Electric Actuator Slider Type

Ball Screw Drive Series LEFS

 Size: 16, 25, 32, 40Max. work load: $\mathbf{6 0}$ kg
Positioning repeatability: $\pm 0.02 \mathrm{~mm}$
Clean room specification also available

Clean room speciication
11-LEFS

Belt Drive Series LEFB

Size: 16, 25, 32
Max. stroke: $2,000 \mathrm{~mm}$ Max. speed: 2,000 mm/s

AC Servo Motor Type

* Not applicable to UL

Ball Screw Drive Series LEFS

Size: 25, 32, 40

Improved high speed transfer ability
High acceleration/deceleration: $\mathbf{2 0 , 0 0 0} \mathrm{mm} / \mathrm{s}^{2}$
Pulse input type
With internal absolute encoder (For LECSB/C/S)
Clean room specification also available
Clean room speciication
11-LEFS

Belt Drive Series LEFB
 Size: 25, 32, 40

Max. speed: $\mathbf{2 , 0 0 0} \mathrm{mm} / \mathrm{s}$
Max. stroke: $\mathbf{3 , 0 0 0} \mathrm{mm}$
Max aceleariolondececearation: 20,000 mmss
Motor bottom mounting type also available

Step Motor (Servo/24 VDC)
 Servo Motor (24 VDC)
 Controller/ Driver

Step data input type Series LECP6/LECA6 64 points positioning
Programless type Series LECP1
14 points positioning
Pulse input type
Series LECPA

Series LEF

Series LEF

-Compact

Heightwidthd dimensions reatuced by ypprox. 50%

* Compared with SMC LJ1 series

LEFS16

LJ1H10
©Easy mounting of the body/Reduction of the installation labor Possible to mount the
main body without
removing the external
cover, etc.

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Ball Screw Drive/Series LEFS size: 16, 25, 32, 40
Max. work load: 60 kg
Positioning repeatability: $\pm 0.02 \mathrm{~mm}$

Non-magnetizing lock mechanism (Option)

Drop prevention in case of power failure (Maintained)*

* The belt drive actuator LEFB cannot be used

Compatible motors

- Step motor (Servo/24 VDC) Ideal for transfer of high load at a low speed
- Servo motor (24 VDC)

Stable at a high speed and silent operation

AC Servo Motor

Ball Screw Drive/Series LEFS Size: 25, 32, 40

High output motor (100/200/400 W) Improved high speed transfer ability High acceleration/deceleration compatible: $20,000 \mathrm{~mm} / \mathrm{s}^{2}$
Pulse input type
With internal absolute encoder (For LECSB/C/S)

Belt Drive/Series LEFB

Size: 25, 32, 40
Max. speed: $\mathbf{2 , 0 0 0} \mathrm{mm} / \mathrm{s}$
Max. stroke: $\mathbf{3 , 0 0 0 ~ m m}$
Max. acceleration/deceleration: $\mathbf{2 0 , 0 0 0} \mathrm{mm} / \mathrm{s}^{2}$

Clean room speciication

Ball Screw Drive/Series 11-LEFS

ISO Class 4 ${ }^{41,{ }^{1,2}}$ (ISO14644-1)!

- Built-in vacuum piping
- Possible to mount the main body without removing the external cover, etc.
- Body-integrated linear guide specification 77 for details.
*2 Class 10 (Fed.Std.209E)

Application Examples

Series Variations

Ball Screw Drive/Series LEFS

Type	Size	Lead (mm)	Stroke (mm)*2
Step motor (Servo/24 VDC)	16	5	100, 200, 300, 400
		10	
	25	6	100, 200, 300, 400, 500, 600
		12	
	32	8	100, 200, 300, 400, 500, 600, 700, 800
		16	
	40	10	200, 300, 400, 500, 600, 700, 800, 900, 1000
		20	
Servo motor (24 VDC)	16	5	100, 200, 300, 400
		10	
Clean room compatible	25	6	100, 200, 300, 400, 500, 600
		12	
AC servo motor	25	6	100, 200, 300, 400, 500, 600
		12	
	32	8	100, 200, 300, 400, 500, 600, 700, 800
Clean room compatible		16	
	40	10	200, 300, 400, 500, 600, 700, 800, 900, 1000
		20	

*1 The size corresponds to the bore of the air cylinder with an equivalent force. (For the ball screw drive) *2 Consult with SMC for non-standard strokes as they are produced as special orders.
*3 For clean room specification, refer to pages 20 and 92.

Belt Drive/Series LEFB

Type	Size	Equivalent lead (mm)	Stroke (mm)*2
Step motor (Servo/24 VDC)	16	48	300, 500, 600, 700, 800, 900, 1000
	25	48	300, 500, 600, 700, 800, 900, 1000, 1200, 1500, 1800, 2000
	32	48	$300,500,600,700,800,900,1000,1200,1500,1800,2000$
Servo motor (24 VDC)	16	48	300,500,600, 700, 800, 900, 1000
	25	48	300, $500,600,700,800,900,1000,1200,1500,1800,2000$
AC servo motor	25	54	300, 400, 500, 600, 700, 800, 900, 1000, (1100), 1200, (1300), (1400), 1500, (1600), (1700), (1800), (1900), 2000
	32	54	$300,400,500,600,700,800,900,1000,(1100), 1200,(1300),(1400), 1500, ~(1600),(1700),(1800),(1900), 2000,2500$
	40	54	$300,400,500,600,700,800,900,1000,(1100), 1200,(1300),(1400), 1500,(1600),(1700),(1800),(1900), 2000,2500,3000$

[^0]Features 3

Electric Actuator/Slider Type

Features 4

Step Data Input Type Series LECP6/LECA6

Simple Setting to Use Straight Away ©Easy Mode for Simple Setting
 Step motor (Servo/24 VDC) LECP6

If you want to use it right away, select "Easy Mode."

Servo motor (24 VDC) LECA6

Example of checking the operation status

Operation status can be checked.

Teaching box screen

Data can be set with position and speed. (Other conditions are already set.)

Step	Axis 1
Step No.	0
Posn	50.00 mm
Speed	$200 \mathrm{~mm} / \mathrm{s}$

$|$| Step | Axis 1 |
| :--- | ---: |
| Step No. | 1 |
| Posn | 80.00 mm |
| Speed | $100 \mathrm{~mm} / \mathrm{s}$ |

Gateway Unit Series LEC-G

Unit linking the LECP6/LECA6 series and Fieldbus network

- Two methods of operation

Step data input: Operate using preset step data in the controller.
Numerical data input: The actuator operates using values such as position and speed from the PLC.

Features 5

ONormal Mode for Detailed Setting

Select normal mode when detailed setting is required.

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

<When a PC is used>

 Controller setting software-Step data setting, parameter setting, monitor, teaching, etc., are indicated in different windows.

<When aTB (teaching box) is used>

- Multiple step data can be stored in the teaching box, and transferred to the controller.
- Continuous test operation by up to 5 step data.

Teaching box screen

Each function (step data setting, test, monitor, etc.) can be selected from the main menu.

The actuator and controller are provided as a set. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Programless Type series LECP1

No programming

Capable of setting up an electric actuator operation without using a PC or teaching box

1) Setting position number

Setting a registered number for the stop position
Maximum 14 points

2 Setting a stop position

Moving the actuator to a stop position using FORWARD and REVERSE buttons
(3) Registration

Registering the stop

position using SET

Pulse Input Type series LECPA

A driver that uses pulse signals to allow positioning at any position. The actuator can be controlled from the customers' positioning unit.

Series LECPA

Return-to-origin command signal

Enables automatic return-to-origin action.
With force limit function (Pushing force/Gripping force operation available)
Pushing force/Positioning operation possible by switching signals.

Function

Item	Step data input type LECP6/LECA6	Programless type LECP1	Pulse input type LECPA
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Select using controller operation buttons	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Input the numerical value from controller setting software (PC) or teaching box - Input the numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching	- No "Position" setting required Position and speed set by pulse signal
Number of step data	64 points	14 points	-
Operation command (//O signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [IN^{*}] input only	Pulse signal
Completion signal	[INP] output	[OUT** output	[INP] output

Setting Items

	Item	Contents	Easy mode		Normal mode	Step data input type LECP6/LECA6	Pulse input type LECPA	Programless type LECP1*
			TB	PC	TB, PC			
Step data setting (Excerpt)	Movement MOD	Selection of "bbsolut position" and "reative position"	\triangle	\bigcirc	\bigcirc	Set at ABS/INC	No setting required	Fixed value (ABS)
	Speed	Transfer speed	-	-	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$		Select from 16-level
	Position	[Position]: Target position [Pushing]: Pushing start position	-	\bigcirc	\bigcirc	Set in units of 0.01 mm		Direct teaching JOG teaching
	Acceleration/Deceleration	Acceleration/deceleration during movement	\bigcirc	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$		Select from 16-level
	Pushing force	Rate of force during pushing operation	-	-	-	Set in units of 1\%	Set in units of 1\%	Select trom 3 -evel (weak, medium, strong)
	Trigger LV	Target force during pushing operation	\triangle	-	\bigcirc	Set in units of 1\%	Set in units of 1\%	No setting required (same value as pusting force)
	Pushing speed	Speed during pushing operation	\triangle	\bigcirc	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required
	Moving force	Force during positioning operation	\triangle	\bigcirc	\bigcirc	Set to 100\%	Setto (Difterent values for each actuator)\%	
	Area output	Conditions for area output signal to turn ON	\triangle	\bigcirc	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	In position	[Position]: Width to the target position [Pushing]: How much it moves during pushing	\triangle	\bigcirc	\bigcirc	Set to 0.5 mm or more (Units: 0.01 mm)	Set to (Different values for each actuator) or more (Units: 0.01 mm)	
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	\times	\times	\bigcirc	Set in units of 0.01 mm	Set in units of 0.01 mm	
	Stroke (-)	- side limit of position	\times	\times	-	Set in units of 0.01 mm	Set in units of 0.01 mm	
	ORIG direction	Direction of the return to origin can be set.	\times	\times	-	Compatible	Compatible	Compatible
	ORIG speed	Speed during return to origin	\times	\times	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	
	ORIG ACC	Acceleration during return to origin	\times	\times	-	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required
Test	JOG		-	\bigcirc	\bigcirc	Continuous operation at the set speed can be tested while the switch is being pressed.	Continuous operation at the set speed can be tested while the switch is being pressed.	Hold down MANUAL button (\llcorner ©) for uniform sending (speed is specified value)
	MOVE		\times	-	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Operation at the set distance and speed from the current position can be tested.	Press MANUAL button ($\wedge \ominus)$ once for sizing operation (speed, sizing amount are specified values)
	Return to ORIG		-	\bigcirc	\bigcirc	Compatible	Compatible	Compatible
	Test drive	Operation of the specified step data	-	\bigcirc	(Continuous operation)	Compatible	Not compatible	Compatible
	Forced output	ON/OFF of the output terminal can be tested.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	-	\bigcirc	-	Compatible	Compatible	
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible	Compatible	
ALM	Status	Alarm currently being generated can be confirmed.	-	\bigcirc	-	Compatible	Compatible	Compatible (display alarm group)
	ALM Log record	Alarm generated in the past can be confirmed.	\times	\times	-	Compatible	Compatible	Not compatible
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	\times	\times	\bigcirc	Compatible	Compatible	
Other	Language	Can be changed to Japanese or English.	-	-	-	Compatible	Compatible	

Δ : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen)

* Programless type LECP1 cannot be used with the teaching box and controller setting kit.

Features 8

System Construction/General Purpose I/O

System Construction/Pulse Signal

System Construction/Fieldbus Network

Page 48

Gateway (GW) unit Page 48
Applicable Fieldbus protocols CC-Link Ver. 2.0 DeviceNet ${ }^{\text {TM }}$ PROFIBUS DP EtherNet/IP ${ }^{T M}$

* CC-Link Ver. 2.0

DeviceNet ${ }^{\text {TM }}$

Page 48 Cable between branches

Communic

Option

OController setting software Page 45 (Communication cable and USB cable are included.) Part no.: LEC-W2

USB cable
(A-miniB type)
PC

-Teaching box Page 46
(With 3 m cable)
Part no.: LEC-T1-3JG \square

Applicable Fieldbus protocols	Ilax. number of comeatadle controllas
CC-Link Ver. 2.0	12
DeviceNet ${ }^{\text {TM }}$	8
PROFIBUS DP	5
EtherNet/IPTM	12

Compatible controllers
Step motor controller
(Servo/24 VDC)
(24 VDC)
Note 1) Connect the 0 V terminals for both the controller input power supply and gateway unit power supply.
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

AC Servo Motor Driver

Series LECS \square list

Series		$\begin{aligned} & \hline \text { Compatible motor } \\ & (100 / 200 \mathrm{VAC}) \end{aligned}$			Control method				Compatible
		100 w	200 W	400 w	Positoining	Puse		Smploroous	
	LECSA	\bigcirc	0	\bigcirc	$\begin{gathered} \text { Up po } \\ 7 \text { points } \\ 0 \end{gathered}$	\bigcirc			\bigcirc
	LECSB (Pulse input type)	\bigcirc	0	\bigcirc		\bigcirc			\bigcirc
	(CC-Link direct input type)	\bigcirc	0	O	$\begin{gathered} \text { Up to } \\ 255 \text { oonts } \\ \hline \end{gathered}$		$\begin{gathered} \text { cc-Link } \\ \text { ver. } 1.10 \\ \hline \end{gathered}$		\bigcirc
	LECSS (SSCNET III type) Compatible with Mitsubishi	\bigcirc	0	\bigcirc			$\mathrm{SSCNETTII}^{\text {ST}}$	\bigcirc	\bigcirc

Note 1) For positioning type, setting needs to be changed to use with maximum set values.
Setup software (MR Configurator) LEC-MR-SETUP221 is required.
Note 2) Available when the Mitsubishi motion controller is used for the master equipment.

AC Servo Motor Driver

Servo adjustment using auto gain tuning

Auto resonant filter function

- Control the difference between command value and actual action

Auto damping control function

- Automatically suppress low frequency machine vibrations (up to 100 Hz)

With display setting function

LECSA

Control Baud rate, station number and the occupied station count.

(With the front cover opened)
LECSB

System Construction

ncremental encoder compatible Series LECSA
(Pulse input type/Positioning type)

Provided by customer	
Power supply Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$) 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
OOption Page 119 Regeneration option Part no.: LEC-MR-RB-	
Motor cable Page 119	
Standard cable	Robotic cable
LE-CSM-S[LE-CSM-R $\square \square$
OLock cable Page 119	
Standard cable	Robotic cable
LE-CSB-S[]	LE-CSB-Rप]
Electric actuator Linear guide type Pages 84, 96 Ball screw drive Belt drive Series LEFS Series LE	
Oncoder cable Page 119	
Standard cable	Robotic cable
LE-CSE-S[LE-CSE-R】]

PLC (Positioning unit)
Power supply for I/O signal 24 VDC

Absolute encoder compatible Series LECSB

(Pulse input type)
Provided by customer

[^1]

Osuc mantily

System Construction

Absolute encoder compatible Series LECSC (CC-Link direct input type)

Absolute encoder compatible Series LECSS

Features 15

High Rigidity Slider Type AC Servo Motor

Guide Rod Slider Step Motor (Senore24 voci)

Rod Type Step Motor (Sesvola voci) Servo Motor (Rat voos)

Series LEY		
Size		

(N)\end{array} \quad \begin{array}{c}Stroke

(mm)\end{array}\right]\)| 25 | 485 | Up to 400 |
| :---: | :---: | :---: |
| 32 | 588 | Up to 500 |

Series LEY	
Size	

(N)\end{array} \quad \begin{array}{c}Stroke

(mm)\end{array}\right]\)| 25 | 485 | Up to 400 |
| :---: | :---: | :---: |
| 32 | 736 | Up to 500 |
| 63 | 1910 | Up to 800 |

Guide rod type
/In-line motor type Series LEYG \square D

Series LEYG		
Size	Pushing force (\mathbf{N})	Stroke $(\mathbf{m m})$
$\mathbf{2 5}$	485	300
$\mathbf{3 2}$	736	

Slide Table Step Motor (Senopa4 voci) Senv Motor (24 Voci)

\section*{| |
| :---: |
| , |
| 38 |
| 2700 |
| 1 c |
| EI= I- |
| CAT ES |

Miniature Step Motor (senoror voci)

Compact type Series LES

Basic type/R type

Size	Max. work load $\mathbf{(k g)}$	Stroke $(\mathbf{m m})$
$\mathbf{8}$	1	$30,50,75$
$\mathbf{1 6}$	3	30,50 75,100
$\mathbf{2 5}$	5	$30,50,75$ $100,125,150$

