Rotary Actuator Free Mount Style Series CRBU (Size: 10/15/20/30)

Direct mounting in three directions (Axial, Vertical,

CRB1
CRBU
CRA1
CRQ
MRQ
MSQ
MSUB

Variations

Rotary Actuator Vane Style/Free Mount Style Series CRBU/Size: 10, 15, 20, 30

Rotation angles: $90^{\circ}, \mathbf{8 0}^{\circ}, 270^{\circ}$ Up to 270° is possible in the entire series
Through the adoption of specially designed seals and stoppers, a rotation angle of 270° has been achieved for the first time in a compact vane style actuator. (Single vane style)

Low pressure operation made possible
The special sealing construction that has been adopted in the body supports a wide operating pressure range and enable the entire series to be used at low pressures. Min. operating pressure

- Size 10 20, 30 Size 15, 20, 30

Double vane style standard: $90^{\circ}, 100^{\circ}$
The outside diameter is identical to the single vane construction (except size 10); however, due to the double vane construction, twice the torque of the single vane style can be obtained.

Unrestricted auto switch mounting positions
Because the switch can be moved anywhere along the circumstance, it can be mounted in a position that is most appropriate for the specifications.

Port positions: body side and axial direction
The positions can be selected for ease of use. (Those that are equipped with various styles of units can only be connected to the body side.)
(On the body side)

(Fittings are sold separately.)
(In the axial direction)

(Fittings are sold separately.)

Block-built (units) adopted

Various styles of units that can be housed within the body's outside diameter can easily be retrofitted to the rotary actuator units of the entire series.

Direct Mounting In Three Directions Possible

Mounting in three directions, axial, vertical and side, is possible. Three mounting variations are available in mounting in axial direction.

Axial Direction Mounting Style

Body through hole

Vertical Mounting Style

Side Mounting Style

Round Indication Board Adopted
 possible. Therefore, it can be utilized in other ways apart from body mounting.

Indication board mounted axially sets the rotation range about the axis (one chamfering processed part) clear, and the indication of connecting port (A/B port) locations prevents wrong wiring.

90°

180°

*The above is an indication board of a single vane style.

Rotary Actuator

 Free Mount StyleSeries CRBU
How to Order

Free Mount Style Rotary Actuator Series CRBL

Single vane style specifications

Model		CRBUW10- \square S	CRBUW15- \square S	CRBUW20-■S	CRBUW30- \square S	
Rotation angle		$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid		Air (Non-lube)				
Proof pressure (MPa)		1.05			1.5	
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)		0.7			1.0	
Min. operating pressure (MPa)		0.2	0.15			
Speed adjustable range ${ }^{(1)}\left(\mathrm{sec} / 90^{\circ}\right)$		0.03 to 0.3			0.04 to 0.3	
Allowable kinetic energy ${ }^{(2)}$ (J)		0.00015	0.001	0.003	0.02	
		0.00025	0.0004	0.015		
Shaft load	Allowable radial load (N)		15		25	30
	Allowable thrust load (N)	10		20	25	
Bearing		Ball bearing				
Port position		On the body side or in the axial direction				
Shaft style		Double shaft (With one flat chamfer to each shaft)				
Angle adjustable range of the unit		0 to 230°	0 to 240°			

Note 1) Make sure to operate within the adjustable speed range.
Exceeding the upper limit $\left(0.3\right.$ sec/ $\left.90^{\circ}\right)$ of speed control could cause the unit to stick or not operate at all.
Note 2) In the chart, the upper section indicates the energy factor when the rubber bumper is used (at the end of the rotation); the lower section indicates the energy value when the rubber bumper is not used.

Double vane style

\triangle Caution

Be sure to read before handling.
 Refer to p.0-20 and 0-21 for
 Safety Instructions and common
 I precautions on the products
 mentioned in this catalog, and refer to p.1.0-2 to 1.0-4 for precautions for every series.

Built-in One-touch Fittings

A free mount rotary actuator with built-in one-touch fittings. It dramatically reduces the piping process and saves space.

Specifications

Vane style	Single vane	
Size	$\mathbf{2 0}$	$\mathbf{3 0}$
Operating pressure MPa	0.15 to 0.7	0.15 to 1.0
Speed adjustable range	0.03 to $0.3 \mathrm{~s} / 90^{\circ}$	0.04 to $0.3 \mathrm{~s} / 90^{\circ}$
Port position	Only on the body side	
Piping	One-touch fittings installed type	
Mounting	Basic style only Variations With switches, With an angle adjuster, With switches and an angle adjuster	

O.D./I.D. of the applicable tube

O.D./I.D. of the applicable tube (mm)	$\varnothing 4 / \varnothing 2.5$
Material of the applicable tube	Nylon, Soft Nylon, Polyurethane

Dimensions

,
Note1) The exterior of the rotary actuator body has a standard
configuration.
Note2) The dimensions are the same for the one-touch fitting of the
Note2) The dimensions are the same for the one-touch fitting of the rotary actuator with auto switch, with angle adjuster, or with auto switch and angle adjuster.

Model	M	N	Z
CRBUW20F	11.5	12	11.5
CRBUW30F	12	13	10.5

 (mm)

Copper Free

The entire standard series of vane type rotary actuators does not affect color CRTs due to copper ions or fluororesins.

Specifications

Vane style	Single vane, Double vane			
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
Operating pressure MPa	0.2 to 0.7	0.15 to 0.7	0.15 to 1.0	
Speed adjustable range	0.03 to $0.3 \mathrm{~s} / 90^{\circ}$			0.04 to $0.3 \mathrm{~s} / 90^{\circ}$
Port position	On the body side or in the axial direction			
Shaft style	Double shafts (with one flat chamfer to both ends)			
Auto switch	Mountable			

Free Mount Style Rotary Actuator Series CRBU

Output

Chamfer positions and rotation range (Viewed from the long shaft side)

The chamfer positions below show the pressurization to the B port.
Single vane style

Double vane type

Note) For size 10 of the single vane style, the rotation angle of $90^{\circ}, 180^{\circ}$ and 270° is $+5_{0}^{\circ}$
For size 10 of the double vane style, the rotation angle of 90° is $+5_{0}^{\circ}$.

Series CRBU

Construction/Single Vane Style

Standard: CRBUW 10, 15, 20, 30-■S (Size 10: Without three positions for three equally divided length of circumference of female thread**)

For 270°
(View from long shaft side)

For 180°
(View from long shaft side)

For 90°
(View from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Stainless steel*	
(4)	Stopper	Resin	For 270°
(5)	Stopper	Resin	For 180°
(6)	Bearing	High carbon chrome bearing steel	
(7)	Back-up ring	Stainless steel	
(8)	Hexagon socket head cap screw	Stainless steel	Special bolt
(9)	O ring	NBR	
(10)	Stopper packing	NBR	Special packing
*CRBUW30:Carbon steel			

With Auto Switch (Units are common for single vane and double vane.)

CDRBUW10/15- \square S
CDRBUW20/30- \square S

Auto Switch Attached Style/Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Fixation block (A)	Aluminum alloy
(5)	Fixation block (B)	Aluminum alloy
(6)	Fixation block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
(10)	Magnet	
(11)	Arm	Steel
(12)	Hexagon socket head cap screw	Steel
(13)	Cross-recessed head cap screw	Steel
(14)	Cross-recessed head cap screw	Steel
(15)	Cross-recessed head cap screw	Steel
(16)	Cross-recessed head cap screw	Steel

* Two cross-recessed head cap screws (13) are attached to "CDRBUW10".

Standard: CRBUW10- \square D

Standard: CRBUW15/20/30- \square D

For 90°
(View from long shaft side)

For 100°
(View from long shaft side)

CRB
CRBU

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Cover	Aluminum alloy	
(10)	Plate	Resin	
(11)	Hexagon socket head cap screw	Stainless steel	Special bolt
(12)	O ring	NBR	
(13)	Stopper packing	NBR	
(14)	Gasket	NBR	
(15)	O ring	NBR	
(16)	O ring	NBR	

For 100°
(View from long axis side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Hexagon socket head cap screw	Stainless steel	Special bolt
(10)	O ring	NBR	
(11)	Stopper packing	NBR	

Standard Style

The dimensions below show pressurization to B port of the actuators for 90° and 180°. Refer to p.1.2-7 for further information.)

Port locations: Body side
CRBUW \square - \square S

Port locations: Axial direction CRBUW■- \square SE

* Refer to the table below.

Model	A	B	C	D	E(g6)	F(h9)	G	H	J	K	L	M	N	P	Q1	$\begin{gathered} (\text { Depph }) \\ \text { Q2 } \end{gathered}$	R	S1	S2	T	U	V	W	X
CRBUW10- \square S	29	22	8	14	$4^{-0.004}$	$9_{-0.043}^{0}$	1	15.5	5	9	0.5	10.5	10.5	24	-	M3	M5 X 0.8	3.5	M3 X 0.5	17	3	25	31	41
CRBUW10- \square SE												8.5	9.5			(4)	M3 $\times 0.5$							
CRBUW15-■S	34	25	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	6	10	0.5	10.5	10.5	29	M3 X 0.5		M5 X 0.8	3.5	M3 X 0.5	21	3	29	36	48
CRBUW15-■SE												11	10				M3 $\times 0.5$							
CRBUW20-■S	42	34.5	10	20	$6^{-0.004}$	$14{ }_{-0.043}$	1.5	17	7	10	0.5	11.5	11	36	M4 X 0.7	-	M5 X 0.8	4.5	M4 X 0.7	26	4	36	44	59
CRBUW20- \square SE												14	13											
CRBUW30-■S	50	47.5	13	22	$8_{-0.014}^{-0.005}$	$1_{-0.043}^{0}$	2	17.5	8	12	1	12	13	43	M5 X 0.8	-	M5 X 0.8	5.5	M5 X 0.8	29	5	42	52	69
CRBUW30- \square SE												15.5	14											

With One-touch Fittings

With One-touch Fittings			(mm)	
Model	Applicable tube 0.D.	\mathbf{M}	\mathbf{N}	\mathbf{Y}
CRBUW2OF- \square S	$\varnothing 4$	11.2	12	11.5
CRBUW30F- \square S	$\varnothing 4$	12	13	10.5

[^0]* Applicable tube material: Nylon, Soft nylon, Polyurethane
* Sizes apart from the ones shown above are the same as standard style

Free Mount Style Rotary Actuator Series CRBU

Standard Style Dimensions/ Double Vane Style

* The dimensions below show rotation at middle point during pressurization to A / B port.

