSQA 30□ 398 197 233 6.4 MSQA 50□ 517 296 378 12.0 MSQB 1□ 41 41 31 0.56 MSQB 2□ 45 45 32 0.82 MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQA 2□	45	45	32	1.2
MSQA 10□ 107 74 86 2.9 MSQA 20□ 197 137 166 4.8 MSQA 30□ 398 197 233 6.4 MSQA 50□ 517 296 378 12.0 MSQB 1□ 41 41 31 0.56 MSQB 2□ 45 45 32 0.82 MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQA 3□	48	48	33	1.6
MSQA 20	MSOA	MSQA 7□	71	71	54	2.2
MSQA 30□ 398 197 233 6.4 MSQA 50□ 517 296 378 12.0 MSQB 1□ 41 41 31 0.56 MSQB 2□ 45 45 32 0.82 MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 30□ 137 137 147 4.0 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7	WISGA	MSQA 10□	107	74	86	2.9
MSQA 50□ 517 296 378 12.0 MSQB 1□ 41 41 31 0.56 MSQB 2□ 45 45 32 0.82 MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 20□ 137 137 147 4.0 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQA 20□	197	137	166	4.8
MSQB 1□ 41 41 31 0.56 MSQB 2□ 45 45 32 0.82 MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 30□ 137 137 147 4.0 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQA 30□	398	197	233	6.4
MSQB 2□ 45 45 32 0.82 MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 20□ 137 137 147 4.0 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7	MSQA	MSQA 50□	517	296	378	12.0
MSQB 3□ 48 48 33 1.1 MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 20□ 137 137 147 4.0 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQB 1□	41	41	31	0.56
MSQB 7□ 71 71 54 1.5 MSQB 10□ 78 74 78 2.4 MSQB 20□ 137 137 147 4.0 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQB 2□	45	45	32	0.82
MSQB 10□ 78 74 78 2.4 MSQB 20□ 137 137 147 4.0 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQB 3□	48	48	33	1.1
MSQB 20□ 137 137 147 4.0 MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQB 7□	71	71	54	1.5
MSQB 30□ 363 197 196 5.3 MSQB 50□ 451 296 314 9.7		MSQB 10□	78	74	78	2.4
MSQB 50 □ 451 296 314 9.7	MSQB	MSQB 20□	137	137	147	4.0
		MSQB 30□	363	197	196	5.3
MCOD 70 476 006 000 10.0		MSQB 50□	451	296	314	9.7
MSQB 70 476 296 333 12.0		MSQB 70□	476	296	333	12.0
MSQB100 □ 708 493 390 18.0		MSQB100□	708	493	390	18.0
MSQB200 □ 1009 740 543 25.0		MSQB200□	1009	740	543	25.0

3 Calculation of Air Consumption and Required Air Flow Capacity

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost. Required air volume is the air volume necessary to make a rotary actuator operate at a required speed. It requires calculation when selecting the upstream piping diameter from the switching valve and air line equipment.

* To facilitate your calculation, Tables (1) to (5) provide the air consumption volume (QcR) that is required each time an individual rotary actuator makes a reciprocal movement.

1. Air consumption volume

Formula

Regarding QCR: With vane style sizes 10 to 40, use formula (1) because the internal volume varies when ports A and B are pressurized. For vane style sizes 50 to 100, as well as for the rack and pinion style, use formula (2).

QCR =
$$(V_A + V_B) \times \left(\frac{P + 0.1}{0.1}\right) \times 10^{-3}$$
.....(1)
QCR = $2 \times V_A \times \left(\frac{P + 0.1}{0.1}\right) \times 10^{-3}$(2)
QCP = $2 \times a \times L \times \left(\frac{P}{0.1}\right) \times 10^{-6}$(3)
QC = QCR + QCP(4)

QCR = Amount of air consumption of rotary actuator [ℓ (ANR)]
QCP = Amount of air consumption of tube or piping [ℓ (ANR)]
VA = Inner volume of the rotary actuator (when pressurized from A port) [cm³]
VB = Inner volume of the rotary actuator (when pressurized from B port) [cm³]
P = Operating pressure [MPa]
L = Length of piping [mm]

Qc = Amount of air consumption required for one cycle of the rotary actuator [e (ANR)]

To select a compressor, it is important to select one that has plenty of margin to accommodate the total air volume that is consumed by the pneumatic actuators that are located downstream. The total air consumption volume is affected by the leakage in the tube, the consumption in the drain valves and pilot valves, as well as by the reduction in air volume due to reduced temperature.