Symmetrical type/L type Series LES \square L

In-line motor type/D type Series LES \square D

High rigidity type Series LESH

Basic type/R type Series LESH \square R

Size	Max. work load (kg)	Stroke (mm)
$\mathbf{8}$	2	50,75
$\mathbf{1 6}$	6	50,100
$\mathbf{2 5}$	9	50,100 150

Symmetrical type/L type Series LESH $\square \mathrm{L}$

In-line motor type/D type Series LESH \square D

Rotary Table Step Motor (Sevol/24 vDC)

Series LER				
Size	Rotating torque (N $\cdot \mathrm{m})$		Max. speed (\%/s)	
	Basic	High torque	Basic	High torque
$\mathbf{1 0}$	0.2	0.3		
$\mathbf{3 0}$	0.8	1.2	420	280
$\mathbf{5 0}$	6.6	10		

Controller/Driver

Gateway Unit

Fieldbus-compatible gateway (GW) unit Series LEC-G

Applicable Fieldbus protocols	$C C-\operatorname{Link} V 2$	DeviceNet		EtherNet/IP"'
Max. number of connectable controllers	12	8	5	12

Driver

Controller/Driver LEC

LECP6

LECP1 LECPA

Type	Series	Compatible motor	Power supply voltage	Parallel I/O		Number of positioning pattern points	Page
				Input	Output		
Step data input type	LECP6	Step motor (Servo/24 VDC)	$\begin{gathered} 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	11 inputs (Photo-coupler isolation)	13 outputs (Photo-coupler isolation)	64	Page 35
	LECA6	Servo motor (24 VDC)					
Programless type	LECP1	Step motor (Servo/24 VDC)	$\begin{gathered} 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	6 inputs (Photo-coupler isolation)	6 outputs (Photo-coupler isolation)	14	
Pulse input type	LECPA	Step motor (Servo/24 VDC)	$\begin{gathered} 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	5 inputs (Photo-coupler isolation)	9 outputs (Photo-coupler isolation)	-	

Driver LEC

Step Motor (Servo/24 vDC)/
 Servo Motor (24 VDC) Type

OElectric Actuator/Ball Screw Drive Series LEFS	
	Model Selection ...Page 2
	How to Order...Page 12
	Specifications.. 14
	Construction .. 16
	Dimensions ..age 17
© Electric Actuator/	
	Ball Screw Drive Series 11-LEFS Clean room speatioation
	Particle Generation Characteristics (Clean Room Specification)Page 7
	Model Selection (Clean Room Specification)Page 9
	Specifications..age 22
	Dimensions -..Page 24
OElectric Actuator/Belt Drive Series LEFB	
	Model Selection ..Page 2
	Specifications...Page 28
	Construction ..age 30
	Dimensions ..Page 31
Specific Product Precautions.....................................Page 33	
©Step Motor (Servo/24 vDC)/Servo Motor (24 vDC)	
Controller/Driver	
Step Data Input Type/Series LECP6/LECA6..............Page 36	
	Controller Setting Kit/LEC-W2............................Page 45
	Teaching Box/LEC-T1 \ldots......................................Page 46
	Gateway Unit/Series LEC-G -....................................Page 48
	Programless Controller/Series LECP1Page 51
	Step Motor Driver/Series LECPAPage 58
	Controller Setting Kit/LEC-W2-............................Page 65
	Teaching Box/LEC-T1 ...Page 66

AC Servo Motor Type

© Electric Actuator/

Ball Screw Drive Series 11-LEFS Clean room speciication

.

© Electric Actuator/Belt Drive Series LEFB
Model Selection .. 80
How to Order Page 96
Construction Page 99
Dimensions Page 101
© AC Servo Motor Driver/Series LECS Page 107
Specific Product Precautions Page 121

Ball Screw Drive Page 12

Clean room speaiication Page 20

 Series 11-LEFSStep Motor/Servo Motor Controller Page 35 Step Motor Driver

Series LECP6/LECA6

 Series LEC-G Series LECP1 Series LECPA

Selection Example

Operating

Step 1
Check the work load-speed. <Speed-Work load graph> (Pages 3 and 4) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEFS25A-200 is temporarily selected based on the graph shown on the right side.

<Speed-Work load graph> (LEFS25/Step motor)

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}$]
-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.
$\mathrm{T} 4=0.2[\mathrm{~s}]$

Step 3 Check the guide moment.

Based on the above calculation result, the LEFS25A-200 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.2[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.2 \\
& =0.97[\mathbf{s}]
\end{aligned}
$$

L : Stroke [mm]
... (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration [mm/s²]
... (Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating
at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant
speed operation to stop
T4: Settling time [s]
Time until in position is completed

Speed-Work Load Graph (Guide)

Step Motor (Servo/24 VDC)

LEFS16/Ball Screw Drive

Vertical

LEFS25/Ball Screw Drive

Horizontal

Vertical

LEFS32/Ball Screw Drive

Horizontal

Vertical

LEFS40/Ball Screw Drive

Horizontal

Vertical

Series LEF

Speed-Work Load Graph (Guide)

Servo Motor (24 VDC)

LEFS16A/Ball Screw Drive

Vertical

LEFS25A/Ball Screw Drive

Vertical

Step Motor (Servo/24 VDC)

LEFB/Belt Drive

* When moving force is 100%

Horizontal

Servo Motor (24 VDC)
LEFB/Belt Drive

* When moving force is 250%

Horizontal

Series LEF

Table Accuracy

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEF16	0.05	0.03
LEF25	0.05	0.03
LEF32	0.05	0.03
LEF40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

[^2]Note 2) Please confirm the clearance and play of the guide separately.

Particle Generation Measuring Method

The particle generation data for SMC Clean Series are measured in the following test method.

Test Method (Example)

Place the specimen in the acrylic resin chamber and operate it while supplying the same flow rate of clean air as the suction flow rate of the measuring instrument ($28.3 \mathrm{~L} / \mathrm{min}$). Measure the changes of the particle concentration over time until the number of cycles reaches the specified point.
The chamber is placed in an ISO Class 5 equivalent clean bench.

Chamber	Internal volume	28.3 L
	Supply air quality	Same quality as the supply air for driving
Measuring instrument	Description	Laser dust monitor (Automatic particle counter by lightscattering method)
	Minimum measurable particle diameter	$0.1 \mu \mathrm{~m}$
	Suction flow rate	$28.3 \mathrm{~L} / \mathrm{min}$
Setting conditions	Sampling time	5 min
	Interval time	55 min
	Sampling air flow	141.5 L

Particle generation measuring circuit

Evaluation Method

To obtain the measured values of particle concentration, the accumulated value Note 1) of particles captured every 5 minutes, by the laser dust monitor, is converted into the particle concentration in every $1 \mathrm{~m}^{3}$.
When determining particle generation grades, the 95% upper confidence limit of the average particle concentration (average value), when each specimen is operated at a specified number of cycles Note 2) is considered.
The plots in the graphs indicate the 95% upper confidence limit of the average particle concentration of particles with a diameter within the horizontal axis range.

Note 1) Sampling air flow rate: Number of particles contained in 141.5 L of air
Note 2) Actuator: 1 million cycles

Clean room specification

Particle Generation Characteristics

Step Motor (Servo/24 VDC), Servo Motor (24 VDC)

11-LEFS16 Speed $500 \mathrm{~mm} / \mathrm{s}$

11-LEFS32 Speed $500 \mathrm{~mm} / \mathrm{s}$

11-LEFS25 Speed $500 \mathrm{~mm} / \mathrm{s}$

11-LEFS40 Speed $500 \mathrm{~mm} / \mathrm{s}$

Speed-Work Load Graph (Guide)

Step Motor (Servo/24 VDC)

11-LEFS16/Ball Screw Drive

Horizontal

Vertical

11-LEFS32/Ball Screw Drive

Horizontal

Vertical

11-LEFS40/Ball Screw Drive

Horizontal

Vertical

Series 11-LEFS

Clean room specilication

Speed-Work Load Graph (Guide)
Servo Motor (24 VDC)

11-LEFS16A/Ball Screw Drive

Vertical

11-LEFS25A/Ball Screw Drive

Horizontal

Vertical

Acceleration/Deceleration
$-1,000 \mathrm{~mm} / \mathrm{s}^{2}$
$---3,000 \mathrm{~mm} / \mathrm{s}^{2}$ \qquad $-5,000 \mathrm{~mm} / \mathrm{s}^{2}$

11-LEFS16 \quad 11-LEFS25 \quad 11-LEFS32

11-LEFS40

Electric Actuator/Slider Type Ball Screw Drive
 Servo Motor (24 VDC)
 LEFS16, 25, 32, 40

How to Order

Lead [mm]
Symbol LEFS16 LEFS25 LEFS32 LEFS40

\mathbf{A}	10	12	16	20
\mathbf{B}	5	6	8	10

Stroke [mm]

100	100
to	to
1000	1000

* Refer to the applicable stroke table.
(2) Motor type

Symbol	Type	Applicable size				Compatible controllers/driver
		LEFS16	LEFS25	LEFS32	LEFS40	
Nil	Step motor (Servo/24 VDC)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
A	Servo motor (24 VDC)	\bigcirc	\bigcirc	-	-	LECA6

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 44 for the noise filter set. Refer to the LECA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Applicable stroke table
-Standard

Model Stroke	100	200	300	400	500	600	700	800	900	1000	Manufacturable stroke range [mm]
LEFS16	\bigcirc	-	-	-	-	-	-	-	-	-	100 to 400
LEFS25	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	100 to 600
LEFS32	\bigcirc	-	-	100 to 800							
LEFS40	-	\bigcirc	200 to 1000								

* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^3]| 5 Motor option |
| :--- |
| Nil |
| B |

Nil	Without controller/driver	
6N	LECP6/LECA6 (Step data input type)	NPN
6P		PNP
1N	LECP1*2 (Programless type)	NPN
1P		PNP
AN	LECPA*2 (Pulse input type)	NPN
AP		PNP

*1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
*2 Only available for the motor type "Step motor."

6 Actuator cable type**

Nil	Without cable
\mathbf{S}	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."
(9) I/O cable length [m] $]^{41}$

Nil	Without cable
1	1.5
3	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 44 (For LECP6/LECA6), page 57 (For LECP1) or page 64 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

7 Actuator cable length [m]

Nil	Without cable
$\mathbf{1}$	1.5
3	3
5	5
8	8^{*}
\mathbf{A}	10^{*}
\mathbf{B}	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 2) on pages 14 and 15.

* DIN rail is not included. Order it separately.

Compatible Controllers/Driver

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECP1	LECPA
Features	Value (Step Standar	data) input controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points		14 points	-
Power supply voltage	24 VDC			
Reference page	Page 36	Page 36	Page 51	Page 58

Specifications

Step Motor (Servo/24 VDC)										
Model			LEFS16		LEFS25		LEFS32		LEFS40	
	Stroke [mm] Note 1)		100, 200, 300, 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$		$\begin{aligned} & 100,200,300,400 \\ & 500,600,700,800 \end{aligned}$		$\begin{gathered} 200,300,400,500,600 \\ 700,800,900,1000 \\ \hline \end{gathered}$	
	Work load [kg] Note 2)	Horizontal	9	10	20	20	40	45	50	60
		Vertical	2	4	7.5	15	10	20	-	23
	Speed [mm/s] Note 2)		10 to 500	5 to 250	12 to 500	6 to 250	16 to 500	8 to 250	20 to 500	10 to 250
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		3,000							
	Positioning repeatability [mm]		± 0.02							
	Lead [mm]		10	5	12	6	16	8	20	10
	Impact/Vibration resistance [m/s²] Note 3)		50/20							
	Actuation type		Ball screw							
	Guide type		Linear guide							
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40							
	Operating humidity range [\%RH]		90 or less (No condensation)							
	Motor size		$\square 28$		$\square 42$		$\square 56.4$			
	Motor type		Step motor (Servo/24 VDC)							
	Encoder		Incremental A/B phase (800 pulse/rotation)							
	Rated voltage [V]		24 VDC $\pm 10 \%$							
	Power consumption [W] Note 4)		22		38		50		100	
	Standby power consumption when operating [W] ${ }^{\text {Note 5] }}$		18		16		44		43	
	Max, instantaneous power consumption [W] ${ }^{\text {Noie 6] }}$		51		57		123		141	
	Type Note 7)		Non-magnetizing lock							
	Holding force [N]		20	39	78	157	108	216	113	225
	Power consumption [W] Note 8)		2.9		5		5		5	
	Rated voltage [V]		24 VDC $\pm 10 \%$							

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 3. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Specifications

Servo Motor (24 VDC)

Model			LEFS16A		LEFS25A	
	Stroke [mm] ${ }^{\text {Note 1) }}$		100, 200, 300, 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$	
	Work load [kg] ${ }^{\text {Note 2) }}$	Horizontal	7	10	11	18
		Vertical	2	4	2.5	5
	Speed [mm/s] Note 2)		10 to 500	5 to 250	12 to 500	6 to 250
	Max. acceleration/deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]		3,000			
	Positioning repeatability [mm]		± 0.02			
	Lead [mm]		10	5	12	6
	ImpactVibration resistance [m/sid ${ }^{\text {Note } 3)}$		50/20			
	Actuation type		Ball screw			
	Guide type		Linear guide			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Motor size		$\square 28$		$\square 42$	
	Motor output [W]		30		36	
	Motor type		Servo motor (24 VDC)			
	Encoder		Incremental A/B (800 pulse/rotation)/Z phase			
	Rated voltage [V]		24 VDC $\pm 10 \%$			
	Power consumption [W] Note 4)		63		102	
	Standby power consumption when operating [W] Wbes)		Horizontal 4/Vertical 9		Horizontal 4/Vertical 9	
	Max. instantaneous power consumption [W] Note 6)		70		113	
	Type Note 7)		Non-magnetizing lock			
	Holding force [N]		20	39	78	157
	Power consumption [W] Note 8)		2.9		5	
	Rated voltage [V]		24 VDC $\pm 10 \%$			

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Check "Speed-Work Load Graph (Guide)" on page 4 for details.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Weight

Model	LEFS16				
Stroke [mm]	100	200	300	400	
Product weight [kg]	0.90	1.05	1.20	1.35	
Additional weight with lock [kg]	0.12				

Model	LEFS25					
Stroke [mm]	100	200	300	400	500	600
Product weight [kg]	1.84	2.12	2.40	2.68	2.96	3.24
Additional weight with lock [kg]	0.26					

Model	LEFS32							
Stroke [mm]	100	200	300	400	500	600	700	800
Product weight [kg]	3.35	3.75	4.15	4.55	4.95	5.35	5.75	6.15
Additional weight with lock [kg]	0.53							

Model	LEFS40								
Stroke [mm]	200	300	400	500	600	700	800	900	1000
Product weight [kg]	5.65	6.21	6.77	7.33	7.89	8.45	9.01	9.57	10.13
Additional weight with lock [kg]									

Series LEFS

Construction
LEFS16, 25, 32

A-A

LEFS40

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide	-	
$\mathbf{3}$	Ball screw assembly	-	
$\mathbf{4}$	Connected shaft	LEFS16, 25, 32	
	Spacer	LEFS40	
$\mathbf{5}$	Table	Aluminum alloy	Anodized
$\mathbf{6}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{7}$	Seal band stopper	Synthetic resin	
$\mathbf{8}$	Housing A	Aluminum die-casted	Coating
$\mathbf{9}$	Housing B	Aluminum die-casted	Coating
$\mathbf{1 0}$	Bearing stopper	Aluminum alloy	

No.	Description	Material	Note
11	Motor mount	Aluminum alloy	Coating
12	Coupling	-	
13	Motor cover	Aluminum alloy	Anodized
14	End cover	Aluminum alloy	Anodized
15	Motor	-	
16	Rubber bushing	NBR	
17	Band stopper	Stainless steel	
18	Dust seal band	Stainless steel	
19	Seal magnet	-	
20	Bearing	-	
21	Bearing	-	

Dimensions: Ball Screw Drive

Dimensions: Ball Screw Drive

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering.
(Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) Position after return to origin.
Note 4) The number in brackets indicates when the direction of return to origin has changed.

Electric Actuator/Slider Type Ball Screw Drive Siep Molor semersvee
 Servo Motor (24 VDC)
 Series 11-LEFS C \subset © ${ }^{\circ}$
 LEFS16, 25, 32, 40

How to Order

3) Lead [mm]

Symbol 11-LEFS16 11-LEFS25 11-LEFS32 11-LEFS40

A	10	12	16	20
B	5	6	8	10

4 Stroke [mm]	
$\mathbf{\| c \| c \|}$	100
to	to
1000	1000

* Refer to the applicable stroke table.