Port locations: Body side CRBUW10-■D

Port locations: Body side CRBUW15/20/30-
$\square D$
(The dimensions below are based on size 30.)
(The dimensions below
$\underline{2-S 2}$

$$
\frac{3-\mathrm{Q} 1}{(\text { For }} \frac{1}{\text { mounting unit) }}
$$

Model	A	B	C	D	E(g6)	F(h9)	G	H	J	K	L	M	N	P	Q1	R	S1	S2	T	U	V	W	X
CRBUW15-DD	34	25	9	18	$5_{-0.012}^{0.004}$	$12_{-0.043}^{0}$	1.5	15.5	6	10	0.5	10.5	10.5	29	M3 X 0.5	M5 X 0.8	3.5	M3 X 0.5	21	3	29	36	48
CRBUW15-DDE												11	10			M3 $\times 0.5$							
CRBUW20-■D	42	34.5	10	20	$6{ }_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	7	10	0.5	11.5	11	36	M4 X 0.7	M5 X 0.8	4.5	M4 X 0.7	26	4	36	44	59
CRBUW20--DE												14	13										
CRBUW30--D	50	47.5	13	22	$8^{-0.005}$	$16_{-0.043}^{-0.00}$	2	17.5	8	12	1	12	13	43	M5 X 0.8	M5 X 0.8	5.5	M5 X 0.8	29	4.5	42	52	69
CRBUW30-DE									8			15.5	14										

Applicable Auto Switch

Applicable series	Auto switch part No.		Electrical entry	Page
CDRBUW10 CDRBUW15	Reed switch	D-90/90A	Grommet	$\begin{aligned} & 2.11-12, \\ & 2.11-14 \end{aligned}$
		D-97/93A		
	Solid state switch	D-S99/S99V*	Grommet/3 wire style (NPN)	2.11-23
		D-S9P/S9PV	Grommet/3 wire style (PNP)	
		D-T99/T99V	Grommet/2 wire style	
CDRBUW20 CDRBUW30	Reed switch	D-R 7	Grommet	2.11-15
		D-R 8		
	Solid state switch	D-R 7*	Grommet/3 wire style (NPN)	2.11-24
		D-S7P	Grommet/3 wire style (PNP)	
		D-T 7	Grommet/2 wire type, Connector/2 wiretype	

* No connector type is available for solid state switch 3 wire style.

\triangle Caution

Be sure to read before handing. Refer to p.2.11-2 to 2.11-4 before handling auto switches.

Units

Every kind of unit is mountable to series CDRBU. Refer to p.1.0-23 and 1.0-24 for further information

- Combinable units:
(1) Auto switch unit
(2) Switch block unit
(3)Angle adjusting unit
(4) Angle adjusting unit with auto switch
(5) Joint unit

With Auto Switch Dimensions/Single Vane Style

*The dimensions below show pressurization to B port of actuators for 90° and for 180°.

CDRBUW10, 15- \square S

Free mounting rotary

* 1) 24: When auto switches "D-90, 90A, S99(V), T99, S9P(V)" types are used 30: When auto switches "D-97, 93A" types are used.
* 2) 60: When auto switches "D-90, 90A, 97, 93A" types are used.

69: When auto switches "D-S99(V),T 99, S9P(V)" types are used.

Refer to p.1.2-5 for further information

CDRBUW20, 30- \square S

(Approx. 26.5: Connector style)

,
Note) All connecting port locations are on the body side for auto switch attached style.
Note) The dimensions above are of one right hand side operating style attached and one left hand side operating style attached.

Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CDRBUW10-■S	29	22	29	14	$4_{-0.004}^{-0.004}$	$9{ }_{-0.036}$	1	15.5	9	0.5	10.5	10.5	M5 X 0.8	3.5	M3 X 0.5	17	3	25	31	41	18.5
CDRBUW15-■S	34	25	29	18	$5^{-0.004}$	${ }^{12-0.043}$	1.5	15.5	10	0.5	10.5	10.5	M5 X 0.8	3.5	M 3×0.5	21	3	29	36	48	18.5
CDRBUW20-■S	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 X 0.8	4.5	M4 X 0.7	26	4	36	44	59	25
CDRBUW30-■S	50	47.5	31	22	$8^{-0.0005}$	$16-0.043$	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 X 0.8	29	4.5	42	52	69	25

CDRBUW Size-S

With Auto Switch Dimensions/Double Vane Style

* The dimensions below show fluctuation at intermediate positions during pressurization to A port or B port.

CDRBUW10- \square D

CDRBUW15/20/30- \square D
(The dimensions below are based on size 20.)

(Approx. 26.5: Connector style)

CDRBUW20, 30-■D

* 1) 24: When auto switches "D-90, 90A, S99(V), T99(V), S9P(V)" types are used. * 3) 25.5: When auto switches grommet type "D-R73, R80, S79,S7P, T79"

30: When auto switches "D-97, 93A" types are used.

* 2) 60° : When auto switches "D-90, 90A, 97, 93A" types are used.
69° : When auto switches "D-S99(V),T99(V), S9P(V)" types are used.
types are used.
34.5: When auto switches connector type "D-R73, R80, T79" types are used.

Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y	Z	Z
CDRBUW15-■D	34	25	29	18	$5_{-0.012}^{-0.004}$	${ }_{1-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 X 0.8	3.5	M3 X 0.5	21	3	29	36	48	18.5	$24^{* 1}$	$30^{* 1}$
CDRBUW20-■D	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 $\times 0.8$	4.5	M 4×0.7	26	4	36	44	59	25	$25.5{ }^{* 3} 34 .{ }^{* 3}$	
CDRBUW30-■D	50	47.5	31	22	$8_{-0.014}^{-0.005}$	16-0.043	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 $\times 0.8$	29	4.5	42	52	69	25		

Rotary Actuator
Free Mount Style with Angle Adjuster

How to Order

Auto Switch Specifications/ Refer to p.2.11-1 for further information on auto switch single body.

Series CD RBUWU

Construction/Single Vane, Double Vane

Component Parts

No.	Description	Material	Note
(1)	Stopper ring	Aluminum die cast	
(2)	Stopper lever	Carbon steel	
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber damper	NBR	
(5)	Stopper block	Carbon steel	Zinc chromated
(6)	Block retainer	Carbon steel	Zinc chromated
(7)	Cap	Resin	
(8)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(9)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(10)	Hexagon socket head cap bolt	Stainless steel	Special bolt
(11)	Joint	Aluminum alloy	Note)
(12)	Hexagon socket head cap screw	Stainless steel	For CDRBuw10, a hexagon nut is
	Hexagon nut	Stainless steel	
used to the part indicated with no. .12.			
(13)	Round head Phillips screw	Stainless steel	Note)
(14)	Magnet lever	-	Note)

ote) It is consisted of an auto switch unit and an angle adjusting unit. Refer to p.1.0-23 and 1.0-24 for further specifications.

With angle adjuster and auto switch CDRBUW10/15- \square © \quad CDRBUWU20/30 - \square s

- Single vane

This diagram shows the pressurized state of port B in the rotary actuator used for a 90° or 180° application.

- Double vane

This diagram shows the intermediate rotation position of the rotary actuator with port A or port B pressurized.

\triangle Precautions

. Caution

(1) If the rotary actuator body is used for a 90° or 180° application, the maximum angle of the rotation angle adjustment range will be limited by the rotation angle of the rotary actuator body. Make sure to take this into consideration when ordering equipment.
(Refer to the table below)

Rotation angle of the rotary actuator body	Adjustable range of rotating angle
$270^{\circ+4}$	0° to $230^{\circ}(\text { size } 10)^{* 1}$
	0° to $240^{\circ}($ Size $15,20,30)$
$180^{\circ+4} 0$	0° to 175°
$90^{\circ+4} 0_{0}^{4}$	0° to 85°

*1: The maximum adjustable angle of the angle adjustment unit for size 10 is 230°.
(2) All connecting port positions are on the body side.
(3) The allowable kinetic energy is the same as the specifications of the rotary actuator unit itself.
4) To make a 90° adjustment on the double vane type, use a rotary actuator for a 100° application.

With Angle Adjuster Dimensions/Single Vane Style

*The dimensions below show pressurization to B port of actuators for 90° and for 180°. They are based on size 20.

CRBUWU10/15/20/30-■S

CAD CRBUWU Size -S..........SCRB Size, \#6

Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CRBUWU10-■S	29	22	19.5	14	$4^{-0.004}$	${ }^{9}{ }_{-0.036}$	1	15.5	9	0.5	10.5	10.5	M5 X 0.8	3.5	M3 $\times 0.5$	17	3	25	31	41	3
CRBUWU15-■S	34	25	21.2	18	$5^{-0.004}$	${ }_{1}^{12} 00043$	1.5	15.5	10	0.5	10.5	10.5	M5 X 0.8	3.5	M3 $\times 0.5$	21	3	29	36	48	3.2
CRBUWU20-■S	42	34.5	25	20	$6_{-0.012}^{-0.004}$	14-0.043	1.5	17	10	0.5	11.5	11	M5 X 0.8	4.5	M4 $\times 0.7$	26	4	36	44	59	4
CRBUWU30-■S	50	47.5	29	22	$8^{-0.005}$	16-0.043	2	17.5	12	1	12	13	M5 X 0.8	5.5	M5 X 0.8	29	4.5	42	52	69	4.5

With Angle Adjuster Dimensions/Double Vane Style

*The dimensions below show rotation middle points during pressurization to A port or B port.

CRBUWU10-DD

CRBUWU15/20/30- \square D
The dimensions below are based on size 20.

Model	A	B	C	D	$\mathrm{E}(\mathrm{g} 6)$	$\mathrm{F}(\mathrm{h} 9)$	G	H	K	L	M	N	R	S 1	S 2	T	U	V	W	X	Y
CRBUWU15- D	34	25	21.2	18	$5_{-0.012}^{-0.004}$	$12-0.043$	1.5	15.5	10	0.5	10.5	10.5	$\mathrm{M} 5 \times 0.8$	3.5	$\mathrm{M} 3 \times 0.5$	21	3	29	36	48	3.2
CRBUWU20- -D	42	34.5	25	20	$6_{-0.0012}^{-0.004}$	$14-0.043$	1.5	17	10	0.5	11.5	11	$\mathrm{M} 5 \times 0.8$	4.5	$\mathrm{M} 4 \times 0.7$	26	4	36	44	59	4
CRBUWU30-DD	50	47.5	29	22	$8_{-0.014}^{-0.005}$	$16-0.043$	2	17.5	12	1	12	13	$\mathrm{M} 5 \times 0.8$	5.5	$\mathrm{M} 5 \times 0.8$	29	4.5	42	52	69	4.5

* The dimensions below show pressurization to A port of actuators for 90° and for 180°.

CDRBUWU10/15- \square S

CDRBUWU20/30-■S

Model	B	C	D	R
CDRBUWU10- $\square \mathbf{S}$	22	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBUWU15- \square S	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBUWU20- $\square \mathbf{S}$	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBUWU30- $\square \mathbf{S}$	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

Note)All the port locations are on the body side for angle adjuster attached style and auto switch attached style.