Formula

 $Q_{c2} = Q_c x n x No. of actuators x Space rate ······(5)$

 Qc_2 = Amount of air from a compressor n = Actuator reciprocations per minute

[ℓ/min (ANR)]

Safety factor: from 1.5

a = Inner sectional area of piping

2. Required air flow capacity

Formula

Qr: Make use of (6)(7) formula for vane type, and (7) for rack and pinion type. $Qr = \left\{ V_B \, x \left(\frac{P + 0.1}{0.1} \right) x \, 10^{-3} + a \, x \, L \, x \left(\frac{P}{0.1} \right) x \, 10^{-6} \right\} \, x \, \frac{60}{t} \cdots \cdots (6)$ $Qr = \left\{ V_A \, x \left(\frac{P + 0.1}{0.1} \right) x \, 10^{-3} + a \, x \, L \, x \left(\frac{P}{0.1} \right) x \, 10^{-6} \right\} \, x \, \frac{60}{t} \cdots \cdots (7)$

Qr = Consumed air volume for rotary actuator [t/min(ANR)]

VA = Inner volume of the rotary actuator (when pressurized from A port) [cm³]

VB = Inner volume of the rotary actuator (when pressurized from B port) [cm³]

P = Operating pressure [MPa]

L = Length of piping [mm]

a = Inner sectional area of piping [mm²]

t = Total time for rotation [S]

Internal Cross Section of Tubing and Steel Piping

Nominal	O.D. (mm)	I.D. (mm)	Internal cross section a (mm²)
T□ 0425	4	2.5	4.9
T□ 0604	6	4	12.6
TU 0805	8	5	19.6
T□ 0806	8	6	28.3
1/8B	_	6.5	33.2
T□ 1075	10	7.5	44.2
TU 1208	12	8	50.3
T□1209	12	9	63.6
1/4B	_	9.2	66.5
TS 1612	16	12	113
3/8B	_	12.7	127
T□ 1613	16	13	133
1/2B	_	16.1	204
3/4B	_	21.6	366
1B	_	27.6	598

⇒P.39 and 40 Inner volume and air consumption ⇒P.41 and 42 Air consumption calculation graph