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 44 for the noise filter set. Refer to the LECA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Applicable stroke table

- Standard

Model Stroke	100	200	300	400	500	600	700	800	900	1000	Manufacturable stroke range [mm]
11-LEFS16	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-	100 to 400
11-LEFS25	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	100 to 600
11-LEFS32	\bigcirc	-	-	-	100 to 800						
11-LEFS40	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	200 to 1000

* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

(1)

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

5 Motor option

Nil	Without option
B	With lock

8 Actuator cable length [m]

Nil	Without cable
$\mathbf{1}$	1.5 m
$\mathbf{3}$	3 m
$\mathbf{5}$	5 m
$\mathbf{8}$	$8 \mathrm{~m}^{*}$
\mathbf{A}	$10 \mathrm{~m}^{*}$
\mathbf{B}	$15 \mathrm{~m}^{*}$
\mathbf{C}	$20 \mathrm{~m}^{*}$

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 2) on pages 22 and 23.

11 Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately.
6 vacuum port

Nil	Left
\mathbf{R}	Right

*1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
*2 Only available for the motor type "Step motor."

7 Actuator cable type**

Nil	Without cable
\mathbf{S}	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."

$10 \mathrm{I} / \mathrm{O}$ cable length $[\mathrm{m}]^{* 1}$

Nil	Without cable
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 2}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 44 (For LECP6/LECA6), page 57 (For LECP1) or page 64 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

Compatible Controllers/Driver

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECP1	LECPA
Features	Value (St Standar	data) input controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo moto (24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points		14 points	-
Power supply voltage	24 VDC			
Reference page	Page 36	Page 36	Page 51	Page 58

Specifications

Step Motor (Servo/24 VDC)											
Model				11-LEFS16		11-LEFS25		11-LEFS32		11-LEFS40	
	Stroke [mm] ${ }^{\text {Note 1) }}$			100, 200, 300, 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$		$\begin{aligned} & 100,200,300,400 \\ & 500,600,700,800 \end{aligned}$		$\begin{gathered} 200,300,400,500,600 \\ 700,800,900,1000 \end{gathered}$	
	Work load [kg] ${ }^{\text {Note 2) }}$		Horizontal	9	10	20	20	40	45	50	60
			Vertical	2	4	7.5	15	10	20	-	23
	Speed [mm/s] Note 2)			10 to 500	5 to 250	12 to 500	6 to 250	16 to 500	8 to 250	20 to 500	10 to 250
	Max. acceleration/deceleration [mm/s²]			3,000							
	Positioning repeatability [mm]			± 0.02							
	Lead [mm]			10	5	12	6	16	8	20	10
	ImpactVibration resistance [m/s²] ${ }^{\text {Note } 3)}$			50/20							
	Actuation type			Ball screw							
	Guide type			Linear guide							
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40							
	Operating humidity range [\%RH]			90 or less (No condensation)							
	Cleanliness class ${ }^{\text {Note 4) }}$			ISO Class 4 (ISO 14644-1) Class 10 (Fed.Std.209E)							
	Grease ${ }^{\text {Ball } \text { screw/Linear guide portion }}$			Low particle generation grease							
	Motor size			$\square 28$		$\square 42$		$\square 56.4$			
	Motor type			Step motor (Servo/24 VDC)							
	Encoder			Incremental A/B phase (800 pulse/rotation)							
	Rated voltage [V]			24 VDC $\pm 10 \%$							
	Power consumption [W] Note 5)			22		38		50		100	
	Standloy power consumption when operating [W] ${ }^{\text {Note 6] }}$			18		16		44		43	
	Max, instantaneous power consumption [W] ${ }^{\text {Noie }}$ 7]			51		57		123		141	
-	Type Note 8)			Non-magnetizing lock							
家	Holding force [N]			20	39	78	157	108	216	113	225
寅:	Power consumption [W] Note 9)			2.9		5		5		5	
-	Rated voltage [V]			24 VDC $\pm 10 \%$							

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 9. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The amount of particle generation changes according to the operating conditions and suction flow rate. Refer to the particle generation characteristics for details.
Note 5) The power consumption (including the controller) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 7) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 8) With lock only
Note 9) For an actuator with lock, add the power consumption for the lock.

Electric Actuator/Slider Type Ball Screw Drive

Specifications

Servo Motor (24 VDC)

Model				11-LEFS16A		11-LEFS25A	
	Stroke [mm] ${ }^{\text {Note 1) }}$			100, 200, 300, 400		$\begin{aligned} & 100,200,300 \\ & 400,500,600 \end{aligned}$	
	Work load [kg] ${ }^{\text {Note 2) }}$		Horizontal	7	10	11	18
			Vertical	2	4	2.5	5
	Speed [mm/s] Note 2)			10 to 500	5 to 250	12 to 500	6 to 250
	Max. acceleration/deceleration [mm/s²]			3,000			
	Positioning repeatability [mm]			± 0.02			
	Lead [mm]			10	5	12	6
	ImpactVibration resistance [m/s ${ }^{2}$] ${ }^{\text {Note } 3)}$			50/20			
	Actuation type			Ball screw			
	Guide type			Linear guide			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			
	Operating humidity range [\%RH]			90 or less (No condensation)			
	Cleanliness class ${ }^{\text {Note 4) }}$			ISO Class 4 (ISO 14644-1) Class 10 (Fed.Std.209E)			
	Grease ${ }^{\text {Ball }}$ screw /Linear guide portion			Low particle generation grease			
	Motor size			$\square 28$		$\square 42$	
	Motor output [W]			30		36	
	Motor type			Servo motor (24 VDC)			
	Encoder			Incremental A/B (800 pulse/rotation)/Z phase			
	Rated voltage [V]			24 VDC $\pm 10 \%$			
	Power consumption [W] Note 5)			63		102	
	Standby power consumption when operating [W] ${ }^{\text {DVeie }}$)			Horizontal 4/Vertical 9		Horizontal 4/Vertical 9	
	Max, instantaneous power consumption [W] ${ }^{\text {Noie } 7 \text {] }}$			70		113	
	Type ${ }^{\text {Note 8) }}$			Non-magnetizing lock			
	Holding force [N]			20	39	78	157
	Power consumption [W] Note 9)			2.9		5	
	Rated voltage [V]			24 VDC $\pm 10 \%$			

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Check "Speed-Work Load Graph (Guide)" on page 10 for details. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The amount of particle generation changes according to the operating conditions and suction flow rate. Refer to the particle generation characteristics for details.
Note 5) The power consumption (including the controller) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation
Note 7) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply. Note 8) With lock only
Note 9) For an actuator with lock, add the power consumption for the lock.

Weight

Model	11-LEFS16				
Stroke [mm]	100	200	300	400	
Product weight [kg]	0.90	1.05	1.20	1.35	
Additional weight with lock [kg]	0.12				

Model	11-LEFS25					
Stroke [mm]	100	200	300	400	500	600
Product weight [kg]	1.84	2.12	2.40	2.68	2.96	3.24
Additional weight with lock [kg]	0.26					

Model			11-LEFS32					
Stroke [mm]	100	200	300	400	500	600	700	800
Product weight [kg]	3.35	3.75	4.15	4.55	4.95	5.35	5.75	6.15
Additional weight with lock [kg]	0.53							

Model	11-LEFS40									
Stroke [mm]	200	300	400	500	600	700	800	900	1000	
Product weight [kg]	5.65	6.21	6.77	7.33	7.89	8.45	9.01	9.57	10.13	
Additional weight with lock [kg]										

Dimensions: Ball Screw Drive

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) Position after return to origin.
Note 4) The number in brackets indicates when the direction of return to origin has changed.

Dimensions: Ball Screw Drive

Electric Actuator/Slider Type

 Belt DriveStep Motor (Servo/24 VDC)
Servo Motor (24 VDC)
Series LEFB C $\epsilon \mathrm{SO}_{\mathrm{S}}^{\mathrm{s}}$ LEFB16, 25, 32

How to Order

The belt drive actuator cannot be used vertically for applications.

Equivalent lead [mm]
48

4 Stroke $[\mathrm{mm}]$	
300	300
to	to
2000	2000

* Refer to the applicable stroke table.
2 Motor type

Symbol	Type	Applicable size			
	LEFB16	LEFB25	LEFB32	Compatible contlers/driver	
Nil	Step motor (Servo/24 VDC)	\bullet	\bullet	\bullet	LECP6 LECP1 LECPA
A	Servo motor $(24 ~ V D C) ~$	\bullet	\bullet	-	LECA6

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 44 for the noise filter set. Refer to the LECA Operation Manual for installation.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

Applicable stroke table							
Stroke 300 500 600 700 800 900 1000 1200 1500 1800 Model 2000 LEFB16 \bullet \bullet \bullet \bullet \bullet \bullet \bullet - - - LEFB25 \bullet LEFB32 \bullet							

* Consult with SMC for non-standard strokes as they are produced as special orders.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^4]| 5 Motor option |
| :--- |
| Nil | Without option \quad (B \quad With lock

6 Actuator cable type*1

Nil	Without cable
\mathbf{S}	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."
9 I/O cable length [m]*1

Nil	Without cable *
$\mathbf{1}$	1.5
3	$3^{* 2}$
5	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 44 (For LECP6/LECA6), page 57 (For LECP1) or page 64 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.

8 Controller/Driver type ${ }^{* 1}$

Nil	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*2	NPN
1P	(Programless type)	PNP
AN	LECPA*2	NPN
AP	(Pulse input type)	PNP

*1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
*2 Only available for the motor type "Step motor."
7 Actuator cable length [m]

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

*Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 2) on pages 28 and 29.
10 Controller/Driver mounting

Nil	Screw mounting
D	DIN rail mounting*

* DIN rail is not included. Order it separately.

Compatible Controllers/Driver

Specifications

Step Motor (Servo/24 VDC)					
Model			LEFB16	LEFB25	LEFB32
号	Stroke [mm] Note 1)		$\begin{gathered} 300,500,600,700 \\ 800,900,1000 \end{gathered}$	$\begin{gathered} 300,500,600,700,800,900 \\ 1000,1200,1500,1800,2000 \end{gathered}$	$\begin{gathered} 300,500,600,700,800,900 \\ 1000,1200,1500,1800,2000 \end{gathered}$
	Work load [kg] ${ }^{\text {Note 2) }}$	Horizontal	1	5	14
	Speed [mm/s] Note 2)		48 to 1100	48 to 1400	48 to 1500
	Max. acceleration/decelera	tion [mm/s²]		3,000	
	Positioning repeatab	ility [mm]		± 0.1	
	Equivalent lead [mm		48	48	48
	Impact/Vibration resistance	$\left[\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note 3) }}$		50/20	
	Actuation type			Belt	
	Guide type			Linear guide	
	Operating temperature	range [${ }^{\circ} \mathrm{C}$]		5 to 40	
	Operating humidity ran	nge [\%RH]		90 or less (No condensation)	
	Motor size		$\square 28$	$\square 42$	$\square 56.4$
	Motor type		Step motor (Servo/24 VDC)		
	Encoder		Incremental A/B phase (800 pulse/rotation)		
	Rated voltage [V]		24 VDC $\pm 10 \%$		
	Power consumption [[W] Note 4)	24	32	52
	Standby power consumption when op	perating [W] ${ }^{\text {Note }}$)	18	16	44
	Max. instantaneous power consum	mption [W] Note 6)	51	60	127
	Type Note 7)		Non-magnetizing lock		
	Holding force [N]		4	19	36
	Power consumption	[W] Note 8)	2.9	5	5
	Rated voltage [V]		24 VDC $\pm 10 \%$		

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 4. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Electric Actuator/Slider Type

Specifications

Servo Motor (24 VDC)

Model		LEFB16A	LEFB25A
$\stackrel{0}{0}$	Stroke [mm] Note 1)	$\begin{gathered} 300,500,600,700 \\ 800,900,1000 \end{gathered}$	$\begin{aligned} & 300,500,600,700,800,900 \\ & 1000,1200,1500,1800,2000 \end{aligned}$
	Work load [kg] Note 2) ${ }^{\text {H }}$ Horizontal	1	2
	Speed [mm/s] Note 2)	48 to 2000	48 to 2000
	Max. acceleration/deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]	3,000	
	Positioning repeatability [mm]	± 0.1	
	Equivalent lead [mm]	48	48
	Impact/Vibration resistance [m/s²] Note 3)	50/20	
	Actuation type	Belt	
	Guide type	Linear guide	
	Operating temperature range [${ }^{\circ} \mathrm{C}$]	5 to 40	
	Operating humidity range [\%RH]	90 or less (No condensation)	
O	Motor size	$\square 28$	$\square 42$
	Motor output [W]	30	36
	Motor type	Servo motor (24 VDC)	
	Encoder	Incremental A/B (800 pulse/rotation)/Z phase	
	Rated voltage [V]	24 VDC $\pm 10 \%$	
	Power consumption [W] Note 4)	78	69
	Standby power consumption when operating [W] ${ }^{\text {Note 5] }}$	Horizontal 4	Horizontal 5
	Max. instantaneous power consumption [W] Doie 6)	87	120
	Type ${ }^{\text {Note 7) }}$	Non-magnetizing lock	
	Holding force [N]	4	19
	Power consumption [W] Note 8)	2.9	5
	Rated voltage [V]	24 VDC $\pm 10 \%$	

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Check "Speed-Work Load Graph (Guide)" on page 4 for details. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 4) The power consumption (including the controller) is for when the actuator is operating.
Note 5) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation.
Note 6) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 7) With lock only
Note 8) For an actuator with lock, add the power consumption for the lock.

Weight

Series	LEFB16						
Stroke [mm]	300	500	600	700	800	900	1000
Product weight [kg]	1.19	1.45	1.58	1.71	1.84	1.97	2.10
Additional weight with lock [kg]	0.12						

Series	LEFB25										
Stroke [mm]	300	500	600	700	800	900	1000	1200	1500	1800	2000
Product weight [kg]	2.39	2.85	3.08	3.31	3.54	3.77	4.00	4.46	5.15	5.84	6.30
Additional weight with lock [kg]	0.26										

Series	LEFB32										
Stroke [mm]	300	500	600	700	800	900	1000	1200	1500	1800	2000
Product weight [kg]	4.12	4.80	5.14	5.48	5.82	6.16	6.50	7.18	8.20	9.22	9.90
Additional weight with lock [kg]	0.53										

Series LEFB

Construction

Series LEFB

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Rail guide	-	
3	Belt	-	
4	Belt holder	Carbon steel	Chromate treated
5	Belt stopper	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
7	Blanking plate	Synthetic resin	Anodized
$\mathbf{8}$	Seal band stopper	Aluminum die-cast	Coating
9	Housing A	Aluminum alloy	
10	Pulley holder	Stainless steel	
11	Pulley shaft	Aluminum alloy	Anodized
12	End pulley	Aluminum alloy	Anodized
13	Motor pulley	Aluminum alloy	Anodized
14	Motor mount	Aluminum alloy	Anodized
15	Motor cover	Stainless steel	
16	End cover	-	
17	Band stopper	NBR	
18	Motor	Aluminum alloy	
19	Rubber bushing	Stainless steel	
20	Stopper	-	
21	Dust seal band	-	
22	Bearing	Chromium molybdenum steel	Chromate treated
23	Bearing	Chromium molybdenum steel	Chromate treated
24	Tension adjustment bolt	Chlley fixing bolt	

Electric Actuator／Slider Type Belt Drive

Dimensions：Belt Drive

Note 1）When mounting the electric actuator using the body mounting reference plane，set the height of the opposite surface or pin to 2 mm or more because of R chamfering．（Recommended height： 5 mm ）
Note 2）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 3）Position after return to origin．
Note 4）The number in brackets indicates when the direction of return to origin has changed．

LEFB25

Note 1）When mounting the electric actuator using the body mounting reference plane，set the height of the opposite surface or pin to 3 mm or more because of R chamfering．（Recommended height： 5 mm ）
Note 2）Distance within which the table can move when it returns to origin． Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 3）Position after return to origin．
Note 4）The number in brackets indicates when the direction of return to origin has changed．

Motor option：

Model	L	A	B	n	D	E
LEFB16 \square T－300 \square	495.5	306	435	6	2	300
LEFB16 \square T－500 \square	695.5	506	635	10	4	600
LEFB16 \square T－600 \square	795.5	606	735	10	4	600
LEFB16 \square T－700 \square	895.5	706	835	12	5	750
LEFB16 \square T－800 \square	995.5	806	935	14	6	900
LEFB16 \square T－900 \square	1095.5	906	1035	14	6	900
LEFB16 \square T－1000 \square	1195.5	1006	1135	16	7	1050

Step motor	Servo motor
20	$\xrightarrow{24}$
\＃	
閣 N_{1}	畇 ${ }^{\text {Nit }}$
15	15

Series LEFB

Dimensions: Belt Drive

LEFB32

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) Position after return to origin.
Note 4) The number in brackets indicates when the direction of return to origin has changed.