With auto switch
Note)The dimension of switch attached style shows on
 rhauo swich right side handling switch attached style and one left side handling switch attached style.

With Angle Adjuster and Auto Switch Dimensions/Double Vane Style

* The dimensions below show rotation middle point during pressurization to A port or B port.

CDRBUWU10/15-■D

Model	B	C	D	R
CDRBUWU10- $\square \mathrm{D}$	31	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBUWU15-םD	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBUWU20-םD	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBUWU30-	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

CDRBUWU20/30-■D

[^1]
Series CRBU
 Made to Order Specifications Change of Shaft End Shape/-XA1 to XA47
 Consult SMC for further information on specifications, dimensions and delivery.

A wide selection of models is now available, as non-standard shaft configurations for the CRB1 Series (Sizes: 50, 80, 100) are provided in 46 types of patterns.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
- The length of the unthreaded portion is 2 to 3 pitches
- The thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch $\mathrm{M} 3 \times 0.5, \mathrm{M} 4 \times 0.7, \mathrm{M} 5 \times 0.8$
- Enter the desired figures in the --- portion of the diagram.
- If the shaft is required to be shortened, refer to the list of the dimensions for patterns A17 to A19.
- If equipped with an auto switch, the manufacturable patterns are those for shafts J and W only.
- Consult SMC for made to order specifications other than those mentioned in "How to Order".
- Individual drawings for specific made to order models may not be available.
Consult SMC separately if drawings are needed.
How to Order
Without auto switch For 2 patterns (A1, C6)

With auto switch For pattern A1

Applicable patterns	
Size	10, 15, 20, 30
	XA 1 to XA23,
Pattern	XA31 to XA34,
	XA37 to XA47,
	XC 1 to XC 7, XC30

Applicable shaftiPattern combination table (Size: 10, 15, 20, 30) Shaft shape/Double shaft (W): Standard

Symbol	Specification	Shaft direction		$\begin{gathered} \text { Applicable } \\ \text { size } \end{gathered}$
		Upward	Downward	
-XA 1	Rod end female thread	\bigcirc	-	15, 20, 30
-XA 2	Rod end female thread	-	\bigcirc	
-XA 3	Rod end male thread	\bigcirc	-	10
-XA 4	Rod end male thread	-	\bigcirc	
-XA 5	Round shaft with steps	\bigcirc	-	
-XA 6	Round shaft with steps	-	\bigcirc	15
-XA 7	Round shaft with steps and male thread	\bigcirc	-	
-XA 8	Round shaft with steps and male thread	-	\bigcirc	20
-XA 9	Change in length of the standard product's chamfer part	\bigcirc	-	30
-XA10	Change in length of the standard product's chamfer part	-	\bigcirc	
-XA11	2 flat chamfers	\bigcirc	-	
-XA12	2 flat chamfers	-	\bigcirc	
-XA13	Shaft through hole	\bigcirc	\bigcirc	15
-XA14	Shaft through hole and female thread	\bigcirc	-	20
-XA15	Shaft through hole and female thread	-	\bigcirc	
-XA16	Shaft through hole and female thread	\bigcirc	\bigcirc	30
-XA17	Shaft is shortened	\bigcirc	-	10
-XA18	Shaft is shortened	-	\bigcirc	
-XA19	Shaft is shortened	\bigcirc	\bigcirc	15
-XA20	Reverse mounting of the shaft	\bigcirc	\bigcirc	
-XA21	Round shaft with steps and two flat chamfers	\bigcirc	-	20
-XA22	Round shaft with steps and two flat chamfers	-	\bigcirc	30
-XA23	Right angled chamfer	\bigcirc	-	

Shaft shape/J, K, S, T, Y: Made to order

Symbol	Specification	${ }_{\text {direction }}^{\text {Shaft }}$ Applicable shaft type					Applicable size
			J K	K S	T	Y	
-XA31	Rod end female thread	-	-	-	-		15
-XA32	Rod end female thread	-	- -	-	-		
-XA33	Rod end female thread	\bigcirc	0	-	\bigcirc		
-XA34	Rod end female thread	- 0		- -	\bigcirc		30
-XA37	Round shaft with steps	\bigcirc	-	-	\bigcirc		10, 15,
-XA38	Round shaft with steps	- 0	-	-	-		20, 30
-XA39	Shaft through hole		-				
-XA40	Shaft through hole		-	-	-		15
-XA41	Shaft through hole		-		-		
-XA42	Shaft through hole and female thread		-	-			20
-XA43	Shaft through hole and female thread		-	- -	\bigcirc		30
-XA44	Shaft through hole and female thread			- -	-		
-XA45	Intermediate chamfer	- -		- -	\bigcirc		10, 15,
-XA46	Intermediate chamfer	\bigcirc	-	-	-		20,30
-XA47	Key groove	\bigcirc			-		20,30
-XC 1	A connecting port is added to the side end of the body (A)	- -					
-XC 2	2 thread parts of the body (B) are used as through holes	- -					
-XC 3	Position of the tightening bolts are changed	- -					
-XC 4	Rotating range is changed. (90 0 to the right from the siating point)	- -					15
-XC 5	Rotation ange is changed. (45 '0 the eft from the statring point)	- -					20
-XC 6	Rotation angle is charged. (90 0 to the eftif fom the siating point)	- -			-		
-XC 7	Reverse mounting of the shaft	-	-	-	-		30
-XC30	Fluorine grease	-			-		

[^2]
Series CRBU
 Made to Order Specifications Change of Shaft End Shape/-XA1 to -XA17
 Consult SMC for further information on specifications, dimensions and delivery.

Change of shaft end shape

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
- The length of the unthreaded portion is 2 to 3 pitches.
- Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
- Enter the desired figures in the $1--$ n portion of 2 the diagram.
-To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A3

The shaft can be further shortened by machining male threads on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

Size	X	Lmax	Q
$\mathbf{1 0}$	7 to 14	X-3	M4
$\mathbf{1 5}$	8.5 to 18	X-3.5	M5
$\mathbf{2 0}$	10 to 20	X-4	M6
$\mathbf{3 0}$	13 to 22	X-5	M8

Symbol: A6
The shaft can be further shortened by machining a round shoulder on the long end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

		(mm)
Size	Y	Lmax
$\mathbf{1 0}$	2 to 8	Y-1
$\mathbf{1 5}$	3 to 9	Y-1.5
$\mathbf{2 0}$	3 to 10	Y-1.5
$\mathbf{3 0}$	3 to 13	Y-2

Symbol: A1

The shaft can be further shortened by machining female threads on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

- Size 10 mm is not manufaturable.
- L dimension (maximum size) is 2 times as large as the thread size as a rule.

		(mm)
Size	X	Q
15	1.5 to 18	M3
20	1.5 to 20	M3, M4
30	2 to 22	M3, M4, M5

Symbol: A4

The shaft can be further shortened by machining male threads on the long end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

Symbol: A7

The shaft can be further shortened by machining a round shoulder and machining male threads on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)
$\mathrm{Q}=\mathrm{M}_{\llcorner }^{[-]}$

Symbol: A2

The shaft can be further shortened by machining female threads on the long end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

- Size 10 mm is not manufaturable.
- L dimension (maximum size) is 2 times as large as the thread size as a rule. Ex.) M3: $\mathrm{L}=6 \mathrm{~mm}$
(mm)

Size				Y	Q
15	1.5 to 9	M3			
20	1.5 to 10	M3, M4			
30	2 to 13	M3, M4, M5			

Symbol: A5

The shaft can be further shortened by machining a round shoulder on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

	(mm)	
Size	X	Lmax
$\mathbf{1 0}$	2 to 14	$X-1$
$\mathbf{1 5}$	3 to 18	$X-1.5$
$\mathbf{2 0}$	3 to 20	$X-1.5$
$\mathbf{3 0}$	3 to 22	$X-2$

Symbol: A8

The shaft can be further shortened by machining a round shoulder and machining male threads on the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

(mm)			
Size	Y	Lmax	Q
$\mathbf{1 0}$	5.5 to 8	Y-1	M3
$\mathbf{1 5}$	7.5 to 9	Y-1.5	M3, M4
$\mathbf{2 0}$	9.5 to 10	Y-1.5	M3, M4, M5
$\mathbf{3 0}$	11 to 13	Y-2	M3, M4, M5, M6

*1.5mm or more, L_{1} : Standard chamfering part
Symbol: A15 Applicable only to single vane.
Machine a special end (at the short end of the shaft), and machine female threads in the through hole at the short end of the shaft, thus creating a through hole to serve as the pilot hole.

- Size 10 is not manufacturable
-The L dimension (maximum) is, as a rule, twice the
size of the bolt.
Example: For M4 bolt: L max. $=8 \mathrm{~mm}$

Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-	-	$\varnothing 4.2$

Symbol: A10

The shaft can be further shortened by changing the length of the standard flat of the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

Symbol: A13 Applicable only to single vane.
Shaft through hole

- For size $15 \mathrm{~mm}, \mathrm{~d}_{1}=\varnothing 2.5, \mathrm{~L}_{1}=\max .18$.
- For size 15 mm only, inscribe the L1, L2, and d1
dimensions when $=d 2$ is 2.6 or more
- Sizes 20 mm and $30 \mathrm{~mm}, \mathrm{~d}_{1}=\mathrm{d} 2$
- The minimum range of the machinable dimension for the d_{2} area is 0.1 mm . (mm)

Size	d 1	d 2
15	$\varnothing 2.5$	$\varnothing 2.5$ to 3
20	-	$\varnothing 2.5$ to 4
30	-	$\varnothing 2.5$ to 4.5

Symbol: A16 Applicable only to single vane.

Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as pilot holes.

- Size 10 is not manufacturable.
-The L dimension (maximum) is, as a rule, twice the size of the bolt.
Example: For M5 bolt: L max. $=10 \mathrm{~mm} \quad(\mathrm{~mm})$

Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-	-	$\varnothing 4.2$

Symbol: A11

The shaft can be further shortened by machining double flats on the long end of the shaft. (If no changes are to be made to the standard flat, and the shaft is not to be shortened, leave the L1 and X dimensions blank.)

- Size 10 is not manufacturable.
- The L dimension (maximum) is, as a rule, twice the size of the bolt. Example: For M3 bolt: L max. $=6 \mathrm{~mm}$

Size	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 X 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$
M5 X 0.8	-	-	$\varnothing 4.2$

Symbol: A17

Shorten the long end of the shaft.