 1.470
 1.764
 2.352
 2.940
 3.528
 4.116
 4.704
 5.292
 5.880
 6.468

1 Inner Volume and Air Consumption

1/000	C:	Rotation	Inner volu	ıme (cm³)				Ope	rating pr	essure ((MPa)			
Vane	Size	(degree)	Press. V _A port	Press. V _B port	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
		90	0.6	1.0	_	0.005	0.006	0.008	0.010	0.011	0.013			_
	10	180	1.2	1.2	_	0.007	0.010	0.012	0.014	0.017	0.019	_	_	_
		270	1.5	1.5		0.009	0.012	0.015	0.018	0.021	0.024			<u> </u>
		90	1.0	1.5	0.006	0.008	0.010	0.013	0.015	0.018	0.020	_	_	_
	15	180	2.9	2.9	0.015	0.017	0.023	0.029	0.035	0.041	0.046	_		_
_		270	3.7	3.7	0.019	0.022	0.030	0.037	0.044	0.052	0.059			<u> </u>
		90	3.6	4.8	0.021	0.025	0.034	0.042	0.050	0.059	0.067	_		_
	20	180	6.1	6.1	0.031	0.037	0.049	0.061	0.073	0.085	0.098	_	_	_
-		270	7.9	7.9	0.040	0.047	0.063	0.079	0.095	0.111	0.126	0.470		0.04
		90	8.5	11.3	0.050	0.059	0.079	0.099	0.119	0.139	0.158	0.178	0.198	0.21
	30	180	15	15	0.075	0.090	0.120	0.150	0.180	0.210	0.240	0.270	0.300	0.330
-		270	20.2	20.2	0.101	0.121	0.162	0.202	0.242	0.283	0.323	0.364	0.404	0.44
		90	21	25	0.115	0.138	0.184	0.230	0.276	0.322	0.368	0.414	0.460	0.500
	40	180	31.5 41	31.5	0.158	0.189	0.252	0.315	0.378	0.441	0.504	0.567	0.630	0.69
-		270		41	0.205	0.246	0.328	0.410	0.492	0.574	0.656	0.738	0.820	0.90
		100	30 32	30	0.150	0.180	0.240	0.300	0.384	0.420	0.480	0.540	0.640	0.70
		180	49	32 49	0.160	0.192	0.256	0.320	0.588	0.448	0.512	0.882	0.640	1.07
ingle vane	50	190	51	49 51	0.245	0.294	0.392	0.490	0.612	0.000	0.784	0.882	1.020	1.12
		270	66	66	0.233	0.396	0.528	0.660	0.792	0.714	1.056	1.188	1.320	1.45
_		280	68	68	0.340	0.408	0.544	0.680	0.732	0.952	1.088	1.224	1.360	1.49
		90	70	70	0.350	0.420	0.560	0.700	0.840	0.980	1.120	1.260	1.400	1.54
		100	73	73	0.365	0.428	0.584	0.730	0.876	1.022	1.168	1.314	1.460	1.60
		180	94	94	0.470	0.564	0.752	0.940	1.128	1.316	1.504	1.692	1.880	2.06
	63	190	97	97	0.485	0.582	0.776	0.970	1.164	1.358	1.552	1.746	1.940	2.13
		270	118	118	0.590	0.708	0.944	1.180	1.416	1.652	1.888	2.124	2.360	2.59
		280	121	121	0.605	0.726	0.968	1.210	1.452	1.694	1.936	2.178	2.420	2.66
		90	88	88	0.440	0.528	0.704	0.880	1.056	1.232	1.408	1.584	1.760	1.93
		100	93	93	0.465	0.558	0.744	0.930	1.116	1.302	1.488	1.674	1.860	2.04
		180	138	138	0.690	0.828	1.104	1.380	1.656	1.932	2.208	2.484	2.760	3.03
	80	190	143	143	0.715	0.858	1.144	1.430	1.716	2.002	2.288	2.574	2.860	3.14
		270	188	188	0.940	1.128	1.504	1.880	2.256	2.632	3.008	3.384	3.760	4.13
		280	193	193	0.965	1.158	1.544	1.930	2.316	2.702	3.088	3.474	3.860	4.24
		90	186	186	0.930	1.116	1.488	1.860	2.232	2.604	2.976	3.348	3.720	4.09
		100	197	197	0.985	1.182	1.576	1.970	2.364	2.758	3.152	3.546	3.940	4.33
	100	180	281	281	1.405	1.686	2.248	2.810	3.372	3.934	4.496	5.058	5.620	6.18
	100	190	292	292	1.460	1.752	2.336	2.920	3.504	4.088	4.672	5.256	5.840	6.42
		270	376	376	1.880	2.256	3.008	3.760	4.512	5.264	6.016	6.768	7.520	8.27
		280	387	387	1.935	2.322	3.096	3.870	4.644	5.418	6.192	6.966	7.740	8.51
	10	90	1.0	1.0	_	0.006	0.008	0.010	0.012	0.014	0.016	_	_	_
	10	100	1.1	1.1	_	0.007	0.009	0.011	0.013	0.015	0.018			_
	15	90	2.6	2.6	0.013	0.016	0.021	0.026	0.031	0.036	0.042	_		_
	10	100	2.7	2.7	0.014	0.016	0.022	0.027	0.032	0.038	0.043			_
	20	90	5.6	5.6	0.028	0.034	0.045	0.056	0.067	0.078	0.090	_	_	_
		100	5.7	5.7	0.029	0.034	0.046	0.057	0.068	0.080	0.091		-	
	30	90	14.4	14.4	0.072	0.086	0.115	0.144	0.173	0.202	0.230	0.259	0.288	0.31
		100	14.5	14.5	0.073	0.087	0.116	0.145	0.174	0.203	0.232	0.261	0.290	0.31
	40	90	33 0	33	0.165	0.198	0.264	0.330	0.396	0.462	0.528	0.594	0.660	0.72
ouble vane -		100	34	34	0.170	0.204	0.272	0.340	0.408	0.476	0.544	0.612	0.680	0.74
	50	90	48	48	0.240	0.288	0.384	0.480	0.576	0.672	0.768	0.864	0.960	1.05
		100	52	52	0.260	0.312	0.416	0.520	0.624	0.728	0.832	0.936	1.040	1.14
	63	90	98	98	0.490	0.588	0.784	0.980	1.176	1.372	1.568	1.764	1.960	2.15
		100	104	104	0.520	0.624	0.832	1.040	1.248	1.456	1.664	1.872	2.080	2.28
	80	90	136	136	0.680	0.816	1.088	1.360	1.632	1.904	2.176	2.448	2.720	2.99
		100	146	146	0.730	0.876	1.168	1.460	1.752	2.044	2.336	2.628	2.920	3.21
	100	90	272	272	1.360	1.632	2.176	2.720	3.264	3.808	4.352	4.896	5.440	5.98