Model						
L	A	B	n	D	E	
LEFB32 \square T-300 \square	585.6	306	489	6	2	400
LEFB32 \square T-500 \square	785.6	506	689	8	3	600
LEFB32 \square T-600 \square	885.6	606	789	8	3	600
LEFB32 \square T-700 \square	985.6	706	889	10	4	800
LEFB32 \square T-800 \square	1085.6	806	989	10	4	800
LEFB32 \square T-900 \square	1185.6	906	1089	12	5	1000
LEFB32 \square T-1000 \square	1285.6	1006	1189	12	5	1000
LEFB32 \square T-1200 \square	1485.6	1206	1389	14	6	1200
LEFB32 \square T-1500 \square	1785.6	1506	1689	18	8	1600
LEFB32 \square T-1800 \square	2085.6	1806	1989	20	9	1800
LEFB32 \square T-2000 \square	2285.6	2006	2189	22	10	2000

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Design

© Caution

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by load and allowable moment. If the product is used outside of the operating limit, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause failure.

Handling

© Caution

1. Set the position determination width in the step data to at least 0.5 (at least 1 for the belt type).
Otherwise, completion signal of in position may not be output.
2. INP output signal
1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to [0.50] or higher.

Handling
 © Caution
 3. Never hit at the stroke end except during return to origin.
 The internal stopper can be broken.

Handle the actuator with care, especially when it is used in the vertical direction.
4. The moving force should be the initial value.

If the moving force is set below the initial value, it may cause an alarm.
5. The actual speed of this actuator is affected by the work load.
Check the model selection section of the catalog.
6. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.

Otherwise, the origin can be displaced since it is based on detected motor torque.
7. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
8. When attaching a workpiece, do not apply strong impact or large moment.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
9. Keep the flatness of mounting surface 0.1 mm or less.

Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.
10. When mounting the product, keep a 40 mm or longer diameter for bends in the cable.
11. Do not hit the table with the workpiece in the positioning operation and positioning range.

Series LEF
 Electric Actuator/ Specific Product Precautions 2

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Handling

\triangle Caution

12. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

The travelling parallelism is the reference plane for the body mounting reference plane.
If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Bolt	Max. tightening torque $(\mathrm{N} \cdot \mathrm{m})$	$\mathrm{L}(\mathrm{Max}$ screw-in depth) (mm)
LEF $\square \mathbf{1 6}$	$\mathrm{M} 4 \times 0.7$	1.5	6
LEF $\square \mathbf{2 5}$	$\mathrm{M} 5 \times 0.8$	3.0	8
LEF $\square \mathbf{3 2}$	$\mathrm{M} 6 \times 1$	5.2	9
LEFS40	M8 $\times 1.25$	12.5	13

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause a malfunction,
13. Do not operate by fixing the table and moving the actuator body.
14. The belt drive actuator cannot be used vertically for applications.
15. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.
16. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

* Select whichever comes sooner.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

Controller／Driver

Step Data Input Type
 Gateway Unit．．．．．．．．．．．．．．．．Page 48

Page 36

Series LEC－G

Programless Type
Page 51
Pulse Input Type \cdot ．．．．．．．．．．．．Page 58

Model
Selection

How to Order

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECA6 series (servo motor controller), EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 44 for the noise filter set. Refer to the LECA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

The controller is sold as single unit after the compatible actuator is set.

Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	LECP6	LECA6
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)
Power supply Note 1)	Power voltage: 24 VDC $\pm 10 \%$ Current consumption: 3 A (Peak 5 A) Note 2) [Including motor drive power, control power, stop, lock release]	Power voltage: 24 VDC $\pm 10 \%$ Current consumption: 3 A (Peak 10 A) Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)	
Parallel output	13 outputs (Photo-coupler isolation)	
Compatible encoder	Incremental A/B phase (800 pulse/rotation)	Incremental A/B/Z phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)	
Memory	EEPROM	
LED indicator	LED (Green/Red) one of each	
Lock control	Forced-lock release terminal Note 3)	
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less	
Cooling system	Natural air cooling	
Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)	
Operating humidity range [\%RH]	90 or less (No condensation)	
Storage temperature range ${ }^{[} \mathrm{C}$] $]$	-10 to 60 (No freezing)	
Storage humidity range [\%RH]	90 or less (No condensation)	
Insulation resistance [M2]	Between the housing and SG terminal 50 (500 VDC)	
Weight [g]	150 (Screw mounting) 170 (DIN rail mounting)	

Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

Controller (Step Data Input Type)/Step Motor (Servo/24 vDc) Series LECP6 Controller (Step Data Input Type)/Servo Motor (24 vDC) Series LECA6

How to Mount

a) Screw mounting (LEC $\square 6 \square \square-\square$) (Installation with two M4 screws)

b) DIN rail mounting (LEC $\square 6 \square \square \mathrm{D}-\square$) (Installation with the DIN rail)

Hook the controller on the DIN rail and press
the lever of section \mathbf{A} in the arrow direction to lock it.

Note) When size 25 or more of the LEF series are used, the space between the controllers should be 10 mm or more.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 38 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Series LECP6

Series LECA6

Dimensions

a) Screw mounting (LEC $\square 6 \square \square-\square$)

b) DIN rail mounting (LEC $\square 6 \square \square \mathrm{D}-\square$)

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) Series LECP6 Controller (Step Data Input Type)/Servo Motor (24 vDC) Series LECA6

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECP6 (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0V	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/BK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

CN1 Power Supply Connector Terminal for LECA6 (PHOENIX CONTACT FK-MC0.5/7-ST-2.5)

Terminal name	Function	Details
OV	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/BK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock
RG +	Regenerative output 1	Regenerative output terminals for external connection
RG-	Regenerative output 2	(Not necessary to connect them in the combination with the LE series standard specifications.)

Power supply plug for LECP6

Power supply plug for LECA6

Wiring Example 2

Parallel I/O Connector: CN5

* When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CN5- \square). * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

Wiring diagram

LEC $\square 6 \mathrm{~N} \square \square$ - \square (NPN)

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
IN0 to IN5	Step data specified Bit No.
	(Input is instructed in the combination of INO to 5.)
SETUP	Instruction to return to origin
HOLD	Operation is temporarily stopped
DRIVE	Instruction to drive
RESET	Alarm reset and operation interruption
SVON	Servo ON instruction

LEC $\square 6 \mathrm{P} \square \square$ - \square (PNP)

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no. during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached (Turns on when the positioning or pushing is completed.)
SVRE	Outputs when servo is on
*ESTOP Note)	Not output when EMG stop is instructed
*ALARM Note)	Not output when alarm is generated

Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

© : Need to be set.

Step Data (Positioning) $\quad \begin{aligned} & \text { O: Neeed to be adjusted as required. } \\ & \text { - Setting is not required. }\end{aligned}$		
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the target position
\bigcirc	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0. (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Pushing)		© : Need to be set. O : Need to be adjusted as required.
Necessity	Item	Details
\bigcirc	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the pushing start position
\bigcirc	Position	Pushing start position
0	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
0	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
\bigcirc	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the operation manual for the electric actuator.
\bigcirc	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and workpieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the operation manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

* "OUT" is output when "DRIVE" is changed from ON to OFF.
(When power supply is applied, "DRIVE" or "RESET" is turned ON or
"*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)

HOLD

[^5] not stop even if HOLD signal is input.

[^6]
Series LECP6

Series LECA6

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE-CP- ${ }_{5}^{1} / C a b l e ~ l e n g t h: ~ 1.5 ~ m, ~ 3 ~ m, ~ 5 ~ m ~$

LE-CP- ${ }_{A C}^{8}$ /Cable length: $\mathbf{8 m} \mathbf{m}, \mathbf{1 0 m}, \mathbf{1 5 m}, \mathbf{2 0 m}$

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
			Cable color	Connector D terminal no.
Vcc	B-4		Brown	12
GND	A-4	$1 \times \times \times 1$	Black	13
$\overline{\mathrm{A}}$	B-5	1	Red	7
A	A-5		Black	6
\bar{B}	B-6	,	Orange	9
B	A-6	!	Black	8
Signal	Connector B terminal no.		-	3
Lock (+)	B-1		Red	4
Lock (-)	A-1		Black	5
Sensor (+) Note)	B-3	,	Brown	1
Sensor (-) Note)	A-3		Blue	2

Controller（Step Data Input Type）／Step Motor（Servo／24 vDc）Series LECP6 Controller（Step Data Input Type）／Servo Motor（24 vDc）Series LECA6

［Robotic cable for servo motor（24 VDC）］

$L E-C A-1$	
Cable length（L）［m］${ }^{\text {c }}$	
1	1.5
3	3
5	5
8	8＊
A	10＊
B	15^{*}
C	20＊

＊Produced upon receipt of order

LE－CA－\square

Signal	Connector A terminal no．	Cable color	Connector C terminal no．
U	1	Red	1
V	2	White	2
W	3	Black	3
Signal	Connector B terminal no．	Cable color	Connector D terminal no．
Vcc	B－1	Brown	12
GND	A－1	Black	13
$\overline{\mathrm{A}}$	B－2	Red	7
A	A－2	Black	6
\bar{B}	B－3	Orange	9
B	A－3	Black	8
\bar{Z}	B－4	Yellow	11
Z	A－4	Black	10
		－	3

LE－CA $-\mathbf{1}$
Cable length（L）［m］
$\mathbf{1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
A
B
C

＊Produced upon receipt of order With lock and sensor

LE－CA－\square－B

Signal	Connector A1 terminal no．		Cable color	Connector C terminal no．
U	1		Red	1
V	2		White	2
W	3		Black	3
Signal	Connector A2 terminal no．	Shield	Cable color	Connector D terminal no．
Vcc	B－1	i！	Brown	12
GND	A－1		Black	13
$\overline{\mathrm{A}}$	B－2		Red	7
A	A－2		Black	6
\bar{B}	B－3		Orange	9
B	A－3		Black	8
$\overline{\text { Z }}$	B－4		Yellow	11
Z	A－4		Black	10
	Connector B	Connection of shield material	－	3
Signal	terminal no.	Connection of shield material		
Lock（＋）	B－1	，	Red	4
Lock（－）	A－1		Black	5
Sensor（＋）Note）	B－3		Brown	1
Sensor（－）Note）	A－3		Black	2

suounneoal．
Lonpo．id dulods

Series LECP6
 Series LECA6

Option: I/O Cable
LEC-CN5-1
Cable length (L) [m]

1	1.5
3	3
5	5

* Conductor size: AWG28

Connector pin no.	Insulation color	Dot mark	Dot color
A1	Light brown	\square	Black
A2	Light brown	\square	Red
A3	Yellow	\square	Black
A4	Yellow	\square	Red
A5	Light green	\square	Black
A6	Light green	\square	Red
A7	Gray	\square	Black
A8	Gray	\square	Red
A9	White	\square	Black
A10	White	\square	Red
A11	Light brown	■ ■	Black
A12	Light brown	■ ■	Red
A13	Yellow	$\square \square$	Black

Connector pin no.	Insulation color	Dot mark	$\begin{aligned} & \text { Dot } \\ & \text { color } \end{aligned}$
B1	Yellow	■ ■	Red
B2	Light green	$\square \square$	Black
B3	Light green	■ ■	Red
B4	Gray	■ ■	Black
B5	Gray	$\square \square$	Red
B6	White	$\square \square$	Black
B7	White	■ ■	Red
B8	Light brown	■■■	Black
B9	Light brown	■■■	Red
B10	Yellow	■■■	Black
B11	Yellow	■■■	Red
B12	Light green	■■■	Black
B13	Light green	■■■	Red
-	Shield		

Option: Noise Filter Set for Servo Motor (24 VDC)

LEC - NFA

Contents of the set: 2 noise filters (Manufactured by WURTH ELEKTRONIK: 74271222)

* Refer to the LECA6 series Operation Manual for installation.

Contents
(1) Controller setting software (CD-ROM)
(2) Communication cable
3) USB cable
(Cable between the PC and the conversion unit)
Compatible Controllers/Driver

Step motor controller (Servo/24 VDC)	Series LECP6
Servo motor controller (24 VDC)	Series LECA6
Step motor driver (Pulse input type)	Series LECPA

Hardware Requirements

OS	IBM PC/AT compatible machine running Windows ${ }^{\text {® }}$ XP (32-bit), Windows ${ }^{\text {® }}$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR}$ and Windows ${ }^{\circledR 7}$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version update information, http://www.smcworld.com

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Teaching Box/LEC-T1

How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [${ }^{\circ} \mathbf{C}$]	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**) - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Menu	Data
Data Monitor Jog Test ALM TB setting	Step data no.
	Setting of two items selected below
	Ver. 1.**:
	Position, Speed, Force, Acceleration, Deceleration
	Ver. 2.**:
	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD,
	Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

TB setting

Easy/Normal
Language
Backlight

- LCD contrast

Beep
Max. connection axis
Password
Distance unit
Reconnect

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

Gateway Unit Series LEC-G

How to Order

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LEF series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products] When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Note) DIN rail is not included.

Branch connector LEC-CGD

Branch connector Terminating resistor

Cable between branches

Communication Response Time Guideline

Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit. For response time, refer to the graph below.

* This graph shows delay times between gateway unit and controllers. Fieldbus network delay time is not included.

Dimensions

Screw mounting (LEC-G $\square \square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

Trademark DeviceNet ${ }^{T M}$ is a trademark of ODVA. EtherNet/IP ${ }^{T M}$ is a trademark of ODVA.

Series LEC-G

Dimensions

DIN rail mounting (LEC-G $\square \square \square$ D)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

* Mountable on DIN rail (35 mm)

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions above for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

[^7]
Programless Controller Series LECP1

How to Order

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC $\pm 10 \%$, Max. current consumption: 3A (Peak 5A) Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7 -segment display (Red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Hexadecimal display A b
Note 4) Applicable to non-magnetizing lock.

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON : Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm : Red turns on Parameter setting : Red flashes
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch)
(4)	-	FG	Frame ground (Tighten the bolt with the nut when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	MANUAL	Manual forward button	Perform forward jog and inching.
(10)	MANUAL	Manual reverse button	Perform reverse jog and inching.
(11)	SPEED	Forward speed switch	16 forward speeds are available.
(12)	SPEED	Reverse speed switch	16 reverse speeds are available.
(13)	CCEL	Forward acceleration switch	16 forward acceleration steps are available.
(14)	ACCEL	Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)
(Installation with two M4 screws)

2. Grounding

Tighten the bolt with the nut when mounting the ground wire as shown below.

Note) When size 25 or more of the LEF series are used, the space between the controllers should be 10 mm or more.

\triangle Caution

\bullet M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.

- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).
Size
End width \quad L: 2.0 to $2.4[\mathrm{~mm}]$
End thickness W: 0.5 to $0.6[\mathrm{~mm}]$

Programless Controller Series LECP1

Dimensions

Screw mounting (LEC $\square 1 \square \square-\square$)

Wiring Example 1

Power Supply Connector: CN1 * When you connect a CN1 power supply connector, please use the power supply cable (LEC-CK1-1). * Power supply cable (LEC-CK1-1) is an accessory.

CN1 Power Supply Connector Terminal for LECP1

Terminal name Cable color	Function	Details	
0V	Blue	Common supply (-)	M24V terminal/C24V terminal/BK RLS terminal are common (-).
M24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4 * When you connect a PLC, etc., to the CN4 parallel I/O connector, please use the I/O cable (LEC-CK4- \square).

■NPN

		Power supply 24 VDC for I/O signal
CN4		
COM+	1	\bigcirc
COM-	2	
OUT0	3	Load -
OUT1	4	Load -
OUT2	5	Load -
OUT3	6	Load -
BUSY	7	Load -
ALARM	8	Load
ino	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
INO to IN3	- Instruction to drive (input as a combination of INO to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	IN0
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart
O: OFF © ON

Position number	IN3	IN2	IN1	INO
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	-	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	-
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Retun to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

DPN

Output Signal

Name	Details			
OUT0 to OUT3	Turns on when the positioning or pushing is completed. (Output is instructed in the combination of OUT0 to 3.) Example - (operation complete for position no. 3)			
	OUT3	OUT2	OUT1	OUT0
OFF	OFF	ON	ON	
BUSY	Outputs when the actuator is moving			
*ALARM Note)	Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUT0 - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUTO
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	-	\bigcirc
3	\bigcirc	\bigcirc	-	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	-	\bigcirc
7	\bigcirc	-	-	-
8	-	\bigcirc	\bigcirc	\bigcirc
9	-	\bigcirc	\bigcirc	-
10 (A)	-	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	-	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	-	-	\bigcirc	-
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Retun to origin	\bigcirc	\bigcirc	\bigcirc	-

Signal Timing
(1) Return to Origin

* "*ALARM" is expressed as negative-logic circuit.

(2) Positioning Operation

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

* "*ALARM" is expressed as negative-logic circuit.