Short
side

Size	X
$\mathbf{1 0}$	1 to 14
15	1.5 to 8
$\mathbf{2 0}$	1.5 to 20
$\mathbf{3 0}$	2 to 22

(mm)

Size	X	L1	L2max
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$	$X-1$
$\mathbf{1 5}$	3 to 18	$10-(18-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{2 0}$	3 to 20	$10-(20-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{3 0}$	5 to 22	$12-(22-X)$ to $(X-2)$	$X-2$

The "*" symbol indicates 0.5 mm minimum, L_{1} is the standard flat.

Symbol: A14 Applicable only to single vane.

Machine a special end (at the long end of the shaft), and machine female threads in the through hole at the long end of the shaft, thus creating a through hole to serve as the pilot hole.

\qquad

(mm)	
Size	X
$\mathbf{1 0}$	1 to 14
$\mathbf{1 5}$	1.5 to 8
$\mathbf{2 0}$	1.5 to 20
$\mathbf{3 0}$	2 to 22

Series CRBU

Made to Order Specifications
Change of Shaft End Shape/-XA18 to -XA23
Consult SMC for further information on specifications, dimensions and delivery.
Additional reminders

- Enter the dimensions within a range that allows
for additional machining.
- SMC will make appropriate arrangements if no
dimensional, tolerance, or finish instructions are
given in the diagram.
-The length of the unthreaded portion is 2 to 3
pitches.
-Unless specified otherwise, the thread pitch is
based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7 ; M5 X 0.8
- Enter the desired figures in the L_{--}portion of
the diagram.
- To shorten the shaft, use the dimensional tables
for patterns A17 to A 19 for reference.

Symbol: A18

Shorten the short end of the shaft.

Symbol: A21

The shaft can be further shortened by machining a round shoulder and double flats on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)

					(mm)
Size	X	L1max	L2		

Symbol: A19

Shorten both the long end and the short end of the shaft.

Symbol: A22

The shaft can be further shortened by machining a round shoulder and double flats on the short end of the shaft. (If the shaft is not to be shortened, leave Y dimension blank.)

			(mm)	
Size	Y	L1max	L2	
$\mathbf{1 0}$	4 to 8	Y-2.5	$\mathrm{L} 1+1.5$	
$\mathbf{1 5}$	4.5 to 9	$\mathrm{Y}-3$	$\mathrm{~L} 1+1.5$	
$\mathbf{2 0}$	5 to 10	$\mathrm{Y}-3.5$	$\mathrm{~L} 1+2$	
$\mathbf{3 0}$	$\mathbf{7}$ to 13	$\mathrm{Y}-5$	$\mathrm{~L} 1+3$	

Symbol: A23

The shaft can be further shortened by milling perpendicular double flats on the long end of the shaft. (If no changes are to be made to the standard flat and the shaft is not to be shortened, leave the L1 and X dimensions blank.)

The "*" mark indicates 0.5 minimum.
L_{1} is the standard fla

Size	X	L L1	L2max
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$	$X-1$
$\mathbf{1 5}$	3 to 18	$10-(18-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{2 0}$	3 to 20	$10-(20-X$ to $(X-1.5)$	$X-1.5$
$\mathbf{3 0}$	5 to 22	$12-(22-X)$ to $(X-2)$	$X-2$

Series CRBU

Made to Order Specifications
 Change of Shaft End Shapel-XA31 to XA40

Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

-Enter the dimensions within a range that allows for additional machining.
-SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
-The length of the unthreaded portion is 2 to 3 pitches.
-Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8

- Enter the desired figures in the ${ }_{L_{--}^{--}}^{-〕}$ portion of the diagram.
-To shorten the shaft, use the dimensional tables for patterns A17-A19 for reference.

Symbol: A33

Machine female threads into the long end of the shaft.
-The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)
-Applicable shaft configurations - shafts J, K, T

Shaft Size	Q		
	J	K	T
10	Not available		
15	M3		
20	M3, M4		
30	M3, M4, M5		

Symbol: A38

The shaft can be further shortened by machining a round shoulder on the short end of the shaft. (If the shaft is not to be shortened, leave the Y dimension blank.)

- Applicable shaft configurations - shaft K

	(mm)	
Size	Y	Lmax
$\mathbf{1 0}$	2 to14	$\mathrm{Y}-1$
$\mathbf{1 5}$	3 to 18	$\mathrm{Y}-1.5$
$\mathbf{2 0}$	3 to 20	$\mathrm{Y}-1.5$
$\mathbf{3 0}$	3 to 22	$\mathrm{Y}-\mathbf{2}$

Symbol: A31

Machine female threads into the long end of the shaft
-The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)

- Applicable shaft contigurations - shafts S, Y

Symbol: A34

Machine female threads into the short end of the shaft. The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M3 bolt: L max. $=6 \mathrm{~mm}$)
However, in the case of the M5 bolt for shaft S , it is 1.5 times the size of the bolt.

- Applicable shaft configurations - shafts J, K, T

Symbol: A39 \quad Applicable only to single vane style
Shaft through hole (Shafts S and Y are machined additionally)

-Size 10 is not manuluacurable

- For size 15 is $\mathrm{d} 1=02.5, \mathrm{~L} 1=$ max. X 18

The minimum range of the machinable dimension for the d 2 area is 0.1 mm . (mm) -For sizes 20 and 30 are $\mathrm{d} 1=\mathrm{d} 2$. - With size 15, enter the L1, L2, and d1 dimensions when d2 is $\varnothing 2.6$ or more -Applicable shaft configurations shatts S, Y

Symbol: A32

Machine female threads into the short end of the shaft.
-The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M4 bolt: L max. $=8 \mathrm{~mm}$) - Applicable shaft contigurations - shafts S,Y

	Q	
Size	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A37

The shaft can be further shortened by machining a round shoulder on the long end of the shaft. (If the shaft is not to be shortened, leave the X dimension blank.)
-Applicable shaft configurations - shafts $\mathrm{J}, \mathrm{K}, \mathrm{T}$

	(mm)					
Shaft form	J	K	T	J	K	T
Size	X			Lmax		
10	2 to 14			X-1		
15	3 to 18			X-1.5		
20	3 to 20			$\mathrm{X}-1.5$$\mathrm{X}-2$		
30	3 to 22					

Symbol: A40 Applicable only to single vane style.
Shaft through hole (Shafts K and T are machined additionally)

- Size 10 is not manufacturable.

- -or size 15 is $\mathrm{d} 1=02.5, \mathrm{~L} 1=$ max. X 18

The minimum range of the machinable dimension for the d 2 area is 0.1 mm . (mm) - For sizes 20 and 30 are $11=\mathrm{d} 2$. - With size 15 , enter the $\mathrm{L} 1, \mathrm{~L} 2$, and $d 1$ dimensions when d2 is 02.6 or more. - Applicable shaft contigurations shafts K, T

$\mathrm{S}^{\text {Sianf fomm }}$	K ${ }^{\text {T }}$	K
Size	d1	d2
15	2.5	2.5 to 3
20	-	2.5 to 4
30	-	2.5 to 4.5

Series CRBU

Made to Order Specifications
Change of Shaft End Shapel-XA41 to XA47
Consult SMC for further information on specifications, dimensions and delivery.

Additional reminders

- Enter the dimensions within a range that allows for additional machining.
- SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are given in the diagram.
-The length of the unthreaded portion is 2 to 3 pitches.
-Unless specified otherwise, the thread pitch is based on coarse metric threads.
$\mathrm{P}=$ thread pitch
M3 X 0.5; M4 X 0.7; M5 X 0.8
- Enter the desired figures in the [-] portion of the diagram.
-To shorten the shaft, use the dimensional tables for patterns A17 to A19 for reference.

Symbol: A41 Applicable only to single vane style.
machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

- Size 10 is not manufacturable.
-The L dimension (maximum) is, as a rule, twice the size of the bolt. (Example: For M5 bolt: L max. $=10 \mathrm{~mm}$.)
However, for the short end of shaft T: For M5 bolt: L max. $=7.5 \mathrm{~mm}$. - Applicable shaft configurations - shafts K, T

Size	15		20		30	
Thread	K	T	K	T	K	T
M3 X 0.5	2.5		2.5		2.5	
M4 X 0.7	-		3.3		3.3	
M5 X 0.8	-		-		4.2	

Symbol: A46

The shaft can be further shortened by machining an intermediate flat on the short end of the shaft (the position is that of the standard flat.)

-Size 10 is not manufacturable
-For size 15 is $\mathrm{d} 1=2.5, \mathrm{~L} 1=$ max. 18
The minimum range of the machinable dimension for the d 2 area is 0.1 mm .
Enter the $\mathrm{L} 1, \mathrm{~L} 2$, and d 1 dimensions when d 2 is $ø 2.6$ or more.
-For sizes 20 and 30 are $\mathrm{d} 1=\mathrm{d} 2$.
-Applicable shaft contiguration - shaft J pilot holes.

$$
\begin{aligned}
& \text { Symbol: A44 Applicable only to single vane style. } \\
& \text { Machine special ends (at both ends of the shaft), and } \\
& \text { machine female threads in the through holes at both ends } \\
& \text { of the shaft, thus creating through holes to serve as the } \\
& \begin{array}{l|l|c|c|}
\hline & \text { Size } & \text { d1 } & \text { d2 } \\
\cline { 2 - 4 } & \mathbf{1 5} & 2.5 & 2.5 \text { to } 3 \\
\hline \mathbf{2 0} & - & 2.5 \text { to } 4
\end{array}
\end{aligned}
$$

- Size 10 is not
manufacturable.
- The L dimension (maximum) is, as a rule, twice the size of the bolt.
(Example: For M5 bolt: L max. $=10 \mathrm{~mm}$.)

- Applicable shaft

Size			
Thread	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$
M3 X 0.5	2.5	2.5	2.5
M4 X 0.7	-	3.3	3.3
M5 X 0.8	-	-	4.2

Symbol: A47

Machining a key groove in the long end of the shaft (the position is that of the standard flat). A key must be ordered separately.

Symbol: A42 Applicable only to single vane style.
Machine special ends (at both ends of the shaft), and machine female threads in the through holes at both ends of the shaft, thus creating through holes to serve as the pilot holes.

- Size 10 is not manufacturable
- The L dimension (maximum) is, as
a rule, twice the size of the bolt.
(Example: For M5 bolt: L max. $0=10 \mathrm{~mm}$.)
However, for the short end of shaft S : For M5 bolt: L max. $=7.5 \mathrm{~mm}$.
- Applicable shaft contigurations - shafts S, Y

Symbol: A45

The shaft can be further shortened by machining an intermediate flat on the long end of the shaft (the position is that of the standard flat.)