Table (2) Va	ane Style	Rotary Table:	Series	MSU□
--------------	-----------	----------------------	--------	------

Table (2) Vane Style Rotary Table: Series MSU (ℓ (AN												ℓ (ANR))		
Vane	Size	Rotation	Inner volu	ıme (cm³)	Operating pressure (MPa)									
varie	Size	(degree)	Press. V _A port	Press. V _B port	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	4	90	0.8	1.3	_	0.006	0.008	0.011	0.013	0.015	0.017	_	_	_
		180	1.3	1.3	_	0.008	0.010	0.013	0.016	0.018	0.021	_	_	_
Single	3	90	1.9	3.1	0.013	0.015	0.020	0.025	0.030	0.035	0.040	_	_	_
	<u> </u>	180	3.1	3.1	0.016	0.019	0.025	0.031	0.037	0.043	0.050	_	_	_
vane	7	90	4.0	6.6	0.027	0.032	0.042	0.053	0.064	0.074	0.085	_	_	
		180	6.6	6.6	0.033	0.040	0.053	0.066	0.079	0.092	0.106	_	_	_
	20	90	10.1	16.8	0.067	0.081	0.108	0.135	0.161	0.188	0.215	0.242	0.269	0.296
	20	180	16.8	16.8	0.084	0.101	0.134	0.168	0.202	0.235	0.269	0.302	0.336	0.370
Davible	1	90	1.1	1.1	_	0.007	0.009	0.011	0.013	0.015	0.018	_	_	_
Double	3	90	2.7	2.7	0.014	0.016	0.022	0.027	0.032	0.038	0.043	_	_	_
vane (MSUB only)	7	90	5.7	5.7	0.029	0.034	0.046	0.057	0.068	0.080	0.091	_	_	
(MSUB only)	20	90	14.5	14.5	0.073	0.087	0.116	0.145	0.174	0.203	0.232	0.261	0.290	0.319

39

D-□

MSU CRJ

CRB2

CRBU2

CRB1

CRA1

CRQ2

MSQ

MSZ CRQ2X MSQX

MRQ

6-1 Inner Volume and Air Consumption

Table (3)	Rack &	Pinion	Style:	Series	CRJ
			,		•

(ℓ (ANR))

Size	Potation (degree)	Volume V _A (cm³)			Opera	ating pressure			
Size	notation (degree)	Volume VA (Cm)	0.15	0.2	0.3	0.4	0.5	0.6	0.7
05	90	0.15	0.00074	0.00089	0.0012	0.0015	0.0018	0.0021	0.0024
03	180	0.31	0.0015	0.0018	0.0025	0.0031	0.0037	0.0043	0.0049
1	90	0.33	0.0016	0.0020	0.0026	0.0033	0.0039	0.0046	0.0052
	180	0.66	0.0033	0.0039	0.0052	0.0065	0.0078	0.0091	0.010

Table (4) Rack & Pinion Style: Series CRA1

(ℓ (ANR))