Series LECP1

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{A}^{8} \mathrm{~B} /$ Cable length: $8 \mathrm{~m}, \mathbf{1 0 m} \mathbf{m} \mathbf{1 5} \mathrm{~m}, \mathbf{2 0 m}$
(* Produced upon receipt of order)

Programless Controller Series LECP1

Options

[Power supply cable]

LEC-CK1-1

| Common supply (-) |
| :--- | :--- |
| Control power supply (+) |
| Lock release $(+)$ |

[I/O cable]

LEC - CK $-\square-\square$
Cable length (L) [m]
1
3

* Conductor size: AWG26

Terminal no.	Insulation color	Dot mark	Dot color	Function
1	Light brown	\square	Black	COM+
2	Light brown	\square	Red	COM-
3	Yellow	\square	Black	OUT0
4	Yellow	\square	Red	OUT1
5	Light green	\square	Black	OUT2
6	Light green	\square	Red	OUT3
7	Gray	\square	Black	BUSY
8	Gray	\square	Red	ALARM
9	White	\square	Black	INO
10	White	\square	Red	IN1
11	Light brown	■	Black	IN2
12	Light brown	■ ■	Red	IN3
13	Yellow	$\square \square$	Black	RESET
14	Yellow	$\square \square$	Red	STOP

[^8]
Step Motor Driver Series LECPA

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LEF series and the LECPA series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECPA series (step motor driver), EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 64 for the noise filter set. Refer to the LECPA Operation Manual for installation. [UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Item	LECPA
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC $\pm 10 \%$ Maximum current consumption: 3 A (Peak 5 A) Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	5 inputs (Except photo-coupler isolation, pulse input terminal, COM terminal)
Parallel output	9 outputs (Photo-coupler isolation)
Pulse signal input	Maximum frequency: 60 kpps (Open collector), 200 kpps (Differential) Input method: 1 pulse mode (Pulse input in direction), 2 pulse mode (Pulse input in differing directions)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 1.5 or less (Open collector), 5 or less (Differential) Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M Ω]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	120 (Screw mounting), 140 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the driver power supply. When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.

Step Motor Driver Series LECPA

How to Mount

a) Screw mounting (LECPA $\square \square-\square$) (Installation with two M4 screws)

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$) (Installation with the DIN rail)

DIN rail is locked.

Hook the driver on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

Note) The space between the drivers should be 10 mm or more.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 60 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-2-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type driver afterwards.

Series LECPA

Dimensions

a) Screw mounting (LECPA $\square \square-\square$)

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECPA (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/BK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPA

Step Motor Driver Series LECPA

Wiring Example 2

Parallel I/O Connector: CN5 * When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CL5-D).

LECPAN $\square \square-\square$ (NPN)

Note 1) For pulse signal wiring method, refer to "Pulse Signal Wiring Details". Note 2) Output when the power supply of the driver is ON. (N.C.)

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
SETUP	Instruction to return to origin
RESET	Alarm reset
SVON	Servo ON instruction
CLR	Deviation reset
TL	Instruction to pushing operation

Pulse Signal Wiring Details

- Pulse signal output of positioning unit is differential output

- Pulse signal output of positioning unit is open collector output

Pulse signal power supply

LECPAP $\square \square-\square$ (PNP)

Output Signal

Name	Details
BUSY	Outputs when the actuator is operating
SETON	Outputs when returning to origin
INP	Outputs when target position is reached
SVRE	Outputs when servo is on
*ESTOP Note 3)	Not output when EMG stop is instructed
*ALARM Note 3)	Not output when alarm is generated
AREA	Outputs within the area output setting range
WAREA	Outputs within W-AREA output setting range
TLOUT	Outputs during pushing operation

Note 3) Signal of negative-logic circuit ON (N.C.)

Note) Connect the current limit resistor R in series to correspond to the pulse signal voltage.

Pulse signal power supply voltage	Current limit resistor R specifications
$24 \mathrm{VDC} \pm 10 \%$	$3.3 \mathrm{k} \Omega \pm 5 \%(0.5 \mathrm{~W}$ or more)
$5 \mathrm{VDC} \pm 5 \%$	$390 \Omega \pm 5 \%(0.1 \mathrm{~W}$ or more)

Series LECPA

Signal Timing

Return to Origin

If the actuator is within the "in position" range of the basic parameter, INP will turn ON, but if not, it will remain OFF.

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

Positioning Operation

Alarm Reset

[^9]
Pushing Operation

Note) If pushing operation is stopped when there is no pulse deviation, the moving part of the actuator may pulsate.

Step Motor Driver Series LECPA

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

$L E-C P-1$ Cable length (L) [m]		
1	1.5	
3	3	
5	5	
8	8*	
A	10*	
B	15*	
C	20*	
* Produced upon receipt of order (Robotic cable only)		
Cable type ${ }^{\text {d }}$		

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$
Driver side

$\xrightarrow{\text { Driver side }}$ (* Produced upon receipt of order)

Nil	Robotic cable (Flexible cable)
S	Standard cable

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Series LECPA

Options

[I/O cable]

* Pulse input usable only with differential. Only 1.5 m cables usable with open collector.

Pin no.	Insulation color	Dot mark	Dot color
1	Light brown	\square	Black
2	Light brown	\square	Red
3	Yellow	\square	Black
4	Yellow	\square	Red
5	Light green	\square	Black
6	Light green	\square	Red
7	Gray	\square	Black
8	Gray	\square	Red
9	White	\square	Black
10	White	\square	Red
11	Light brown	$\square \square$	Black

Pin no.	Insulation color	Dot mark	Dot color
12	Light brown	■	Red
13	Yellow	■ ■	Black
14	Yellow	■■	Red
15	Light green	$\square \square$	Black
16	Light green	$\square \square$	Red
17	Gray	■	Black
18	Gray	■	Red
19	White	■	Black
20	White	■ ■	Red
$\begin{gathered} \text { Round teminal } \\ 0.5-5 \end{gathered}$	Green		

[Noise filter set]

Step Motor Driver (Pulse Input Type)

LEC-NFA

Contents of the set: 2 noise filters
(Manufactured by WURTH ELEKTRONIK: 74271222)

[^10]

(1) Controller setting software (CD-ROM)
(2) Communication cable
(3) USB cable
(Cable between the PC and the conversion unit)

* Windows ${ }^{\circledR}$ and Windows ${ }^{\circledR 7}$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version update information, http://www.smcworld.com

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Teaching Box/LEC-T1

How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation Note 1) - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**)
- Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data
Data Monitor Jog Test ALM TB setting	Step data no.
	Setting of two items selected below
	Ver. 1.**:
	Position, Speed, Force, Acceleration, Deceleration
	Ver. 2.**:
	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

	Monitor
Display of step no. Display of two items selected below (Position, Speed, Force)	
	Jog
	Return to origin Jog operation
	Test Note 1)
	1 step operation
	ALM
	Active alarm display Alarm reset

Note 1) Not compatible with the LECPA.

TB setting
Reconnection of axis (Ver. 1.**)
Japanese/English (Ver. 2.**)
Easy/Normal
Set item

Normal Mode

Function	Details			
Step data	- Step data setting	$	$	- Parameters setting
:---	:---			

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Step data	
Step data no. Movement MOD Speed Position Acceleration Deceleration Pushing force Trigger LV Pushing speed Moving force Area 1, 2 In position	
Parameter	Basic setting
$\begin{aligned} & \text { Basic } \\ & \text { ORIG } \end{aligned}$	ORIG setting
Monitor	DRV monitor
Drive Output signal Note 2) Input signal Note 2)	Position, Speed, Torque Step no. Last step no
Output terminal Input terminal	Output signal monitor
Test	Input signal monitor
JOG/MOVE Return to ORIG	Output terminal monitor
Test drive Note 1) Forced output Note 2)	Input terminal monitor
ALM	Status
Status ALM Log record	Active alarm display Alarm reset
File	ALM Log record display
Data saving Load to driver	Log entry display

TB setting

Easy/Normal
Language
Backlight

- LCD contrast

Beep
Max. connection axis
Password
Distance unit
Reconnect

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the driver

AC Servo Motor

Ball Screw Drive Page 84

Belt Drive Page 96 Series LEFB

Electric Actuator/Slider Type AC Servo Motor Ball Screw Drive/Series LEFS
Model Selection

Selection Procedure

Step 1 Check the work load-speed.
Step 2 Check the cycle time.
Step 3 Check the allowable moment.

Selection Example
Operating

Step 1
Check the work load-speed. <Speed-Work load graph> (Page 71) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.

Selection example) The LEFS40S4B-200 is temporarily selected based on the graph shown on the right side.

<Speed-Work load graph>
(LEFS40)

L : Stroke [mm]
... (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
... (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed

Based on the above calculation result, the LEFS40S4B-200 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =0.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+0.57+0.1+0.05 \\
& =0.82[\mathbf{s}]
\end{aligned}
$$ in positioning of the step data. Therefore, please calculate the settling time with reference to the following value

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Step 3

Check the guide moment.

LEFS25/Ball Screw Drive

Horizontal

Vertical

LEFS32/Ball Screw Drive

Horizontal

Vertical

LEFS40/Ball Screw Drive

Horizontal

Vertical

Required conditions for "Regeneration Option"

* Regeneration option required when using product above "Regeneration" line in graph. (Order separately) [How to read the graph]
Required conditions change depending on operating conditions
Regeneration (50\%) : Duty ratio 50\% or more
Regeneration (100\%): Duty ratio 100\%
"Regeneration Option" Models

Size	Model
LEFS25 \square	LEC-MR-RB032
LEFS32 \square	LEC-MR-RB032
LEFS40 \square	LEC-MR-RB032

Allowable Stroke Speed

[mm/s]													
Model	AC servo motor	Lead		Stroke [mm]									
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000
LEFS25	$\begin{gathered} 100 \mathrm{~W} \\ \square 40 \end{gathered}$	A	12	900				720	540	-	-	-	-
		B	6	450				360	270	-	-	-	-
		(Motor rotation speed)		(4500 rpm)				(3650 rpm)	(2700 rpm)	-	-	-	-
LEFS32	$\begin{gathered} 200 \mathrm{~W} \\ \square 60 \end{gathered}$	A	16	1000	1000	1000	1000	1000	800	620	500	-	-
		B	8	500	500	500	500	500	400	310	250	-	-
		(Motor rotation speed)		(3750 rpm)					(3000 rpm)	(2325 rpm)	(1875 rpm)	-	-
LEFS40	$\begin{gathered} 400 \mathrm{~W} \\ \square 60 \end{gathered}$	A	20	-	1000					940	760	620	520
		B	10	-	500					470	380	310	260
		(Motor rotation speed)		-	(3000 rpm)					(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560 rpm)

Series LEFS

Work Load-Acceleration/Deceleration Graph (Guide)
LEFS25/Ball Screw Drive: Horizontal

LEFS25S \square A

LEFS25S \square B

LEFS25/Ball Screw Drive: Vertical

LEFS25S \square A

LEFS25S \square B

LEFS32/Ball Screw Drive: Horizontal

LEFS32S \square A

LEFS32S \square B

LEFS32/Ball Screw Drive: Vertical

LEFS32S \square A

LEFS32S \square B

Model Selection Series LEFS

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS40/Ball Screw Drive: Horizontal

LEFS40S $\square B$

LEFS40/Ball Screw Drive: Vertical
LEFS40S \square A

LEFS40S \square B

Series LEFS

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang when the center of gravity of the workpiece overhangs in one direction. When the center of gravity of the workpiece overhangs in two directions, refer to the Electric Actuator Selection Software for confirmation. http://www.smcworld.com

Table Accuracy

Model	Traveling parallelism［mm］（Every 300 mm ）	
	1）C side traveling parallelism to A side	（2）D side traveling parallelism to B side
	0.05	0.03
LEFS32	0.05	0.03
LEFS40	0.05	0.03

Note）Traveling parallelism does not include the mounting surface accuracy．

Table Displacement（Reference Value）

Note 1）This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table．
Note 2）Please confirm the clearance and play of the guide separately．

Particle Generation Measuring Method

The particle generation data for SMC Clean Series are measured in the following test method.

Test Method (Example)

Place the specimen in the acrylic resin chamber and operate it while supplying the same flow rate of clean air as the suction flow rate of the measuring instrument ($28.3 \mathrm{~L} / \mathrm{min}$). Measure the changes of the particle concentration over time until the number of cycles reaches the specified point.
The chamber is placed in an ISO Class 5 equivalent clean bench.

Measuring Conditions

Chamber	Internal volume	28.3 L
	Supply air quality	Same quality as the supply air for driving
Measuring instrument	Description	Minimum measurable particle diameter
	Suction flow rate	$0.1 \mu \mathrm{~m}$
	Sampling time	$28.3 \mathrm{~L} / \mathrm{min}$
	Interval time	5 min
	Sampling air flow	55 min

Particle generation measuring circuit

IEvaluation Method

To obtain the measured values of particle concentration, the accumulated value Note 1) of particles captured every 5 minutes, by the laser dust monitor, is converted into the particle concentration in every $1 \mathrm{~m}^{3}$.
When determining particle generation grades, the 95% upper confidence limit of the average particle concentration (average value), when each specimen is operated at a specified number of cycles Note 2) is considered.
The plots in the graphs indicate the 95% upper confidence limit of the average particle concentration of particles with a diameter within the horizontal axis range.
Note 1) Sampling air flow rate: Number of particles contained in 141.5 L of air
Note 2) Actuator: 1 million cycles

Particle Generation Characteristics

AC Servo Motor (100/200/400 W)

11-LEFS25 Speed $900 \mathrm{~mm} / \mathrm{s}$

11-LEFS32 Speed $1000 \mathrm{~mm} / \mathrm{s}$

11-LEFS40 Speed $1000 \mathrm{~mm} / \mathrm{s}$

Speed-Work Load Graph (Guide)
AC Servo Motor

11-LEFS25/Ball Screw Drive

Vertical

11-LEFS32/Ball Screw Drive

Horizontal

Vertical

11-LEFS40/Ball Screw Drive

Horizontal

Required conditions for "Regeneration Option"

* Regeneration option required when using product above "Regeneration" line in graph. (Order separately) [How to read the graph]
Required conditions change depending on operating conditions.
Regeneration (50\%) : Duty ratio 50\% or more
Regeneration (100\%): Duty ratio 100\%

Vertical

"Regeneration Option" Models

Allowable Stroke Speed

Size	Model
11-LEFS25 \square	LEC-MR-RB032
11-LEFS32 \square	LEC-MR-RB032
11-LEFS40 \square	LEC-MR-RB032

Model	AC servo motor	Lead		Stroke [mm]									
		Symbol	[mm]	Up to 100	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000
11-LEFS25	$\begin{aligned} & 100 \mathrm{~W} \\ & \square 40 \end{aligned}$	A	12	900				720	540	-	-	-	-
		B	6	450				360	270	-	-	-	-
		(Motor rotation speed)		(4500 rpm)				(3650 rpm)	(2700 rpm)	-	-	-	-
11-LEFS32	$\begin{gathered} 200 \text { W } \\ \square 60 \end{gathered}$	A	16	1000	1000	1000	1000	1000	800	620	500	-	-
		B	8	500	500	500	500	500	400	310	250	-	-
		(Motor rotation speed)		(3750 rpm)					(3000 rpm)	(2325 rpm)	(1875 rpm)	-	-
11-LEFS40	$\begin{gathered} 400 \mathrm{~W} \\ \square 60 \end{gathered}$	A	20	-	1000					940	760	620	520
		B	10	-	500					470	380	310	260
		(Motor rotation speed)		-	(3000 rpm)					(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560 rpm)

Dynamic Allowable Moment
AC Servo Motor
＊This graph shows the amount of allowable overhang when the center of gravity of the workpiece overhangs in one direction．When the center of gravity of the workpiece overhangs in two directions，refer to the Electric Actuator Selection Software for confirmation．http：／／www．smcworld．com

Electric Actuator/Slider Type AC Servo Motor
Belt Drive/Series LEFB
Model Selection

Selection Procedure

Selection Example

Operating conditions
-Workpiece mass: 20 [kg]

- Speed: 1,500 [mm/s]
- Acceleration/Deceleration: 3,000 [mm/s²]
- Stroke: 2,000 [mm]
\bullet Mounting position: Horizontal upward

> -Workpiece mounting condition:

Step 1
Check the work load-speed. <Speed-Work load graph> (Page 81) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.

Selection example) The LEFB40S4S-2000 is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3:
Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.
$\mathrm{T} 4=0.05$ [s]

Step 3 Check the guide moment.