-Applicable shaft configurations — Shaft J, K, T (mm)

	X		W		L1max			L2max		
	J	K T	J	K T	J	K	T	J	K	T
10	6.5 to 14		0.5 to 2		X-3			L1-1		
15	8 to 18		0.5 to 2.5		X-4			L1-1		
20	9 to 20		0.5 to 3		X-4.5			L1-1		
30	11.5 to 22		0.5 to 4		X-5			L1-2		

§ Caution

Symbols A45, A46, and dimensions W and (L1-L2)
The intermediate flat may interfere with the center hole if dimensions W and ($\mathrm{L} 1-\mathrm{L} 2$) are at the measurements given below.

Size	W	$\mathrm{L} 1-\mathrm{L} 2$
$\varnothing 10$	1 to 2	1 to 3
$\varnothing 15$	1.5 to 2.5	1 to 3
$\varnothing 20$	2 to 3	1 to 3
$\varnothing 30$	3 to 4	2 to 3

Series CRBU
 Made to Order Specifications
 -XC1 to XC4

Consult SMC for further information on specifications, dimensions and delivery.

CRBUWP Refer to "How to Order" on p.1.2-19. XC3

Symbol

Positions of the body tightening bolts are changed

Positions of the body tightening bolts are changed. Size 10 is not available.

2 thread parts of the body (B)
are machined to be through holes.
*SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are indicated.

2 thread parts of the body (B) are used as through holes. (Aluminum is used, for when the additional machined part is untreated.)
 (Standard)

Size	d
$\mathbf{1 0}$	3.4
$\mathbf{1 5}$	3.4
$\mathbf{2 0}$	4.5
$\mathbf{3 0}$	5.5

CRBUWP Refer to "How to Order" on p.1.2-19. XC4
*SMC will make appropriate arrangements if no dimensional, tolerance, or finish instructions are indicated.
*There are no standard chamfering parts on shafts S and

SeriesCRBU Made to Order Specifications Change in Angle of Rotation/-XC5 to XC6 Reverse Mounting of Rotary Shatt-XC7, Fluorine Greasel-XC30

Consult SMC for further information on specifications, size and delivery.

* Write required value in \qquad \square in the diagram below.
* No basic chamfer position on S and Y shaft.

Rotation starting point is on the one chamfering position when pressurized to B port.

Applicable only to single vane style
Change in angle of rotation
Rotation starting point at the angle of 90° Error in the angle at from 0° to $+5^{\circ}$ for "CRBUW10".

$$
\begin{aligned}
& \theta=\square^{\circ}+4^{\circ} \\
& \max .110^{\circ}
\end{aligned}
$$

CRBUWP Refer to "How to Order" on p.1.2-19. XC7

Dimensions

		(mm)
Size	Y	X
$\mathbf{1 0}$	19	3
$\mathbf{1 5}$	20.5	6.5
$\mathbf{2 0}$	22.5	7.5
$\mathbf{3 0}$	26.5	8.5

Symbol

9

Fluorine Grease
-XC30

Fluorine Grease

Lubricant oil on the seal part of packing and inner wall of the cylinder is changed to fluorine grease.

Shaft styles except for standard shaft style (W) of series CRBU.

Rotary Actuator: Free Mount Type Vane Style Series CRBU2
 Size: 10, 15, 20, 30, 40

Rotary Actuator: Free Mount Type Vane Style

Series CRBU2
Size: 10, 15, 20, 30, 40

How to Order

Applicable Auto Switch/Refer to page 11-1-1 for further information on auto switches.

Applicable size	Type	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	Lead wire type	Lead wire length (m) *				Applicable load	
					DC		AC			$\begin{gathered} \hline 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$	None (N)		
For 10 and 15	Reed switch	Grommet	No	2-wire	24 V	$\begin{array}{\|c} \hline 5 \mathrm{~V}, 12 \mathrm{~V} \\ \hline 5 \mathrm{~V}, 12 \mathrm{~V}, \\ 100 \mathrm{~V}, \\ \hline \end{array}$	$5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$	90	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	IC circuit	Relay, PLC
							$\begin{aligned} & \begin{array}{l} 5 \mathrm{~V}, 12 \mathrm{~V} \\ 24 \mathrm{~V}, 100 \end{array} \\ & \hline \end{aligned}$	90A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
			Yes			-	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-	
	Solid state switch						100 V	93A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
						-	-	T99		\bigcirc	\bigcirc	-	-		
								T99V		\bigcirc	\bigcirc	-	-		
				3-wire (NPN) 3-wire (PNP)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S99		\bigcirc	\bigcirc	-	-	IC circuit	
								S99V		-	\bigcirc	-	-		
								S9P		\bigcirc	\bigcirc	-	-		
								S9PV		-	\bigcirc	-	-		
For 20, 30, and 40	Reed switch	Grommet	Yes	2-wire	24 V	-	100 V	R73	Heavy-duty cord	-	\bigcirc	-	-	-	Relay, PLC
		Connector						R73C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet	No			$\begin{aligned} & 48 \mathrm{~V}, \\ & 100 \mathrm{~V} \end{aligned}$	$\begin{gathered} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 100 \mathrm{~V} \\ \hline \end{gathered}$	R80		-	\bigcirc	-	-	IC circuit	
		Connector						R80C		-	\bigcirc	\bigcirc	\bigcirc		
	Solid state switch	Grommet	Yes			-	-	T79		\bigcirc	\bigcirc	-	-	-	
		Connector						T79C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79		-	\bigcirc	-	-	IC circuit	
				3-wire (PNP)				S7P		-	\bigcirc	-	-		

* Lead wire length symbols:
$\begin{array}{rccc}0.5 \mathrm{~m} & \ldots & \text { Nil } & \text { (Example) R73C } \\ 3 \mathrm{~m} & \ldots \ldots & \mathrm{~L} & \text { (Example) R73CL } \\ 5 \mathrm{~m} & \ldots \ldots & \text { Z } & \text { (Example) R73CZ } \\ \text { None } & \text { R.... } & \mathrm{N} & \text { (Example) R73CN }\end{array}$

Single Vane Specifications

Model (Size)	CRBU2W10-7	CRBU2W15-■S	CRBU2W20-■S	CRBU2W30-■	CRBU2W40-■S
Rotating angle	$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Speed regulation range ($\left.\mathrm{sec} / 90^{\circ}\right)^{(1)}$	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy ${ }^{(2)}$	0.00015	0.001	0.003	0.02	0.04
(J)		0.00025	0.0004	0.015	0.033
Shaft Allowable radial load (N)	15		25	30	60
load Allowable thrust load (N)	10		20	25	40

Bearing typ

Port location	Side ported or Axial ported		
Shaft type	Double shaft (Double shaft with single flat on both shafts)	(Long shathe eshath Singef flat)	
Ang			

Note 3) Adjustment range in the table is for 270°. For 90° and 180°, refer to page 11-3-5.
Double Vane Specifications

Model (Size)	CRBU2W10-■	CRBU2W15-7D	CRBU2W20-םD	CRBU2W30-7	CRBU2W40-7
Rotating angle	$90^{\circ}, 100^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Speed regulation range ($\left.\mathrm{sec} / 90^{\circ}\right)^{(1)}$	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy (J)	0.0003	0.0012	0.0033	0.02	0.04
Shaft Allowable radial load (N)	15		25	30	60
load Allowable thrust load (N)	10		20	25	40
Bearing type	Bearing				
Port location	Side ported or Axial ported				
Shaft type	Double shaft (Double shaft with single flat on both shafts)				
Angle adjustable ${ }^{(3)}$	0 to 90°				0 to 230°

.) Note 1) Make sure to operate within the speed regulation range. Exceeding the maximum speeds can cause the unit to stick or not operate.
Note 2) The upper numbers in this section in the table indicate the energy factor when the rubber bumper is used (at the end of the rotation), and the lower numbers indicate the energy factor when the rubber bumper is not used.
Note 3) Adjustment range in the table is for 100°. For 90°, refer to page 11-3-5.

Inner Volume and Connection Port

4 Caution

Fe sure to read before handling. Refer I I to pages 11-13-3 to 4 for Safety I I Instructions and Common Precautions I Ion the products mentioned in this I I catalog, and refer to pages 11-1-4 to 6 I I for Precautions on every series. JIS Symbol

Series CRBU2

Rotary Actuator: Replaceable Shaft
A shaft can be replaced with a different shaft type except standard shaft type (W).

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note 1) Only side ports are available except for basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note 1) Only side ports are available except basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

Copper-free

Use the standard vane type rotary actuators in all series to prevent any adverse effects to color CRTs due to copper ions or fluororesin.

Specifications

Vane type	Single/Double vane				
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
Operating pressure range (MPa)	0.2 to 0.7	0.15 to 0.7	0.15 to 1.0		
Speed regulation range $\left(\mathrm{s} / 90^{\circ}\right)$	Side ported or Axial ported				
Port location	Sountable				
Shaft type	Double shaft (Shaft with single flat on both shafts)	 Single flat			
Auto switch					

. Precautions

FBe sure to read before handling. Refer to pages 11-13-3 I It to 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

\triangle Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}$	0 to $230^{\circ}(\text { Size: } 10,40)^{*}$
	0 to $240^{\circ}($ Size: $15,20,30)$
$180^{\circ+4}$	0 to 175°
$90^{\circ+4}$	0 to 85°

* The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.

2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Series CRBU2

Effective Output

Chamfered Position and Rotation Range: Top View from Long Shaft Side

Chamfered positions shown below illustrate the conditions of the actuators when B port is pressurized.

2

* For size 40 actuators, a parallel keyway will be used instead of chamfer.

Note) For single vane style, rotation tolerance of $90^{\circ}, 180^{\circ}$, and 270° actuators ${ }_{0}^{+5}$ will be for size 10 actuators only. For double vane style, rotation tolerance of 90° actuators ${ }_{0}^{+5^{\circ}}$ will be for size 10 actuators only.

Construction: 10, 15, 20, 30, 40

Single vane type

Standard: CRBU2W10/15/20/30/40- \square S (3 female threads (one of them is indicated with "**") spaced equally apart in 120° are not available for size 10 .)

With auto switch unit CDRBU2W10/15- $\square_{\mathrm{D}}^{\mathrm{S}}$

CDRBU2W20/30/40- \square_{D}^{S}
CDRBU2W40-S/D

Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Holding block (A)	Aluminum alloy
(5)	Holding block (B)	Aluminum alloy
(6)	Holding block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
(10)	Magnet	Magnetic body
(11)	Arm	Stainless steel
(12)	Hexagon socket head set screw	Stainless steel
(13)	Round head Phillips screw	Stainless steel
(14)	Round head Phillips screw	Stainless steel
(15)	Round head Phillips screw	Stainless steel
(16)	Round head Phillips screw	Stainless steel
(17)	Rubber cap	NBR (size 40 only)

* For CDRBU2W10, two round head Phillips screws (13), are required.