												(* (* ** ** */)
Size	Rotation (degree)	Volume V _A (cm ³)				0	perating pr	essure (MI	Pa)			
Size	Tiolation (degree)	Volume VA (Cm)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
30	90	7.4	0.030	0.044	0.059	0.074	0.089	0.104	0.118	0.133	0.148	0.163
30	180	14	0.056	0.084	0.112	0.140	0.168	0.196	0.224	0.252	0.280	0.308
	90	32	0.128	0.192	0.256	0.320	0.384	0.448	0.512	0.576	0.640	0.704
50	100	36	0.144	0.216	0.288	0.360	0.432	0.504	0.576	0.648	0.720	0.792
50	180	65	0.260	0.390	0.520	0.650	0.780	0.910	1.040	1.170	1.300	1.430
	190	68	0.272	0.408	0.544	0.680	0.816	0.952	1.088	1.224	1.360	1.496
	90	60	0.240	0.360	0.480	0.600	0.720	0.840	0.960	1.080	1.200	1.320
60	100	67	0.268	0.402	0.536	0.670	0.804	0.938	1.072	1.206	1.340	1.474
63	180	120	0.480	0.720	0.960	1.200	1.440	1.680	1.920	2.160	2.400	2.640
	190	127	0.508	0.762	1.016	1.270	1.524	1.778	2.032	2.286	2.540	2.794
	90	111	0.444	0.666	0.888	1.110	1.332	1.554	1.776	1.998	2.220	2.442
00	100	123	0.492	0.738	0.984	1.230	1.476	1.722	1.968	2.214	2.460	2.706
80	180	221	0.884	1.326	1.768	2.210	2.652	3.094	3.536	3.978	4.420	4.862
	190	233	0.932	1.398	1.864	2.330	2.796	3.262	3.728	4.194	4.660	5.126
	90	259	1.036	1.554	2.072	2.590	3.108	3.626	4.144	4.662	5.180	5.698
100	100	288	1.152	1.728	2.304	2.880	3.456	4.032	4.608	5.184	5.760	6.336
	180	518	2.072	3.108	4.144	5.180	6.216	7.252	8.288	9.324	10.36	11.396
	190	547	2.188	3.282	4.376	5.470	6.564	7.658	8.752	9.846	10.940	12.034

Table (5) Rack & Pinion Style: Series CRQ2

(ℓ (ANR))

Size	Rotation	Volume					Operatir	ng pressure	(MPa)				
Size	(degree)	V _A (cm ³)	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	90	1.2	_	0.006	0.007	0.009	0.012	0.014	0.016	0.018	_	_	_
10	180	2.2	_	0.011	0.013	0.018	0.022	0.026	0.031	0.035	_	_	_
	360	4.3	_	0.021	0.026	0.034	0.043	0.051	0.060	0.068	_	_	_
	90	2.9	_	0.015	0.017	0.023	0.029	0.035	0.041	0.046	_	_	_
15	180	5.5	_	0.028	0.033	0.044	0.055	0.066	0.077	0.088	_	_	
	360	10.7	_	0.023	0.064	0.086	0.107	0.129	0.193	0.172	_	_	_
	90	7.1	0.028	0.036	0.043	0.057	0.071	0.085	0.099	0.114	0.128	0.142	0.156
20	180	13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
	360	26.3	0.105	0.131	0.158	0.210	0.263	0.316	0.368	0.421	0.473	0.526	0.578
	90	12.1	0.048	0.060	0.073	0.097	0.121	0.145	0.169	0.193	0.218	0.242	0.266
30	180	23.0	0.092	0.115	0.138	0.184	0.230	0.276	0.322	0.368	0.413	0.459	0.505
	360	44.7	0.179	0.224	0.268	0.358	0.447	0.537	0.626	0.716	0.805	0.895	0.984
	90	20.6	0.082	0.103	0.123	0.164	0.206	0.247	0.288	0.329	0.370	0.411	0.452
40	180	39.1	0.156	0.195	0.234	0.313	0.391	0.469	0.547	0.625	0.703	0.781	0.859
	360	76.1	0.304	0.380	0.456	0.609	0.761	0.913	1.07	1.22	1.37	1.52	1.67

Table (6) Rack & Pinion Style/Rotary Table: Series MSQ

(ℓ (ANR))