Based on the above calculation result, the LEFB40S4S-2000 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=1500 / 3000=0.5[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=1500 / 3000=0.5[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{2000-0.5 \cdot 1500 \cdot(0.5+0.5)}{1500} \\
& =0.83[\mathrm{~s}] \\
\mathrm{T} 4 & =0.05[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.5+0.83+0.5+0.05 \\
& =1.88[\mathbf{s}]
\end{aligned}
$$

<Speed-Work load graph>
(LEFB40)

L: Stroke [mm]
... (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
... (Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating
at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed

Speed-Work Load Graph (Guide)
LEFB $\square /$ Belt Drive

* The shaded area in the graph requires the regeneration option (LEC-MR-RB032).

Cycle Time Graph (Guide)

LEFB $\square / B e l t$ Drive

LEFB25/32/40

Acceleration/Deceleration [mm/s ${ }^{2}$]

* Cycle time is for when maximum speed.
* Maximum stroke: LEFB25: 2000 mm LEFB32: 2500 mm LEFB40: 3000 mm

Work Load-Acceleration/Deceleration Graph (Guide)
LEFB $\square /$ Belt Drive

LEFB32S \square (Duty ratio)

LEFB40S \square (Duty ratio)

Series LEFB

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang when the center of gravity of the workpiece overhangs in one direction. When the center of gravity of the workpiece overhangs in two directions, refer to the Electric Actuator Selection Software for confirmation. http://www.smcworld.com

Table Accuracy

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
	0.05	0.03
LEFB32	0.05	0.03
LEFB40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

[^11]
Electric Actuator/Slider Type Ball Screw Drive Ac seno Moor
 Series LEFS $\subset \in$ 둥 LEFS25, 32, 40

How to Order

1 Size
25
32
40

Symbol	Type	Output (W)	Actuator size	Compatible drivers
S2*	AC servo motor (Incremental encoder)	100	25	LECSA \square-S1
S3		200	32	LECSAワ-S3
S4		400	40	LECSA2-S4
S6*	AC servo motor (Absolute encoder)	100	25	$\begin{aligned} & \hline \text { LECSB } \square \text {-S5 } \\ & \text { LECSC } \square \text {-S5 } \\ & \text { LECSS-S5 } \end{aligned}$
S7		200	32	LECSB $\square-S 7$ LECSC \square-S7 LECSS \square-S7
S8		400	40	LECSB2-S8 LECSC2-S8 LECSS2-S8

3) Lead [mm]

Symbol	LEFS25	LEFS32	LEFS40
A	12	16	20
B	6	8	10

Stroke [mm]

100
to
1000

* Refer to the table below for details.
* For motor type S2 and S6, the compatible driver part number suffixes are S 1 and S 5 respectively.

73 Cable length ${ }^{\text {Note } 3)}$ [m]
Nil Without cable 2 2 5 5 \mathbf{A} 10

and lock cables are the same.

* Applicable stroke table									Standard	
$\underbrace{}_{\text {Model }}$Stroke (mm)	100	200	300	400	500	600	700	800	900	1000
LEFS25	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-
LEFS32	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
LEFS40	-	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc

* Consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Drivers

| | Pulse input type
 /Positioning type | Pulse input type | CC-Link direct |
| :--- | :---: | :---: | :---: | :---: |
| input type | | | |

Electric Actuator/Slider Type Series LEFS

Specifications

LEFS25, 32, 40 AC Servo Motor

		Model							
	Stroke [mm] Note 1)			$\begin{gathered} 100,200,300,400 \\ 500,600 \end{gathered}$		$\begin{aligned} & 100,200,300,400 \\ & 500,600,700,800 \end{aligned}$		$\begin{gathered} 200,300,400,500 \\ 600,700,800,900 \\ 1000 \end{gathered}$	
	Work load [kg] Note 2)		Horizontal	20	20	40	45	50	60
			Vertical	8	15	10	20	15	30
	Note 3) Max. speed [mm/s]	Stroke range	Up to 400	900	450	1000	500	1000	500
			401 to 500	720	360	1000	500	1000	500
			501 to 600	540	270	800	400	1000	500
			601 to 700	-	-	620	310	940	470
			701 to 800	-	-	500	250	760	380
			801 to 900	-	-	-	-	620	310
			901 to 1000	-	-	-	-	520	260
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			20,000 (Refer to page 71 for limit according to work load and duty ratio.)					
	Positioning repeatability [mm]			± 0.02					
	Lead [mm]			12	6	16	8	20	10
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 4)			50/20					
	Actuation type			Ball screw					
	Guide type			Linear guide					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40					
	Operating humidity range[\%RH]			90 or less (No condensation)					
	Motor output/Size			$100 \mathrm{~W} / \square 40$		200 W/ $\square 60$		$400 \mathrm{~W} / \square 60$	
	Motor type			AC servo motor (100/200 VAC)					
	Encoder			Motor type S2, S3, S4: Incremental 17-bit encoder (Resolution: 131072 p/rev) Motor type S6, S7, S8: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)					
	Power consumption [W] ${ }^{\text {Note 5) }}$		Horizontal	45		65		210	
			Vertical	145		175		230	
	Standby power consumption when operating [W] Note 6)		Horizontal	2		2		2	
			Vertical	8		8		18	
	Max. instantaneous power consumption [W] Note 7)			445		725		1275	
	Type Note 8)			Non-magnetizing lock					
	Holding force [N]			131	255	197	385	330	660
	Power consumption at $20^{\circ} \mathrm{C}$ [W] ${ }^{\text {Note 9) }}$			6.3		7.9		7.9	
	Rated voltage [V]			$24 \mathrm{VDC}_{-10 \%}^{0}$					

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) For details, refer to "Speed-Work Load Graph (Guide)" on page 71.
Note 3) The allowable speed changes according to the stroke.
Note 4) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and aperpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) The power consumption (including the driver) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 7) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 8) Only when motor option "With lock" is selected.
Note 9) For an actuator with lock, add the power consumption for the lock.

Weight

Series	LEFS25							
Stroke [mm]	100	200	300	400	500	600		
Product weight [kg]	2.20	2.50	2.75	3.05	3.30	3.60		
Additional weight with lock [kg]	0.35							
Series	LEFS32							
Stroke [mm]	100	200	300	400	500	600	700	800
Product weight [kg]	3.60	4.00	4.40	4.80	5.20	5.60	6.00	6.40
Additional weight with lock [kg]	0.70							

Series	LEFS40								
Stroke [mm]	200	300	400	500	600	700	800	900	
Product weight [kg]	6.20	6.75	7.35	7.90	8.35	9.00	9.55	10.15	
Additional weight with lock [kg]	10.70								

Series LEFS

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide	-	
$\mathbf{3}$	Ball screw shaft	-	
$\mathbf{4}$	Ball screw nut	-	
$\mathbf{5}$	Table	Aluminum alloy	Anodized
$\mathbf{6}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{7}$	Seal band stopper	Synthetic resin	
$\mathbf{8}$	Housing A	Aluminum die-cast	Coating
9	Housing B	Aluminum die-cast	Coating
$\mathbf{1 0}$	Bearing stopper	Aluminum alloy	

No.	Description	Material	Note
11	Motor mount	Aluminum alloy	Coating
12	Coupling	-	
13	Motor cover	Aluminum alloy	Anodized
14	Motor end cover	Aluminum alloy	Anodized
15	Motor	-	
16	Grommet	NBR	
17	Band stopper	Stainless steel	
18	Dust seal band	Stainless steel	
19	Bearing	-	
20	Bearing	-	

Electric Actuator/Slider Type Ball Screw Drive

Dimensions: Ball Screw Drive

Motor option: With lock

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Model	L	A	B	n	D	E
LEFS25 $\square \square$-100- $\square \square \square \square$	389	106	210	4	-	-
LEFS25 $\square \square$-100B- $\square \square \square \square$	429					
LEFS25 $\square \square-200-\square \square \square \square$	489	206	310	6	2	240
LEFS25 $\square \square-200 \mathrm{~B}-\square \square \square \square$	529					
LEFS25 $\square \square$-300- $\square \square \square \square$	589	306	410	8	3	360
LEFS25 $\square \square$-300B- $\square \square \square \square$	629					

Model	L	A	B	n	D	E
LEFS25 $\square-400-\square \square \square \square$	689	406	510	8	3	360
LEFS25 $\square-400 B-\square \square \square \square$	729					
LEFS25 $\square-500-\square \square \square \square$	789	506	610	10	4	480
LEFS25 $\square-500 B-\square \square \square \square$	829					
LEFS25 $\square-600-\square \square \square \square$	889	606	710	12	5	600
LEFS25 $\square-600 B-\square \square \square \square$	929					

Motor option: With lock
\qquad

Series LEFS

Dimensions: Ball Screw Drive

LEFS40

Motor option: With lock

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Model	L	A	B	n	D	E
LEFS40 $\square_{\text {- }}$ 200- $\square \square \square \square$	614.5	206	378	6	2	300
LEFS40 $\square \square-200 \mathrm{~B}-\square \square \square \square$	644.5					
LEFS40 \square-300- $\square \square \square \square$	714.5	306	478	6	2	300
LEFS40 $\square \square-300 \mathrm{~B}-\square \square \square \square$	744.5					
LEFS40 \square-400- $\square \square \square \square$	814.5	406	578	8	3	450
LEFS40 $\square \square-400 \mathrm{~B}-\square \square \square \square$	844.5					
LEFS40 \square-500- $\square \square \square \square$	914.5	506	678	10	4	600
LEFS40 $\square \square-500 \mathrm{~B}-\square \square \square \square$	944.5					
LEFS40 \square-600- $\square \square \square$	1014.5	606	778	10	4	600
LEFS40 $\square \square-600 \mathrm{~B}-\square \square \square \square$	1044.5					
LEFS40 \square-700- $\square \square \square \square$	1114.5	706	878	12	5	750
LEFS40 $\square \square$-700B- $\square \square \square \square$	1144.5					
LEFS40 $\square \square$-800- $\square \square \square \square$	1214.5	806	978	14	6	900
LEFS40 $\square \square$-800B- $\square \square \square \square$	1244.5					
LEFS40 \square-900- $\square \square \square \square$	1314.5	906	1078	14	6	900
LEFS40 $\square \square-900 \mathrm{~B}-\square \square \square \square$	1344.5					
LEFS40 $\square \square-1000-\square \square \square \square$	1414.5	1006	1178	16	7	1050
LEFS40 $\square \square$-1000B- $\square \square \square \square$	1444.5					

Series LEFS

Electric Actuator/
 Specific Product Precautions 1

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Design

\triangle Caution

1. Do not apply a load in excess of the operating limit.

Select a suitable actuator by load and allowable moment. If the product is used outside of the operating limit, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.

Selection

© Warning

1. Do not increase the speed in excess of the operating limit.
Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the operating limit, it will have adverse effects such as creating noise, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.
3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every 10 strokes.
Otherwise, lubrication can run out.

Model	Partial stroke
LEFS25	65 mm or less
LEFS32	70 mm or less
LEFS40	105 mm or less

4. When external force is applied to the table, it is necessary to add external force to the work load as the total carried load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.
5. The forward/reverse torque limit is set to 100% (3 times the motor rated torque) as default.
This value is the maximum torque (the limit value) in the "Position control mode", "Speed control mode" or "Positioning mode". When the product is operated with a smaller value than the default, acceleration when driving can decrease. Set the value after confirming the actual device to be used.

Handling

© Caution

1. Do not allow the table to hit the end of stroke.

The internal stopper can be broken.

Handle the actuator with care, especially when it is used in the vertical direction.
2. The actual speed of this actuator is affected by the work load and stroke.
Check specifications with reference to the model selection section of the catalog.
3. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
5. When attaching a workpiece, do not apply strong impact or large moment.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of mounting surface $0.1 \mathbf{~ m m}$ or less.

Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.
7. When mounting the product, keep a 40 mm or longer diameter for bends in the cable.
8. Do not hit the table with the workpiece in the positioning operation and positioning range.

Series LEFS

Electric Actuator/ Specific Product Precautions 2

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.

Please download it via our website, http://www.smcworld.com

Handling

© Caution

9. When mounting the product, use screws with adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

The travelling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Bolt	Max. tightening torque $(\mathrm{N} \cdot \mathrm{m})$	$\mathrm{L}\left(\begin{array}{c}\text { Max. screw-in } \\ \text { depth) }(\mathrm{mm})\end{array}\right.$ LEFS25 $\mathrm{M} 5 \times 0.8$
3.0	8		
LEFS32	$\mathrm{M} 6 \times 1$	5.2	9
LEFS40	$\mathrm{M} 8 \times 1.25$	12.5	13

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause a malfunction, etc.
10. Do not operate by fixing the table and moving the actuator body.
11. Check the specifications for the minimum speed of each actuator.

Otherwise, unexpected malfunctions, such as knocking, may occur.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*	\bigcirc	\bigcirc

* Select whichever comes sooner.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

Electric Actuator/Slider Type Ball Screw Drive AC Sevo More Series 11-LEFS C ϵ

 LEFS25, 32, 40How to Order

(1) Size	2 Motor type				
25	Symbol	Type	Output (W)	Actuator size	Compatible drivers
32	S2*	AC servo motor (Incremental encoder)	100	25	LECSA \square-S1
40	S3		200	32	LECSA \square-S3
	S4		400	40	LECSA2-S4
	S6*	AC servo motor (Absolute encoder)	100	25	LECSBD-S5 LECSC口-S5 LECSS \square-S5
	S7		200	32	LECSBD-S7 LECSC口-S7 LECSS■-S7
	S8		400	40	LECSB2-S8 LECSC2-S8 LECSS2-S8

* For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.

6 (Vacuum port*	
Nil	Left
\mathbf{R}	Right
\mathbf{D}	Both left and right

* Select " D " for the vacuum port for suction of $50 \mathrm{~L} / \mathrm{min}$ (ANR) or more.

Cable type ${ }^{\text {Note } 1) \text { Note } 2)}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

Note 1) The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
Note 2) Standard cable entry direction is "(B) Counter axis side". (Refer to page 119 for details.)

Note 3) The length of the encoder, motor and lock cables are the same.

Driver type

	Compatible drivers	Power supply voltage (V)	Size		
			25	32	40
Nil	Without driver	-	-	-	\bigcirc
A1	LECSA1-S \square	100 to 120	\bigcirc	\bigcirc	-
A2	LECSA2-S \square	200 to 230	\bigcirc	\bigcirc	\bigcirc
B1	LECSB1-S \square	100 to 120	\bigcirc	\bigcirc	
B2	LECSB2-S \square	200 to 230	\bigcirc	-	\bigcirc
C1	LECSC1-S \square	100 to 120	\bigcirc	\bigcirc	-
C2	LECSC2-S \square	200 to 230	\bigcirc	\bigcirc	\bigcirc
S1	LECSS1-S \square	100 to 120	\bigcirc	\bigcirc	-
S2	LECSS2-S \square	200 to 230	-	-	\bigcirc

* When the driver type is selected, the cable is included.

Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

* Consult with SMC for non-standard strokes as they are produced as special orders. Compatible Drivers

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type
Series	LECSA	LECSB	LECSC	LECSS
Number of point tables	Up to 7	-	Up to 255 (2 stations occupied)	-
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder
Communication function	USB communication	USB communication, RS422 communication	USB communication, RS422 communication	USB communication
Power supply voltage (V)		100 to 120 VAC (50/60 Hz),	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page		Page	108	

Specifications

11-LEFS25, 32, 40 AC Servo Motor

Model				11-LEFS25S ${ }_{6}^{2}$		11-LEFS32S ${ }_{7}$		11-LEFS40S ${ }_{8}^{4}$	
	Stroke [mm] Note 1)			$\begin{gathered} 100,200,300,400 \\ 500,600 \end{gathered}$		$\begin{aligned} & 100,200,300,400 \\ & 500,600,700,800 \end{aligned}$		$\begin{gathered} 200,300,400,500,600 \\ 700,800,900,1000 \end{gathered}$	
	Work load [kg] Note 2)		Horizontal	20	20	40	45	50	60
			Vertical	8	15	10	20	15	30
	Max. speed [mm/s]	Stroke range	Up to 400	900	450	1000	500	1000	500
			401 to 500	720	360	1000	500	1000	500
			501 to 600	540	270	800	400	1000	500
			601 to 700	-	-	620	310	940	470
			701 to 800	-	-	500	250	760	380
			801 to 900	-	-	-	-	620	310
			901 to 1000	-	-	-	-	520	260
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5,000 (Refer to page 78 for limit according to work load and duty ratio.)					
	Positioning repeatability [mm]			± 0.02					
	Lead [mm]			12	6	16	8	20	10
	Impact/Vibration resistance [m/s ${ }^{\mathbf{2}}{ }^{\text {Note 4) }}$			50/20					
	Actuation type			Ball screw					
	Guide type			Linear guide					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)					
	Cleanliness class ${ }^{\text {Note 5) }}$			ISO Class 4 (ISO 14644-1) Class 10 (Fed.Std.209E)					
	Grease \quad Ball screw/Linear guide portion			Low particle generation grease					
	Motor output/Size			$100 \mathrm{~W} / \square 40$		200 W/ $\square 60$		$400 \mathrm{~W} / \square 60$	
	Motor type			AC servo motor (100/200 VAC)					
	Encoder			Motor type S2, S3, S4: Incremental 17-bit encoder (Resolution: 131072 p/rev) Motor type S6, S7, S8: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)					
	Power consumption [W] Note 6)		Horizontal	45		65		210	
			Vertical	145		175		230	
	Standby power consumption when operating [W] Note 7)		Horizontal	2		2		2	
			Vertical	8		8		18	
	Max. instantaneous power consumption [W] ${ }^{\text {Note 8) }}$			445		725		1275	
	Type Note 9)			Non-magnetizing lock					
害 을	Holding force [N]			131	255	197	385	330	660
䔎	Power consumption at $20^{\circ} \mathrm{C}$ [W] Note 10$)$			6.3		7.9		7.9	
	Rated voltage [V]					$24 \mathrm{VDC}_{-10 \%}^{0}$			

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) For details, refer to "Speed-Work Load Graph (Guide)" on page 78.
Note 3) The allowable speed changes according to the stroke.
Note 4) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) The amount of particle generation changes according to the operating conditions and suction flow rate. Refer to the particle generation characteristics for details. Note 6) The power consumption (including the driver) is for when the actuator is operating.
Note 7) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 8) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 9) Only when motor option "With lock" is selected.
Note 10) For an actuator with lock, add the power consumption for the lock.