Series CRBU2

Construction: 10, 15, 20, 30, 40

Double vane type

Standard: CRBU2W10-■D

For 90°
(Top view from long shaft side)

Standard: CRBU2W15/20/30/40- \square D

For 90°
(Top view from long shaft side)

(Long shaft side)

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Cover	Aluminum alloy	
(10)	Plate	Resin	
(11)	Hexagon socket head cap screw	Stainless steel	Special screw
(12)	O-ring	NBR	
(13)	Stopper seal	NBR	
(14)	Gasket	NBR	
(15)	O-ring	NBR	
(16)	O-ring	NBR	

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Hexagon socket head cap screw	Stainless steel	Special screw
$(10$	O-ring	NBR	
(11)	Stopper seal	NBR	

Dimensions: 10, 15, 20, 30
Single vane type \bullet Following illustrations show actuators for 90° and 180° when B port is pressurized.

CRBU2W \square - \square S
<Port location: Side ported>

CRBU2W $\square-\square$ SE
<Port location: Axial ported>

CRBU2W10■- \square SE
<Port location: Axial ported>

Model	A	B	C	D	E (g6)	F (h9)	G	H	J	K	L	M	N	P	Q1	(Depth) Q2	R	S1	S2	T	U	V	W	X
$\begin{aligned} & \text { CRBU2W10- } \square \text { S } \\ & \hline \text { CRBU2W10- } \square \text { SE } \\ & \hline \end{aligned}$	29	22	8	14	$4_{-0.012}^{-0.004}$	$9_{-0.036}^{0}$	1	15.5	5	9	0.5	$\begin{array}{\|c} 10.5 \\ \hline 8.5 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 10.5 \\ \hline 9.5 \\ \hline \end{array}$	24	-	$\begin{array}{\|c\|} \hline \text { M3 } \\ (4) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { M5 } \times 0.8 \\ \hline \text { M } \times 0.5 \\ \hline \end{array}$	3.5	M3 x 0.5	17	3	25	31	41
CRBU2W15- \square S CRBU2W15- \square SE	34	25	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	6	10	0.5	$\begin{array}{\|l\|} \hline 10.5 \\ \hline 11 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.5 \\ \hline 10 \\ \hline \end{array}$	29	M3 x 0.5	-	$\begin{array}{\|l\|} \hline \text { M5 } \times 0.8 \\ \hline \text { M3 } \times 0.5 \\ \hline \end{array}$	3.5	M3 x 0.5	21	3	29	36	48
CRBU2W20- \square S	42	34.5	10	20	$6_{-0.012}^{-0.04}$	$14{ }_{-0.043}^{0}$	1.5	17	7	10	0.5	$\begin{array}{\|l\|} \hline 11.5 \\ \hline 14 \\ \hline \end{array}$	$\frac{11}{13}$	36	M4 x 0.7	-	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59
CRBU2W30- \square S	50	47.5	13	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	8	12	1		$\frac{13}{14}$	43	M5 x 0.8	-	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69

Series CRBU2

Dimensions: 10, 15, 20, 30
Double vane type \bullet llustrations below show the intermediate rotation position when A or B port is pressurized.

CRBU2W10-■D

<Port location: Side ported>

CRBU2W15/20/30-DD
<Port location: Side ported>(lllustrations below show size 30 actuators.)

CRBU2W15/20/30-■DE <Port location: Axial ported>

Model	A	B	C	D	E(g6)	F(h9)	G	H	J	K	L	M	N	P	Q1	R	S1	S2	T	U	V	W	X
CRBU2W15-DD	34	25	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	6	10	0.5	10.510 .5		29	M3 x 0.5	M5 0.8	3.5	M3 x 0.5	21	3	29	36	48
CRBU2W15- \square DE													10			M3 $\times 0.5$							
CRBU2W20-DD	42	34.5	10	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	1.5	17	7	10	0.5	11.5	11	36	M4 x 0.7	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59
CRBU2W20- \square DE													13										
CRBU2W30-DD	50	47.5	13	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{-0.00}$	217.5		8	12	1		13	43	M5 x 0.8	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69
CRBU2W30-DDE									15.5														

Dimensions: 40

Single vane type/Double vane type

CRBU2W40-■S/D

<Port location: Side ported>

D-

20-

CRBU2W40-■SE/DE

<Port location: Axial ported>

Series CRBU2

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Single vane type Following illustrations show actuators for 90° and 180° when B port is pressurized.
CDRBU2W10/15- \square S
CDRBU2W20/30-■S

*1. The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99 and D-S9P(V).
The length is 30 when any of the following auto switches are used: D-97 and D-93A
*2. The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97 and D-93A.
The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V) and D-S9P(V).

For rotary actuators with auto switch unit connection ports are side ports only.

- The above exterior view drawings illustrate rotary actuators with one right-hand and one left-hand

(mm)																					
Model	A	B	C	D	E(g6)	$F(\mathrm{~h} 9)$	G	H	K	L	M	N	R	S1	S2	T	\mathbf{U}	V	W	X	Y
CDRBU2W10- \square S	29	22	29	14	$4_{-0.012}^{-0.004}$	$9_{-0.036}^{0}$	1	15.5	9	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	17	3	25	31	41	18.5
CDRBU2W15-■S	34	25	29	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	21	3	29	36	48	18.5
CDRBU2W20- \square	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 x 0.8	4.5	$\mathrm{M} 4 \times 0.7$	26	4	36	44	59	25
CDRBU2W30- \square	50	47.5	31	22	$8{ }_{-0.014}^{-0.005}$	$16-0.043$	2	17.5	12	1	12	13	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69	25

Double vane type - Illustrations below show the intermediate rotation position when A or B port is pressurized.

CDRBU2W10- \square D

CDRBU2W15/20/30-■D
(Illustrations below show size 20 actuators.)

(Approx. 26.5 for connector type) CDRBU2W20/30-■D

* 1. The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99 and D-S9P(V).

The length is 30 when any of the following auto switches are used: D-97 and D-93A.

* 2. The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97 and D-93A.

The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V) and D-S9P(V).

* 3. The length (Dimension S) is 25.5 when any of the following grommet type auto switches are used: D-R73, D-R80, D-S79, D-T79, and D-S7P.

The length (Dimension S) is 34.5 when any of the following connector type auto switches are used: D-R73, D-R80, and D-T79.

Model	A	B	C	D	E (g6)	F (h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y		Z
CDRBU2W15- \square D	34	25	29	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	21	3	29	36	48	18.5	$24 *$	$30{ }^{* 1}$
CDRBU2W20- \square D	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59	25	25.5	$34.5{ }^{* 3}$
CDRBU2W30-■D	50	47.5	31	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69	25		

Series CRBU2

Dimensions: 40 (With auto switch unit)

Single vane type/Double vane type

CDRBU2W40-■S/D

Rotary Actuator with Angle Adjuster Free Mount Type, Vane Style Series CRBU2WU
 Size: 10, 15, 20, 30, 40

How to Order

Construction: 10, 15, 20, 30, 40

Single vane type/Double vane style
With angle adjuster
CRBU2W10/15/20/30/40- $\square_{\text {D }}^{\text {S }}$

Single vane

Double vane

Component Parts

No.	Description	Material	Note
(1)	Stopper ring	Aluminum die-casted	
(2)	Stopper lever	Carbon steel	Zinc chromated
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber bumper	NBR	Zinc chromated
(5)	Stopper block	Carbon steel	
(6)	Block retainer	Carbon steel	Special screw
(7)	Cap	Resin	Special screw
(8)	Hexagon socket head cap screw	Stainless steel	Special screw
(9)	Hexagon socket head cap screw	Stainless steel	
(10)	Hexagon socket head cap screw	Stainless steel	
(11)	Joint	Aluminum alloy	Note)
(12)	Hexagon socket head set screw	Stainless steel	Hexagon nut will be used for CDRBU2W10 only.
	Hexagon nut	Stainless steel	
(13)	Round head Phillips screw	Stainless steel	Note)
(14)	Magnet lever	-	Note)

\square Note) These items (no. 11, 13, and 14) consist of auto switch unit and angle adjuster. Refer to page 11-4-20 to 11-4-27 for detailed specifications. Stainless steel is used for size 10 only.

With angle adjuster + Auto switch unit CDRBU2WU10/15- $\square_{\mathrm{D}}^{\mathrm{S}} \quad$ CDRBU2WU20/30/40- $\square_{\mathrm{D}}^{\mathrm{S}}$

CRB2
CRBU2

- For single vane type:

Illustrations above show actuators for 90° and 180° when B port is pressurized.

- For double vane type:

Illustrations above show the intermediate rotation position when A or B port is pressurized.

\triangle Precautions

「Be sure to read before handling. Refer to pages 11-13-3 Ito 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

© Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}{ }_{0}^{4}$	0 to $230^{\circ}(\text { Size: } 10,40)^{*}$
	0 to $240^{\circ}($ Size: $15,20,30)$
$180^{\circ+4}{ }_{0}^{\circ}$	0 to 175°
$90^{\circ+4}$	0 to 85°

* The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.

2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself.
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Series CRBU2WU

Dimensions: 10, 15, 20, 30 (With angle adjuster)

Double vane type
CRBU2WU10-■D

CRBU2WU15/20/30-DD
Illustrations below show size 20 actuators.

* Illustrations above show the intermediate rotation position when A or B port is pressurized.

(mm)																					
Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CRBU2WU15-■D	34	25	21.2	18	$5_{-0.0024}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 $\times 0.8$	3.5	M3 $\times 0.5$	21	3	29	36	48	3.2
CRBU2WU20-■D	42	34.5	25	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M 5×0.8	4.5	M4 $\times 0.7$	26	4	36	44	59	4
CRBU2WU30-■D	50	47.5	29	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 x 0.8	29	4.5	42	52	69	4.5

Dimensions: 40 (With angle adjuster)
Single vane type/Double vane type
CRBU2WU40- - S/D

Series CRBU2WU

Dimensions: 10, 15, 20, 30 (With angle adjuster and auto switch unit)

Single vane type
CDRBU2WU10/15- \square S

CDRBU2WU20/30-■S

		(mm)		
Model	B	C	D	R
CDRBU2WU10- $\square \mathbf{S}$	22	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBU2WU15-	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBU2WU20- $\square \mathbf{S}$	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBU2WU30- $\square \mathbf{S}$	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

Double vane type

CDRBU2WU10/15-■D

(mm)				
Model	B	C	D	R
CDRBU2WU10-7D	31	45.5	14	M5 x 0.8
CDRBU2WU15--D	25	47	18	M5 $\times 0.8$
CDRBU2WU20-DD	34.5	51	20	M5 x 0.8
CDRBU2WU30-DD	47.5	55.5	22	M5 x 0.8

2

* Following illustrations show actuators for 90° and 180° when A port is pressrized. Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.
- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switches.
CDRBU2WU20/30-■D

* Illustrations above show the intermediate rotation position when A or B port is pressurized.
Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.
- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switches.