Size	Rotation					0	perating pre	ssure (MPa)			
Size	(degree)	V _A (cm ³)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
1		0.66	0.0026	0.0039	0.0052	0.0065	0.0078	0.0091	0.010	_	_	_
2		1.3	0.0052	0.0077	0.010	0.013	0.015	0.018	0.021	1	_	_
3		2.2	0.0087	0.013	0.017	0.022	0.026	0.030	0.035	_	_	_
7		4.2	0.017	0.025	0.033	0.042	0.050	0.058	0.066	1	_	_
10		6.6	0.026	0.040	0.053	0.066	0.079	0.092	0.106	0.119	0.132	0.145
20	190°	13.5	0.054	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
30		20.1	0.080	0.121	0.161	0.201	0.241	0.281	0.322	0.362	0.402	0.442
50		34.1	0.136	0.205	0.273	0.341	0.409	0.477	0.546	0.614	0.682	0.750
70		50.0	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000	1.100
100		74.7	0.299	0.448	0.598	0.747	0.896	1.046	1.195	1.345	1.494	1.643
200		145.9	0.584	0.875	1.167	1.459	1.751	2.043	2.334	2.626	2.918	3.210

6-2 Air Consumption Calculation Graph

Step 1

Using Graph (11), air consumption volume of the rotary actuator is obtained. From the point of intersection between the internal volume and the operating pressure (slanted line) and then looking to the side (left side) direction, the air consumption volume for 1 cycle operation of a rotary actuator is obtained.

Step 2 Using Graph (12), air consumption volume of tubing or steel piping is obtainted.

- (1) First determine the point of intersection between the operating pressure (slanted line) and the piping length, and then go up the vertical line perpendicularly from there.
- (2) From the point of intersection of an operating piping tube diameter (slanted line), then look to the side (left or right) to obtain the required air consumption volume for piping.

Total air consumption volume per minute is obtained as follows:

(Air consumption volume of a rotary actuator [unit: ℓ (ANR)] +

Tubing or steel piping's air consumption volume) x Cycle times
per minute x Number of rotary actuators = Total air
consumption volume

Example) What is the air consumption volume for 10 units of a CRQ2BS40-90 to actuate by operating pressure 0.5 MPa for one minute..? (Distance between actuator and switching valve is the internal diameter 6 mm tubing with 2 m piping.)

- Operating pressure 0.5 MPa → Internal volume of CRQ2BS40-90 40 cm³ → Air consumption volume 0.23 ℓ (ANR)
- 2. Operating pressure 0.5 MPa → Piping length 2 m → Internal diameter 6 mm → Air consumption volume 0.56 ℓ (ANR)
- 3. Total air consumption volume = (0.23 + 0.56) x 5 x 10 = 39.5 t/min (ANR)

Inner Volume:	Rack &	Pinion	Style	1 cycle (cm ³)
		_		-) (-)

o. vo.a	Ji i iuoit	~	0.,.0		Cycle (citt)
Model		F	Rotation ang	le	
Model	90°	100°	180°	190°	360°
CRJ □ 05	0.3	0.34	0.62	0.66	_
CRJ □ 1	0.66	0.74	1.32	1.4	_
CRA1□ 30	14.8	_	28	_	_
CRA1□ 50	64	72	130	136	_
CRA1 ☐ 63	120	134	240	254	_
CRA1□ 80	222	246	442	466	_
CRA1 □ 100	518	576	1040	1090	
CRQ2□ 10	2.4		4.4		8.6
CRQ2□ 15	3.8		11		21.4
CRQ2□ 20	14.2	_	27	_	52.6
CRQ2□ 30	24.2	_	46	_	89.4
CRQ2□ 40	41.2	_	78.2	_	152
MSQ □ 1	_	_	_	1.3	_
MSQ □ 2	_	_	_	2.7	_
MSQ □ 3	_	_	_	4.4	_
MSQ □ 7	_	_	_	8.4	_
MSQ □ 10	_	_	_	13.1	_
MSQ □ 20				27.0	
MSQ □ 30		_	_	40.2	
MSQ □ 50	_	_	_	68.4	_
MSQB 70	_	_	_	100	_
MSQB 100	_	_	_	149	_
MSQB 200	_	_	_	292	_