Weight

Series	11-LEFS25							
Stroke [mm]	100	200	300	400	500	600		
Product weight [kg]	2.20	2.50	2.75	3.05	3.30	3.60		
Additional weight with lock [kg]	0.35							
Series	11-LEFS32							
Stroke [mm]	100	200	300	400	500	600	700	800
Product weight [kg]	3.60	4.00	4.40	4.80	5.20	5.60	6.00	6.40
Additional weight with lock [kg]	0.70							

Series	11-LEFS40								
Stroke $[\mathrm{mm}]$	200	300	400	500	600	700	800	900	1000
Product weight $[\mathrm{kg}]$	6.20	6.75	7.35	7.90	8.35	9.00	9.55	10.15	10.70
Additional weight with lock $[\mathrm{kg}]$									

Additional weight with lock [kg]

Dimensions: Ball Screw Drive

Motor option: With lock

[mm]						
Model	L	A	B	n	D	E
11-LEFS32 $\square \square-100-\square \square \square \square$	441	106	230	4	-	-
11-LEFS32 $\square \square$-100B- $\square \square \square \square$	471					
11-LEFS32 $\square \square-200-\square \square \square \square$	541	206	330	6	2	300
11-LEFS32■ \square-200B- $\square \square \square \square$	571					
11-LEFS32 $\square \square-300-\square \square \square \square$	641	306	430	6	2	300
11-LEFS32 $\square \square$-300B- $\square \square \square \square$	671					
11-LEFS32 $\square \square-400-\square \square \square \square$	741	406	530	8	3	450
11-LEFS32 $\square \square-400 \mathrm{~B}-\square \square \square \square$	771					

Model	L	A	B	n	D	E
11-LEFS32 $\square \square-500-\square \square \square \square$	841	506	630	10	4	600
11-LEFS32 $\square \square-500 \mathrm{~B}-\square \square \square \square$	871					
11-LEFS32 $\square \square-600-\square \square \square \square$	941	606	730	10	4	600
11-LEFS32 $\square \square-600 \mathrm{~B}-\square \square \square \square$	971					
11-LEFS32 $\square \square-700-\square \square \square \square$	1041	706	830	12	5	750
11-LEFS32■ \square-700B- $\square \square \square \square$	1071					
11-LEFS32■ \square-800- $\square \square \square \square$	1141	806	930	14	6	900
11-LEFS32 $\square \square$-800B- $\square \square \square \square$	1171	806	930	14	6	900

Clean room speciication

Dimensions: Ball Screw Drive

11-LEFS40

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Electric Actuator/Slider Type Belt Drive acsenowate
 Series LEFB LEFB25, 32, 40

How to Order

1 Size
25
32
40
40
2
2

(5) Stroke

* For motor type S2 and S6, the compatible driver part number suffixes are S 1 and S 5 respectively.
8 Cable length

Nil	Without cable
2	2 m
5	5 m
\mathbf{A}	10 m

*The length of the encoder, motor and lock cables are the same.

9 Driver type

	Compatible drivers	Power supply voltage	Size		
			25	32	40
Nil	Without driver	-	-	-	\bigcirc
A1	LECSA1-S \square	100 to 120	\bigcirc	\bigcirc	-
A2	LECSA2-S \square	200 to 230	\bigcirc	\bigcirc	\bigcirc
B1	LECSB1-S \square	100 to 120	\bigcirc	\bigcirc	-
B2	LECSB2-S \square	200 to 230	\bigcirc	\bigcirc	\bigcirc
C1	LECSC1-S \square	100 to 120	\bigcirc	\bigcirc	-
C2	LECSC2-S \square	200 to 230	\bigcirc	\bigcirc	\bigcirc
S1	LECSS1-S \square	100 to 120	\bigcirc	\bigcirc	-
S2	LECSS2-S \square	200 to 230	-	-	\bigcirc

$10 \mathrm{I} / \mathrm{O}$ connector

300	300 mm
to	to
3000	3000 mm

* Refer to the applicable stroke table.

6 Motor option

Nil	Without option
B	With lock

Nil	Without cable
S	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)
Note 1) The motor and encoder	

cables are included. (The lock cable is also included when the motor with lock option is selected.)
Note 2) Standard cable entry direction is " (A) Axis side". (Refer to page 119 for details.)

* When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver
* Applicable stroke table

OStandard/OProduced upon receipt of order

	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
LEFB25	\bullet	\bullet	-	-	-	\bigcirc	\bullet	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-
LEFB32	\bullet	\bullet	-	-	-	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-
LEFB40	-	-	-	-	-	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-

* Consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Drivers

| | Pulse input type
 /Positioning type | Pulse input type | CC-Link direct |
| :--- | :---: | :---: | :---: | :---: |
| input type | | | |

Specifications

LEFB25, 32, 40 AC Servo Motor

Model			LEFB25S ${ }_{6}^{2}$	LEFB32S ${ }_{7}^{3}$	LEFB40S ${ }_{8}^{4}$
	Stroke [mm] Note 1)		$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \end{gathered}$	$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \\ 2500 \\ \hline \end{gathered}$	$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \\ 2500,3000 \\ \hline \end{gathered}$
	Work load [kg] ${ }^{\text {Note 2) }}$	Horizontal	5	15	25
	Max. speed [mm/s]		2,000	2,000	2,000
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		20,000 (Refer to page 81 for limit according to work load and duty ratio.) Note 3)		
	Positioning repeatability [mm]		± 0.08		
	Equivalent lead [mm]		54		
	Impact/Vibration resistance [m/s²] Note 4)		50/20		
	Actuation type		Belt		
	Guide type		Linear guide		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40		
	Operating humidity range [\%RH]		90 or less (No condensation)		
	Motor output/Size		$100 \mathrm{~W} / \square 40$	$200 \mathrm{~W} / \square 60$	$400 \mathrm{~W} / \square 60$
	Motor type		AC servo motor (100/200 VAC)		
	Encoder		Motor type S2, S3, S4: Incremental 17-bit encoder (Resolution: 131072 p/rev) Motor type S6, S7, S8: Absolute 18-bit encoder (Resolution: 262144 p/rev)		
	Power consumption [W] Note 5)	Horizontal	29	41	72
		Vertical	-	-	-
	Standby power consumption when operating [W] Note 6)	Horizontal	2	2	2
		Vertical	-	-	-
	Max. instantaneous power consumption [W] Note 7)		445	725	1275
	Type Note 8)		Non-magnetizing lock		
	Holding force [N]		27	54	110
	Power consumption at $20^{\circ} \mathrm{C}$ [W] ${ }^{\text {Note 9) }}$		6.3	7.9	7.9
	Rated voltage [V]		$24 \mathrm{VDC}_{-10 \%}^{0}$		

Note 1) Consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) For details, refer to "Speed-Work Load Graph (Guide)" on page 81.
Note 3) Maximum acceleration/deceleration changes according to the work load. Check "Work Load-Acceleration/Deceleration Graph" of the catalog.
Note 4) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) The power consumption (including the driver) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 7) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 8) Only when motor option "With lock" is selected.
Note 9) For an actuator with lock, add the power consumption for the lock.

Series LEFB

Weight

Series	LEFB25S \square S																			
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000		
Product weight [kg]	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.00	7.25		
Additional weight with lock [kg]	0.35																			
Series	LEFB32S \square S																			
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	
Product weight [kg]	4.90	5.25	5.60	5.95	6.30	6.65	7.00	7.35	7.70	8.05	8.40	8.75	9.10	9.45	9.80	10.15	10.50	10.85	12.60	
Additional weight with lock [kg]	0.75																			
Series	LEFB40S \square S																			
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
Product weight [kg]	7.10	7.55	8.00	8.45	8.90	9.35	9.80	10.25	10.70	11.15	11.60	12.05	12.50	12.95	13.40	13.85	14.30	14.75	17.00	19.25
Additional weight with lock [kg]	0.7																			

Handling

\triangle Caution

1. The belt drive actuator cannot be used vertically for applications.
2. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months/1000 km/ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

[^12]- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise
Maintenance

© Warning

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

Construction

LEFB25S \square S

* Motor bottom mounting type is the same.

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide		
$\mathbf{3}$	Belt	Carbon steel	Chromate treated
4	Belt holder	Aluminum alloy	Anodized
5	Belt stopper	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
$\mathbf{7}$	Blanking plate	Synthetic resin	
8	Seal band stopper	Aluminum die-cast	Coating
9	Housing A	Aluminum alloy	
10	Pulley holder	Stainless steel	
11	Pulley shaft	Aluminum alloy	Anodized
12	End pulley	Aluminum alloy	Anodized
13	Motor pulley	Aluminum alloy	Coating
14	Return flange		

Component Parts

No.	Description	Material	Note
$\mathbf{1 5}$	Housing	Aluminum alloy	Coating
$\mathbf{1 6}$	Motor mount	Aluminum alloy	Coating
$\mathbf{1 7}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 8}$	Motor end cover	Aluminum alloy	Anodized
19	Band stopper	Stainless steel	
$\mathbf{2 0}$	Motor		
$\mathbf{2 1}$	Rubber bushing	NBR	
$\mathbf{2 2}$	Stopper	Aluminum alloy	
$\mathbf{2 3}$	Dust seal band	Stainless steel	
24	Bearing		
25	Bearing		
26	Spacer	Stainless steel	
$\mathbf{2 7}$	Tension adjustment bolt	Chromium molybdenum steel	Chromate treated
28	Pulley fixing bolt	Chromium molybdenum steel	Chromate treated

Series LEFB

Construction
LEFB32/40S \square S

* Motor bottom mounting type is the same.

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide		
$\mathbf{3}$	Belt		
4	Belt holder	Aluminum alloy	Anodized
$\mathbf{5}$	Belt stopper	Aluminum alloy	Anodized
$\mathbf{6}$	Table	Aluminum alloy	Anodized
$\mathbf{7}$	Blanking plate	Synthetic resin	
$\mathbf{8}$	Seal band stopper	Aluminum alloy	Coating
9	End block		
$\mathbf{1 0}$	End block cover	Aluminum alloy	
$\mathbf{1 1}$	Pulley holder	Stainless steel	
$\mathbf{1 2}$	Pulley shaft	Aluminum alloy	Anodized
$\mathbf{1 3}$	End pulley	Aluminum alloy	Anodized
$\mathbf{1 4}$	Motor pulley		

Component Parts

No.	Description	Material	Note
$\mathbf{1 5}$	Return flange	Aluminum alloy	Coating
$\mathbf{1 6}$	Housing	Aluminum alloy	Coating
$\mathbf{1 7}$	Motor mount	Aluminum alloy	Coating
18	Motor cover	Aluminum alloy	Anodized
19	Motor end cover	Aluminum alloy	Anodized
20	Band stopper	Stainless steel	
21	Motor		
$\mathbf{2 2}$	Rubber bushing	NBR	
23	Dust seal band	Stainless steel	
24	Bearing		
25	Bearing		
26	Bearing		
27	Tension adjustment bolt	Chromium molybdenum steel	Chromate treated

Dimensions: Belt Drive

LEFB25/Motor top mounting type

Motor option: With lock

Dimensions						
Stroke	L	A	B	n	\mathbf{D}	E
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Series LEFB

Dimensions: Belt Drive

LEFB25U/Motor bottom mounting type

Motor option: With lock

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

Dimensions：Belt Drive

LEFB32／Motor top mounting type

（L）

Motor option：With lock

Dimensions

Dimensions						
Stroke	\mathbf{L}	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Note 1）When mounting the electric actuator using the body mounting reference plane，set the height of the opposite surface or pin to 3 mm or more because of R chamfering．（Recommended height： 5 mm ）
Note 2）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 3）The Z phase first detecting position from the stroke end of the motor side．

Series LEFB

Dimensions: Belt Drive

LEFB32U/Motor bottom mounting type

(L)

Motor option: With lock

Dimensions

Dimensions						
Stroke	L	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Dimensions: Belt Drive

LEFB40/Motor top mounting type

Motor option: With lock

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

Series LEFB

Dimensions: Belt Drive

LEFB40U/Motor bottom mounting type

Motor option: With lock

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Note 1) When mounting the electric actuator using the body mounting reference plane, set the height of the opposite surface or pin to 3 mm or more because of R chamfering. (Recommended height: 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z phase first detecting position from the stroke end of the motor side.

AC Servo Motor Driver

Pulse Input Type/ Positioning Type

Incremental Type
Series LECSA

Pulse Input Type

Absolute Type Series LECSS

AC Servo Motor Driver Series LECS \square

Series LECSA (Pulse input type/Positioning type)

- Up to 7 positioning points by point table
- Input type: Pulse input
-Control encoder: Incremental 17-bit encoder (Resolution: 131072 pulse/rev)
-Parallel input: 6 inputs
output: 4 outputs

Series LECSC (CC-Link direct input type)

- Position data/speed data setting and operation start/stop
\bullet Positioning by up to 255 point tables (when 2 stations occupied)
- Up to 32 drivers connectable (when 2 stations occupied) with CC-Link communication
- Applicable Fieldbus protocol: CC-Link (Ver. 1.10, max. communication speed: 10 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

Series LECSS (SSCNET III type)

- Compatible with Mitsubishi Electric's servo system controller network
- Reduced wiring and SSCNET III optical cable for one-touch connection
- SSCNET III optical cable provides enhanced noise resistance
- Up to 16 drivers connectable with SSCNET III communication
- Applicable Fieldbus protocol: SSCNET III
(High-speed optical communication, max. bidirectional communication speed: 100 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

AC Servo Motor Driver

Incremental Type
 Series LECSA

Aasoulut tree Series LECSB/LECSC/LECSS

(Pulse Input Type) (CC-Link Direct Input Type)
(SSCNET III Type)

Dimensions

LECSA \square
$2 \times ø 6$ Mounting hole

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3	USB communication connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector

LECSB \square

* Battery included.

Connector name	Description
CN1	I/O signal connector
CN2	Encoder connector
CN3	RS-422 communication connector
CN4	Battery connector
CN5	USB communication connector
CN6	Analog monitor connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

Series LECS \square

Dimensions

LECSC \square

* Battery included.