Dimensions: 40 (With angle adjuster and auto switch unit)

Single vane type/Double vane type

 CDRBU2WU40-■S/D

Series CRBU2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA1 to -XA24: Shaft Pattern Sequencing I

Shaft shape pattern is dealt with simple made-to-order system.
 Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

Applicable shaft type: W (Standard)

Shaft Pattern Sequencing Symbol

Axial: Top (Long shaft side)

Symbol	Description	Applicable size				
		10	15	20	30	40
XA1	Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	
XA3	Shaft-end male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA5	Stepped round shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA7	Stepped round shaft with male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA9	Modified length of standard chamfer	-	\bigcirc	-	\bigcirc	
XA11	Two-sided chamfer	\bigcirc			\bigcirc	
XA14*	Shaft through-hole + Shaft-end female thread		\bigcirc	\bigcirc	\bullet	\bigcirc
XA17	Shortened shaft	-	\bigcirc	-	\bigcirc	
XA21	Stepped round shaft with double-sided chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA23	Right-angle chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA24	Double key					\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

Axial: Bottom (Short shaft side)

Symbol	Description		Applicable size			
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA2 ${ }^{*}$	Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA4 *	Shaft-end male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA6 *	Stepped round shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA8 *	Stepped round shaft with male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA10 *	Modified length of standard chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA12 *	Two-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA15 *	Shaft through-hole + Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA18* *	Shortened shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA22 *	Stepped round shaft with double-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet

Double Shaft

Symbol	Description	Applicable size				
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA13 *	Shaft through-hole		\bullet	\bullet	\bullet	\bullet
XA16 *	Shaft through-hole + Double shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA19 *	Shortened shaft	\bullet	\bullet		\bullet	
XA20 *	Reversed shaft	\bullet	\bullet		\bullet	\bullet

Combination
XA \square Combination

A combination of up to two $X A \square$ s are available.
Example: -XA1 A24

$\mathrm{XA} \square, \mathrm{XC} \square$ Combination

Combination other than -XA \square, such as Made to Order (-XC \square), is also available.
Refer to pages 11-3-31 to 11-3-32 for details of made-to-order specifications.

Symbol	Description	Applicable size	Combination
			XA1 to XA24
XC1 *	Change connection port location	10, 15, 20, 30, 40	\bigcirc
XC2 *	Change threaded holes to through-holes	15, 20, 30, 40	-
XC3 *	Change the screw position	Size: 10, 15, 20, 30, 40	-
XC4	Change rotation range		-
XC5	Change rotation range between 0 to 200°		\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7*	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

A total of four XA \square and $\mathrm{XC} \square$ combinations is available.
Example: -XA1A24C1C30
-XA2C1C4C30

Axial: Top (Long shaft side)

Symbol: A1 The long shaft can be further shortened by machining emale threads into it.
(If shortening the shaft is not required, indicate " $*$ " for dimension X .)

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A3 The long shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

Symbol: A5 The long shaft can be further shortened by machining it into a stepped round shaft
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: A7 The long shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

	(mm)		
Size	X	L1 max	Q1
$\mathbf{1 0}$	5.5 to 14	$\mathrm{X}-\mathbf{1}$	M 3
$\mathbf{1 5}$	7.5 to 18	$\mathrm{X}-\mathbf{1 . 5}$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{2 0}$	9 to 20	$\mathrm{X}-1.5$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$
$\mathbf{3 0}$	11 to 22	$\mathrm{X}-\mathbf{2}$	$\mathrm{M} 3, \mathrm{M} 4$, $\mathrm{M} 5, \mathrm{M} 6$

Axial: Bottom (Short shaft side)

Symbol: A2 The long shaft can be further shortened by machining emale threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A4 \quad The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

					(mm)
		Size	Y	L2 max	Q2
		10	7 to 8	Y - 3	M4
		15	8.5 to 9	$Y-3.5$	M5
		20	10	Y - 4	M6
		30	13	Y - 5	M8
		40	15	Y - 6	M10

Symbol: A6 The short shaft can be further shortened by machining it into a stepped round shaft
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

	(mm)	
Size	Y	L2 max
$\mathbf{1 0}$	$\mathbf{2}$ to $\mathbf{8}$	$\mathrm{Y}-\mathbf{1}$
$\mathbf{1 5}$	3 to 9	$\mathrm{Y}-\mathbf{1 . 5}$
$\mathbf{2 0}$	3 to 10	$\mathrm{Y}-1.5$
$\mathbf{3 0}$	3 to 13	$\mathrm{Y}-2$
$\mathbf{4 0}$	6 to 15	$\mathrm{Y}-\mathbf{4 . 5}$

Symbol: A8 The short shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(lf not specifying dimension C 2 , indicate "*" instead.)

Axial: Top (Long shaft side)

Symbol: A9 The long shaft can be further shortened by changing the ength of the standard chamfer on the long shaft side.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

	(mm)	
Size	X	L1
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$
$\mathbf{1 5}$	5.5 to 18	$10-(18-X)$ to $(X-1.5)$
$\mathbf{2 0}$	7 to 20	$10-(20-X)$ to $(X-1.5)$
$\mathbf{3 0}$	7 to 22	$10-(22-X)$ to $(X-1.5)$

Symbol: A11 The long shaft can be further shortened by machining a double-sided chamfer onto it.
(If altering the standard chamfer and shortening the shaft are not required, indicate " $*$ " for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more.
- Applicable shaft type: W

	(mm)		
Size	X	L1	L3 max
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$	$X-1$
$\mathbf{1 5}$	3 to 18	$10-(18-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{2 0}$	3 to 20	$10-(20-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{3 0}$	5 to $\mathbf{2 2}$	$12-(22-X)$ to $(X-2)$	$X-2$

Symbol: A14

Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- Not available for size 10
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M3: L1 max. $=6 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A17

Shorten the long shaft.

- Applicable shaft type: W

Axial: Bottom (Short shaft side)

Symbol: A10 The short shaft can be further shortened by changing the length of the standard chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

(mm)		
Size	Y	L2
10	3 to 8	5-(8-Y) to (Y - 1)
15	3 to 9	6-(9-Y) to (Y-1.5)
20	3 to 10	$7-(10-Y)$ to $(Y-1.5)$
30	5 to 13	$8-(13-Y)$ to $(Y-2)$
40	7 to 15	9-(15-Y) to (Y-4.5)

Symbol: A12 The short shaft can be further shortened by machining a
(If altering the standard chamfer and shortening the shaft are not required,
indicate "*" for both the L 2 and Y dimensions.

- Since L2 is a standard chamfer, dimension E2 is 0.5 mm or more, and 1 mm
or more with shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Size	\mathbf{Y}	$\mathbf{L 2}$	L2 max
$\mathbf{1 0}$	3 to 8	$5-(8-Y)$ to $(Y-1)$	$Y-1$
$\mathbf{1 5}$	3 to 9	$6-(9-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{2 0}$	3 to 10	$7-(10-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{3 0}$	5 to 13	$8-(13-Y)$ to $(Y-2)$	$Y-2$
$\mathbf{4 0}$	7 to 15	$9-(15-Y)$ to $(Y-4.5)$	$Y-4.5$

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter-

- Not available for size 10
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) for M4: L2 max. $=8 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A18

Shorten the short shaft.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)
Size	\mathbf{Y}
$\mathbf{1 0}$	$\mathbf{1}$ to 8
$\mathbf{1 5}$	1.5 to 9
$\mathbf{2 0}$	1.5 to 10
$\mathbf{3 0}$	2 to 13
$\mathbf{4 0}$	4.5 to 15

Axial: Top (Long shaft side)

Symbol: A21 The long shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Symbol: A22 The short shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
Applicable shaft type: W

- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

(mm)				
Size	X	L2 max	L4	D2
10	4 to 8	Y -2.5	L2+1.5	ø3
15	4.5 to 9	Y - 3	L2+1.5	ø3 to ø4
20	5to 10	$\mathrm{Y}-3.5$	L2+2	ø3 to ø5
30	7 to 13	$\mathrm{Y}-5$	L2+3	ø3 to ø6
40	8 to 15	$\mathrm{Y}-5.5$	L2+3	ø3 to ø6

Double Shaft

Symbol: A13

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Minimum machining diameter for d 1 is 0.1 mm .
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Size	d1
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	$\varnothing 2.5$ to $\varnothing 3$

Symbol: A19

Both the long shaft and short shaft are shortened.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	$\mathbf{1}$ to 14	$\mathbf{1}$ to 8
$\mathbf{1 5}$	1.5 to 18	1.5 to 9
$\mathbf{2 0}$	1.5 to 20	1.5 to 10
$\mathbf{3 0}$	2 to 22	2 to 13

Symbol: A23 angle double-sided be further sho

(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or more with a shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10 .
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M5: L1 max $=10 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

$\underline{\mathrm{Q}}=\mathrm{ML}_{\text {[---1 }}^{\text {- }}$	$\mathrm{M} \text { Size }$	15	20	30	40
	M3 x 0.5	ø2.5	ø2.5	ø2.5	ø2.5
Q1速	M4 x 0.7	-	ø3.3	ø3.3	-
	M5 x 0.8	-	-	$\varnothing 4.2$	-

Symbol: A20

The rotation axis is reversed.
(The long shaft and short shaft are shortened.)

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	1 to 3	1 to 12
$\mathbf{1 5}$	1.5 to 6.5	1.5 to 15.5
$\mathbf{2 0}$	1.5 to 7.5	1.5 to 17
$\mathbf{3 0}$	2 to 8.5	2 to 19
$\mathbf{4 0}$	3 to 9	-

Symbol: A24

Double key
Keys and keyways are machined at 180° from the standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

	(mm)	
Size	Keyway dimensions	LL
40	$4 \times 4 \times 20$	2

Shaft Pattern Sequencing II

-XA31 to XA47
Applicable shaft type: J, K, S, T, Y

- Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size				
			$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA31	Shaft-end female thread	S, Y		\bullet	\bullet	\bullet	
XA33	Shaft-end female thread	J, K, T		\bullet	\bullet	\bullet	\bullet
XA37	Stepped round shaft	J, K, T	\bullet	\bullet	\bullet	\bullet	\bullet
XA45	Middle-cut chamfer	J, K, T	\bullet	\bullet		\bullet	\bullet
XA47	Machined keyway	J, K, T			\bullet	\bullet	

Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA32 *	Shaft-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	
XA34 *	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA38 *	Stepped round shaft	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA46 *	Middle-cut chamfer	K	\bigcirc	\bigcirc	-	-	\bigcirc

Double Shaft

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA39 *	Shaft through-hole	S, Y		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA40 *	Shaft through-hole	K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA41 *	Shaft through-hole	J		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA42 *	Shaft through-hole + Shatt-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA43 *	Shaft through-hole + Shaft-end female thread	K, T		\bigcirc	-	-	\bigcirc
XA44 *	Shatt through-hole + Shatt-end female thread	J		\bigcirc	-	-	\bigcirc

* These specifications are not available for rotary actuators with

Combination

XA \square Combination

Symbol	Combination					
XA31	XA31					
XA32	SY	XA32				
XA33	-	JKT	XA33			
XA34	-	-	JKT	XA34		
XA37	-	-	-	JKT	XA37	
XA38	-	-	K	-	K	XA38

[^3]
XA $\square, \mathrm{XC} \square$ Combination

Combination other than -XA \square, such as Made to Order (-XCD), is also available. Refer to pages 11-3-31 to 11-3-32 for details of made-to-order specifications.