Inner Volume: Vane Style 1 cycle (cm³)										
Model			Rotatio	n angle						
iviouei	90°	100°	180°	190°	270°	280°				
CRB □ 10-□S	1.6	1	2.4	_	3					
CRB □ 15-□S	2.5	-	5.8	_	7.4	_				
CRB □ 20-□S	8.4	_	12.2	_	15.8	_				
CRB □ 30-□S	19.8	1	30	_	40	_				
CRB □ 40-□S	25	_	31.5	_	41					
CRB1□ 50-□S	60	64	98	102	132	136				
CRB1□ 63-□S	70	73	94	97	118	121				
CRB1□ 80-□S	176	186	276	286	376	386				
CRB1□100-□S	372	394	562	584	752	774				
MSU □ 1-□S	2.1	-	2.6	_	_	_				
MSU □ 3-□S	5.0	_	6.2	_	_	_				
MSU □ 7-□S	10.6	-	13.2	_	_	_				
MSU □ 20-□S	26.9	_	33.6	_	_					
CRB □ 10-□ D	2	2.2	_	_	_	_				
CRB □ 15-□D	5.2	5.4		_	_					
CRB □ 20-□D	11.2	11.4	_	_	_	_				
CRB □ 30-□D	28.8	29	_	_	_	_				
CRB □ 40-□D	33	34	_	_	_	_				
CRB1□ 50-□D	96	104	_	_	_					
CRB1□ 63-□D	98	104	_	_	_	_				
CRB1□ 80-□D	272	292	_	_	_	_				
CRB1□100-□ D	544	588	_	_	_	_				
MSUB 1-□D	2.2									
MSUB 3-□D	5.4	_	_	_	_	_				
MSUB 7-□D	11.4									
MSUB 20-□D	29.0	_	_	_	_	_				

D-□

CRB2

CRBU2

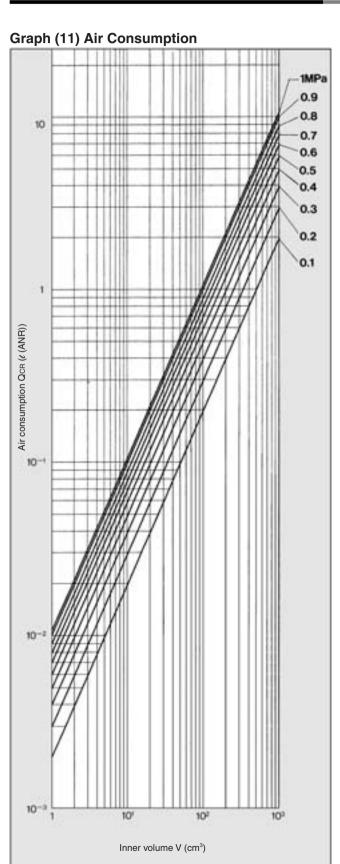
CRB1

MSU

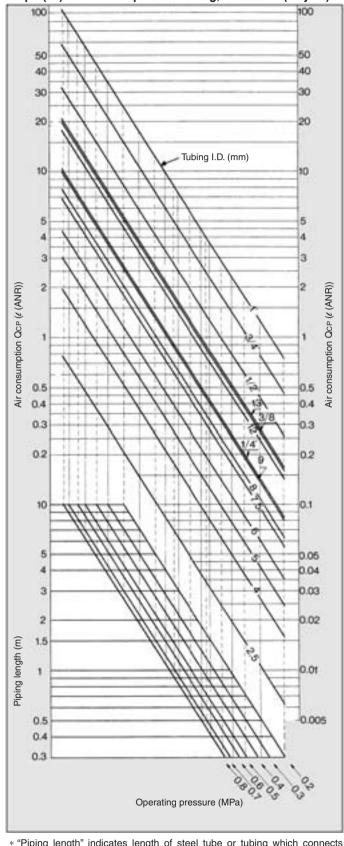
CRJ

CRA1

CRQ2


MSQ

MSZ


CRQ2X MSQX

3-2 Air Consumption Calculation Graph

Graph (12) Air Consumption of Tubing, Steel Tube (1 cycle)

- * "Piping length" indicates length of steel tube or tubing which connects rotary actuator and switching valves (solenoid valves, etc.).
- * Refer to page 38 for size of steel tubing (inner dimension and outer dimension).