Symbol	Description	Applicable size	$\begin{array}{\|l\|} \hline \text { Combination } \\ \hline \text { XA31 to XA47 } \\ \hline \end{array}$
XC1	Change connection port location	10, 15, 20, 30, 40	\bigcirc
XC2	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC3	Change the screw position		\bigcirc
XC4	Change rotation range		\bigcirc
XC5	Change rotation range between 0 to 200°	10, 15, 20, 30, 40	\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

[^4] auto switch unit and angle adjuster. A total of four XA \square and XC \square combinations is available. Example: -XA33 A34C27C3C

Series CRBU2

Axial: Top (Long shaft side)

Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L 1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, Y

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Symbol: A37
The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Size	X	L1 max	D1
$\mathbf{1 0}$	2 to 14	$\mathrm{X}-1$	$\varnothing 3$ to $\varnothing 3.9$
$\mathbf{1 5}$	3 to 18	$\mathrm{X}-1.5$	$\varnothing 3$ to $\varnothing 4.9$
$\mathbf{2 0}$	3 to 20	$\mathrm{X}-1.5$	$\varnothing 3$ to $\varnothing 5.9$
$\mathbf{3 0}$	3 to 22	$\mathrm{X}-2$	$\varnothing 3$ to $\varnothing 7.9$
$\mathbf{4 0}$	4 to 30	$\mathrm{X}-3$	$\varnothing 3$ to $\varnothing 9.9$

Symbol: A45
The long shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard one.) (If shortening the shaft is not required, indicate "*" for dimension X .)

- Applicable shaft types: J, K, T

$\begin{aligned} & \substack{\text { shant } \\ \text { Size }} \end{aligned}$	X	W1	L1 max	L3 max
	$J\|K\| T$	J K T	J K T	J K T
10	6.5 to 14	0.5 to 2	X-3	L1-1
15	8 to 18	0.5 to 2.5	X-4	L1-1
20	9 to 20	0.5 to 3	X-4.5	L1-1
30	11.5 to 22	0.5 to 4	X-5	L1-2
40	15.5 to 30	0.5 to 5	X-5.5	L1-2

Axial: Bottom (Short shaft side)

Symbol: A32

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
However, for M5 with S shaft, the maximum dimension L2 is 1.5 times
the thread size.
- Applicable shaft types: S, Y

	(mm)	
	Q2	
	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A34

Machine female threads into the short shaft

- The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
However, for M5 with T shaft, the maximum dimension L2 is 1.5 times
the thread size.
- Applicable shaft types: J, K, T

(mm)			
Size	Q2		
	J	K	T
10	Not available		
15	M3		
20	M3, M4		
30	M3, M4, M5		
40	M3, M4, M5		

Symbol: A38 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	D2
10	2 to 14	Y - 1	ø3 to ø3.9
15	3 to 18	Y - 1.5	ø3 to ø4.9
20	3 to 20	Y-1.5	ø3 to ø5.9
30	6 to 22	Y -2	ø3 to $\varnothing 7.9$
40	6 to 30	Y-4.5	ø5 to ø9.9

Symbol: A46 $\begin{aligned} & \text { The short shaft can be further shortened by machining a } \\ & \text { middle-cut chamfer into it }\end{aligned}$ middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.) (If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: K

Size	Y	W2	L2 max	L4 max
10	4.5 to 14	0.5 to 2	Y-1	L2-1
15	5.5 to 18	0.5 to 2.5	Y - 1.5	L2-1
20	6 to 20	0.5 to 3	Y - 1.5	L2-1
30	8.5 to 22	0.5 to 4	$\mathrm{Y}-2$	L2-2
40	13.5 to 30	0.5 to 5	Y -4.5	L2-2

Axial: Top (Long shaft side)

Symbol: A47 Machine a keyway into the long shaft. (The position of the keyway is the same as the standard one.) The key must be ordered separately.

- Applicable shaft types: J, K, T

Size	$\mathbf{a 1}$	$\mathbf{L 1}$	\mathbf{N}
$\mathbf{2 0}$	$2 h 99_{-0.025}^{0}$	10	6.8
$\mathbf{3 0}$	$3 h 99_{-0.025}^{0}$	14	9.2

Double Shaft

Symbol: A39

Applicable to single vane type only
Shaft with through-hole (Additional machining of S, Y shaft)

- Applicable shaft types: S, Y
- Equal dimensions are indicated by - A parallel keyway
the same marker. shaft for size 40 .
- Not available for size 10.
- Minimum machining diameter for d1 is 0.1 mm .

Y axis

Symbol: A41

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Applicable shaft type: J.
- Equal dimensions are indicated by the same marker.
(mm)

Size	d1
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	$\varnothing 2.5$ to $\varnothing 4.5$

Symbol: A43

A special end is machined onto both the long and short shafts, and a through-hole is A silled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum L1 dimension is, in principle,
twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of T shaft:

Symbol: A40

Applicable to single vane type only
Shaft with through-hole (Additional machining of K, T shaft)

- Applicable shaft types: K, T
- Equal dimensions are indicated
by the same marker.
- Not available for size 10.

$$
\mathrm{d} 3=\varnothing \quad-\quad \text {, }
$$

$$
\xrightarrow{\mathrm{d} 3=\varnothing}
$$

Symbol: A42

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shatts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is,
as a rule, twice the thread size,
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of S shaft: L1 $=7.5 \mathrm{~mm}$

- $\mathrm{d} 1=\varnothing 2.5, \mathrm{~L} 1=18($ max $)$
machining diameter for d1 is 0.1 mm
- $\mathrm{d} 11=\mathrm{d} 3$ for sizes 20 to 40

Size ${ }^{\text {tre }}$	K T	K	T
	d1	d3	
15	$\varnothing 2.5$	$\varnothing 2.5$ to ø3	
20	-	$\varnothing 2.5$ to ø4	
30	-	ø2.5 to $\varnothing 4.5$	
40	-	$\varnothing 2.5$ to ø5	

- A parallel keywa

Applicable shaft types: S, Y

- Equal dimensions are indicated by the same marker.

				mm)
	15	20	30	40
	S Y	S Y	S Y	S
M3 x 0.5	ø2.5	ø2.5	$ø 2.5$	ø2.
M4 x 0.7	-	$ø 3.3$	ø3.3	-
M5 x 0.8	-	-	$\varnothing 4.2$	-

Symbol: A44
Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L 1 is,
as a rule, twice the thread size
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
Applicable shaft type: J
-Equal dimensions are indicated by the same marker.

Size Thread	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
M3 $\mathbf{x} \mathbf{0 . 5}$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 x 0.7	-	$\varnothing 3.3$	$\varnothing 3.3$	$\varnothing 3.3$
M5 $\mathbf{x} \mathbf{0 . 8}$	-	-	$\varnothing 4.2$	$\varnothing 4.2$

Series CRBU2 (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
-XC1, 2, 3, 4, 5, 6, 7, 30

Made to Order Symbol

| Symbol | Description | | Applicable shaft type |
| :---: | :--- | :---: | :---: | Applicable

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

$\text { Symbol: C1 } \quad \begin{aligned} & \text { Add connecting ports on Body (A). } \\ & \text { (An additionally machined port will have an aluminum } \end{aligned}$				
- Parallel keyway is used on the long shaft for size 40. - This specification is not available for the rotary actuator with auto switch unit.				
dy (B) \quad (mm)				
-	Size	Q	M	N
	10	M3	8.5	9.5
,	15	M3	11	10
	20	M5	14	13
$\xrightarrow{+\infty}$	30	M5	15.5	14
	40	M5	21	20

Combination

Symbol	Combination						
XC1	XC1						
XC2	\bigcirc	XC2					
XC3	\bigcirc	-	XC3				
XC4	\bigcirc	\bigcirc	\bigcirc	XC4			
XC5	\bigcirc	\bigcirc	\bigcirc	-	XC5		
XC6	\bigcirc	\bigcirc	\bigcirc	-	-	XC6	
XC7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	XC7
XC30	\bigcirc						

Symbol: C2	Change 2 threaded holes on Body (B) into through holes (An additionally machined port will have an aluminum surface since it will be left unfinished.)		
$\rightarrow{ }^{\oplus}$		(mm)	
(1)	(1)	Size	d
4	()	10	3.4
\oplus	$\oplus \oplus$	15	3.4
		20	4.5
A port B port	A port B port	30	5.5
(Standard)	(Altered)	40	5.5

Symbol: C3 Change the position of the screws for tightening the actuator

- Not available for size 10.

Symbol: C5

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+50^{\circ}}$.
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.

Symbol: C7

The shafts are reversed.

- A parallel keyway is used instead of chamfer for size 40.

		(mm)
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{1 0}$	19	3
$\mathbf{1 5}$	20.5	6.5
$\mathbf{2 0}$	22.5	7.5
$\mathbf{3 0}$	26.5	8.5
$\mathbf{4 0}$	36	9

Symbol: C4

Rotation starts from the horizontal line $\left(90^{\circ}\right.$ down from the top to the right side)

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$
- A parallel keyway is used instead ${ }_{0}^{+5^{\circ}}$ of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when A port is pressurized.

Symbol: C6

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$
- A parallel keyway is used instead of chamfer for size 40

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.

Symbol: C30

Change the standard grease to fluoro grease (Not for low-speed specifications.)

D-

20-

[^0]:

 Port location (Body side)
 CRBUW Size -S........SCRB Size, \#2
 Port location (Axial direction)
 CRBUW Size-SE….SCRB Size, \#4

[^1]: 2
 Note) All the port locations are on the body side for angle adjuster attached style and auto switch attached style.
 Note) The dimensions of auto switch attached style shows one right side handling switch attached style and one left side handling switch attached style.

[^2]: 2
 Note) Standard style (double shafts: W) is also available for "-XC1" to "XC30".

[^3]: A combination of up to two $X A \square$ s are available.
 Example: -XA31 A32

[^4]: * These specifications are not available for rotary actuators with