LECSS

Connector name	Description
CN1A	Front axis connector for SSCNET III optical cable
CN1B	Rear axis connector for SSCNET III optical cable
CN2	Encoder connector
CN3	I/O signal connector
CN4	Battery connector
CN5	USB communication connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

[^13]
ac Servo Motor Driver Series LECS \square

Specifications

Series LECSA

Model	LECSA1-S1	LECSA1-S3	LECSA2-S1	LECSA2-S3	LECSA2-S4
Compatible motor capacity [W]	100	200	100	200	400
Compatible encoder	Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$)				
Main \quad Power voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
power Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
supply ${ }^{\text {a }}$ Rated current [A]	3.0	5.0	1.5	2.4	4.5
Control Control power supply voltage [V]	24 VDC				
power Allowable voltage fluctuation [V]	21.6 to 26.4 VDC				
supply ${ }^{\text {R }}$ Rated current [A]	0.5				
Parallel input	6 inputs				
Parallel output	4 outputs				
Max. input pulse frequency [pps]	1 M (for differential receiver), 200 k (for open collector)				
In-position range setting [pulse]	0 to ± 65535 (Command pulse unit)				
Function Error excessive	± 3 rotations				
Function Torque limit	Parameter setting				
Communication	USB communication				
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 55 (No freezing)				
Operating humidity range [\%RH]	90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-20 to 65 (No freezing)				
Storage humidity range [\%RH]	90 or less (No condensation)				
Insulation resistance [$\mathrm{M} \Omega$]	Between the housing and SG: 10 (500 VDC)				
Weight [g]	600				700

Series LECSB

Model		LECSB1-S5	LECSB1-S7	LECSB2-S5	LECSB2-S7	LECSB2-S8
Compatible motor capacity [W]		100	200	100	200	400
Compatible encoder		Absolute 18-bit encoder (Resolution: 262144 p/rev)				
Main power supply	Power voltage [V]	Single phase 100 to 120 VAC (50/60 Hz)		Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated current [A]	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage [V]	Single phase 100 to 120 VAC (50/60 Hz)		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current [A]	0.4		0.2		
Parallel input		10 inputs				
Parallel output		6 outputs				
Max. input pulse frequency [pps]		1 M (for differential receiver), 200 k (for open collector)				
Function	In-position range setting [pulse]	0 to ± 10000 (Command pulse unit)				
	Error excessive	± 3 rotations				
	Torque limit	Parameter setting or external analog input setting (0 to 10 VDC)				
	Communication	USB communication, RS422 communication*1				
Operating temperature range [${ }^{\circ} \mathrm{C}$]		0 to 55 (No freezing)				
Operating humidity range [\%RH]		90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]		-20 to 65 (No freezing)				
Storage humidity range [\%RH]		90 or less (No condensation)				
Insulation resistance [M M]		Between the housing and SG: 10 (500 VDC)				
Weight [g]		800				1000

[^14]
Specifications

Series LECSC

Model			LECSC1-S5	LECSC1-S7	LECSC2-S5	LECSC2-S7	LECSC2-S8
Compatible motor capacity [W]			100	200	100	200	400
Compatible encoder			Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)				
Main power supply	Power voltage [V]		Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Three phase 170 to 253 VAC, Single phase 170 to 253 VAC		
	Rated current [A]		3.0	5.0	0.9	1.5	2.6
	Control power supply voltage [V]		Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
supply	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated curren	t [A]	0.4		0.2		
Communication specifications	Applicable Fieldbus protocol (Version)		CC-Link communication (Ver. 1.10)				
	Connection cable		CC-Link Ver. 1.10 compliant cable (Shielded 3-core twisted pair cable)*1				
	Remote station number		1 to 64				
	Cable length	Communication speed [bps]	16 k	625 k	2.5 M	5 M	10 M
		Maximum overall cable length [m]	1200	900	400	160	100
		Cable length between stations [m]	0.2 or more				
	I/O occupation area (Inputs/Outputs)		1 station occupied (Remote I/O 32 points/32 points)/(Remote register 4 words/4 words) 2 stations occupied (Remote I/O 64 points/64 points)/(Remote register 8 words/8 words)				
	Number of connectable drivers		Up to 42 (when 1 station is occupied by 1 driver), Up to 32 (when 2 stations are occupied by 1 driver), when there are only remote device stations.				
Command method	Remote register input		Available with CC-Link communication (2 stations occupied)				
	Point table No. input		Available with CC-Link communication, RS-422 communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points RS-422 communication: 255 points				
	Indexer positioning input		Available with CC-Link communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points				
Communication function			USB communication, RS-422 communication*2				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-20 to 65 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [M Ω]			Between the housing and SG: 10 (500 VDC)				
Weight [g]			800				1000

*1 If the system comprises of both CC-Link Ver. 1.00 and Ver. 1.10 compliant cables, Ver. 1.00 specifications are applied to the cable extensions and the cable length between stations. *2 USB communication and RS422 communication cannot be performed at the same time.
Series LECSS

Model		LECSS1-S5	LECSS1-S7	LECSS2-S5	LECSS2-S7	LECSS2-S8
Compatible motor capacity [W]		100	200	100	200	400
Compatible encoder		Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)				
Main power supply	Power voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC, Single phase 170 to 253 VAC		
	Rated current [A]	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		$\begin{gathered} \text { Single phase } 200 \text { to } 230 \mathrm{VAC} \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current [A]	0.4		0.2		
Applicable Fieldbus protocol		SSCNET III (High-speed optical communication)				
Communication function		USB communication				
Operating temperature range [${ }^{\circ} \mathrm{C}$]		0 to 55 (No freezing)				
Operating humidity range [\%RH]		90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]		-20 to 65 (No freezing)				
Storage humidity range [\%RH]		90 or less (No condensation)				
Insulation resistance [$\mathrm{M} \Omega$]		Between the housing and SG: 10 (500 VDC)				
Weight [g]		800				1000

Power Supply Wiring Example: LECSA

LECSA $\square-\square$

Main Circuit Power Supply Connector: CNP1 *Accessory

Terminal name	Function	Details
$\stackrel{\perp}{\square}$	Protective earth (PE)	Should be grounded by connecting the servo motor's earth terminal and the control panel's protective earth (PE).
L1	Main circuit power supply	Connect the main circuit power supply. LECSA1: Single phase 100 to 120 VAC, $50 / 60 \mathrm{~Hz}$ LECSA2: Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$
L2		
P	Regeneration option	Terminal to connect regeneration option LECSA \square-S1: Not connected at time of shipping. LECSA \square-S3, S4: Connected at time of shipping. * If regeneration option is required for "Model Selection", connect to this terminal.
C		
U	Servo motor power (U)	Connect to motor cable (U, V, W).
V	Servo motor power (V)	
W	Servo motor power (W)	

Control Circuit Power Supply Connector: CNP2 *Accessory

Terminal name	Function	Details
24 V	Control circuit power supply (24 V)	24 V side of the control circuit power supply (24 VDC) supplied to the driver
0 V	Control circuit power supply (0 V)	0 V side of the control circuit power supply (24 VDC) supplied to the driver

Power Supply Wiring Example: LECSB, LECSC, LECSS

LECSB1- \square
LECSC1- \square LECSS1-

LCSB2- \square
LECSC2- \square
LECSS2- \square

For single phase 200 VAC

For three phase 200 VAC

Note) For single phase 200 to 230 VAC, power supply should be connected to L_{1} and L_{2} terminals, with nothing connected to L_{3}.

Main Circuit Power Supply Connector: CNP1 *Accessory

Teminal name	Function	Details	
L1	Main circuit power supply	Connect the main circuit power supply. LECSB1/LECSC1/LECSS1: Single phase 100 to 120 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2 LECSB2/LECSC2/LECSS2: Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2 Three phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2,L3	
L2			
L3			
N		Do not connect.	
P1	Connect between P_{1} and P_{2}. (Connected at time of shipping.)		
P2			

Control Circuit Power Supply Connector: CNP2 * Accessory

Termina name	Function	Details
P	Regeneration	Connect between P and D. (Connected at time of shipping.) * If regeneration option is required for "Model Selection", connect to this terminal.
C	option	

Motor Connector: CNP3 * Accessory

Termina name	Function	
U	Servo motor power (U)	
V	Servo motor power (V)	Connect to motor cable (U, V, W).
W	Servo motor power (W)	

Control Signal Wiring Example: LECSA

This wiring example shows connection with a PLC (FX3U- $\square \square$ MT/ES) manufactured by Mitsubishi Electric as when used in position control mode. Refer to the LECSA operation manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver circuit power supply connector (CNP1)'s protective earth (PE) terminal to the control panel's protective earth (PE).
Note 2) For interface use, supply 24 VDC $\pm 10 \% 200 \mathrm{~mA}$ using an external source. 200 mA is the value when all I/O command signals are used and reducing the number of inputs/outputs can decrease current capacity. Refer to "Operation Manual" for required current for interface.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.
Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with an open collector method. When a positioning unit loaded with a differential line driver method is used, it is 10 m or less.

Control Signal Wiring Example: LECSB

This wiring example shows connection with a positioning unit (QD75D) manufactured by Mitsubishi Electric as when used in position control mode. Refer to the LECSB operation manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver circuit power supply connector (CNP1)'s protective earth (PE) terminal to the control panel's protective earth (PE).
Note 2) For interface use, supply 24 VDC $\pm 10 \% 300 \mathrm{~mA}$ using an external source.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.
Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with a differential line driver method. For open collector method, it is 2 m or less.

AC Servo Motor Driver Series LECS

Control Signal Wiring Example: LECSC

Note 1) For preventing electric shock, be sure to connect the driver's protective earth (PE) terminal (marked o) to the control panel's protective earth (PE).
Note 2) For interface use, supply 24 VDC $\pm 10 \% 150 \mathrm{~mA}$ using an external source.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.

Control Signal Wiring Example: LECSS

[^15]Note 8) Be sure to place a cap on unused CN1A/CN1B.

AC Servo Motor Driver Series LECS \square

Options

Motor cable, Lock cable, Encoder cable (LECS \square common)

LE-CSM- $\square \square$: Motor cable

Cable type

Cable length (L) [m]

2	2
$\mathbf{5}$	5
\mathbf{A}	10

- Direction of connector
A
B

LE-CSB- $\square \square$: Lock cable

LE-CSE- $\square \square$: Encoder cable

* LE-CSM-S $\square \square$ is MR-PWS1CBL $\square M-A \square-L ~ m a n u f a c t u r e d ~ b y ~ M i t s u b i s h i ~ E l e c t r i c . ~$ LE-CSB-S $\square \square$ is MR-BKS1CBL \square M-A \square-L manufactured by Mitsubishi Electric. LE-CSE-S $\square \square$ is MR-J3ENCBL \square M-A \square-L manufactured by Mitsubishi Electric. LE-CSM-R $\square \square$ is MR-PWS1CBL \square M-A \square-H manufactured by Mitsubishi Electric. LE-CSB-R $\square \square$ is MR-BKS1CBL \square M-A \square-H manufactured by Mitsubishi Electric. LE-CSE-R $\square \square$ is MR-J3ENCBL \square M-A \square-H manufactured by Mitsubishi Electric.

I/O connector

	LE - CSN \mathbf{A}		
Driver type!			
A	LECSA \square, LECSC \square		
B	LECSB \square		
S	LECSS \square		

* LE-CSNA: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by 3 M or equivalent item.
LE-CSNB: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by 3M or equivalent item.
LE-CSNS: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by 3 M or equivalent item.

SSCNET III optical cable

Regeneration option (LECS \square common)

* Confirm regeneration option to be used in "Model Selection".

Dimensions [mm]

Model	LA	LB	LC	LD
LEC-MR-RB-032	30	119	99	1.6
LEC-MR-RB-12	40	169	149	2

* MR-RB- \square manufactured by Mitsubishi Electric.

Options

Setup software (MR ConfiguratorTM) (LECSA, LECSB, LECSC, LECSS common)

* MRZJW3-SETUP221 manufactured by Mitsubishi Electric.

Refer to Mitsubishi Electric's website for operating environment and version update information. MR Configurator ${ }^{T M}$ is a registered trademark or trademark of Mitsubishi Electric.

Adjustment, waveform display, diagnostics, parameter read/write, and test operation can be performed upon a PC.

Compatible PC

When using setup software (MR Configurator ${ }^{T M}$), use an IBM PC/AT compatible PC that meets the following operating conditions.

Hardware Requirements

Equipment		Setup software (MR Configurator ${ }^{\text {TM }}$) LEC-MR-SETUP221 \square
Note 1) Note 2) Note 3)PC	OS	Windows ${ }^{\circledR} 98$, Windows ${ }^{\circledR}$ Me, Windows ${ }^{\circledR} 2000$ Professional, Windows ${ }^{\circledR}$ XP Professional / Home Edition, Windows Vista ${ }^{\circledR}$ Home Basic / Home Premium / Business / Ultimate / Enterprise Windows ${ }^{\circledR 7}$ Starter / Home Premium / Professional / Ultimate / Enterprise
	Available HD space	130 MB or more
	Communication interface	Use USB port
Display		Resolution 1024×768 or more Must be capable of high color (16-bit) display. The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable		LEC-MR-J3USB Note 4, 5)

Note 1) Before using a PC for setting LECSA point table method/program method or LECSC point table No. input, upgrade to version C5 (Japanese version)
/version C4 (English version). Refer to Mitsubishi Electric's website for version upgrade information.
Note 2) Windows, Windows Vista, Windows 7 are registered trademarks of Microsoft Corporation in the United States and/or other countries.
Note 3) This software may not run correctly depending on the PC that you are using.
Note 4) Not compatible with 64-bit Windows ${ }^{\circledR}$ XP and 64 -bit Windows Vista ${ }^{\circledR}$.
Note 5) Order USB cable separately.

USB cable (3 m)

LEC-MR-J3USB

* MR-J3USB manufactured by Mitsubishi Electric.

Cable for connecting PC and driver when using the setup software (MR Configurator ${ }^{\top M}$).
Do not use any cable other than this cable.

Battery (only for LECSB, LECSC or LECSS)
LEC - MR - J3BAT

* MR-J3BAT manufactured by Mitsubishi Electric.

Battery for replacement.
Absolute position data is maintained by installing the battery to the driver.

Series LECS \square Specific Product Precautions 1

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Design/Selection

© Warning

1. Use the specified voltage.

If the applied voltage is higher than the specified voltage, malfunction and damage to the driver may result. If the applied voltage is lower than the specified voltage, there is a possibility that the load cannot be moved due to internal voltage drop. Check the operating voltage prior to start. Also, confirm that the operating voltage does not drop below the specified voltage during operation.
2. Do not use the products outside the specifications.

Otherwise, fire, malfunction or damage to the driver/actuator can result. Check the specifications prior to use.
3. Install an emergency stop circuit.

Install an emergency stop outside the enclosure in easy reach to the operator so that the operator can stop the system operation immediately and intercept the power supply.
4. To prevent danger and damage due to a breakdown or malfunction of these products, which may occur at a certain probability, a backup system should be arranged in advance by using a multiple-layered structure or by making a fail-safe equipment design, etc.
5. If there is a risk of fire or personal injury due to abnormal heat generation, sparking, smoke generated by the product, etc., cut off the power supply from this product and the system immediately.

Handling

© Warning

1. Never touch the inside of the driver and its peripheral devices.
Otherwise, electric shock or failure can result.
2. Do not operate or set up this equipment with wet hands. Otherwise, electric shock can result.
3. Do not use a product that is damaged or missing any components.
Electric shock, fire or injury can result.
4. Use only the specified combination between the electric actuator and driver.
Otherwise, it may cause damage to the driver or to the other equipment.
5. Be careful not to touch, get caught or hit by the workpiece while the actuator is moving.
An injury can result.
6. Do not connect the power supply or power up the product until it is confirmed that the workpiece can be moved safely within the area that can be reached by the workpiece.
Otherwise, the movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after the power has been disconnected, as it is very hot.
Otherwise, it may cause burns due to the high temperature.
8. Check the voltage using a tester at least 5 minutes after power-off when performing installation, wiring and maintenance.

Handling

\triangle Warning

9. Static electricity may cause a malfunction or damage the driver. Do not touch the driver while power is supplied to it.
Take sufficient safety measures to eliminate static electricity when it is necessary to touch the driver for maintenance.
10. Do not use the products in an area where they could be exposed to dust, metallic powder, machining chips or splashes of water, oil or chemicals.
Otherwise, a failure or malfunction can result.
11. Do not use the products in a magnetic field.

Otherwise, a malfunction or failure can result.
12. Do not use the products in an environment where flammable, explosive or corrosive gases, liquids or other substances are present.
Otherwise, fire, explosion or corrosion can result.
13. Avoid heat radiation from strong heat sources, such as direct sunlight or a hot furnace.
Otherwise, it will cause a failure to the driver or its peripheral devices.
14. Do not use the products in an environment with cyclic temperature changes.
Otherwise, it will cause a failure to the driver or its peripheral devices.
15. Do not use the products in an environment where surges are generated.
Devices (solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge around the product may lead to deterioration or damage to the internal circuits of the products. Avoid supplies of surge generation and crossed lines.
16. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
17. When a surge generating load such as a relay or solenoid valve is directly driven, use a product that incorporates a surge absorption element.

Mounting

© Warning

1. Install the driver and its peripheral devices on fireproof material.
Direct installation on or near flammable material may cause fire.
2. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
3. The driver should be mounted on a vertical wall in a vertical direction.
Also, do not cover the driver's suction/exhaust ports.
4. Install the driver and its peripheral devices on a flat surface.
If the mounting surface is not flat or uneven, excessive force may be applied to the housing and other parts resulting in a malfunction.

Specific Product Precautions 2
Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Power Supply

\triangle Caution

1. Use a power supply with low noise between lines and between power and ground.
In cases where noise is high, use an isolation transformer.
2. Take appropriate measures to prevent surges from lightning. Ground the surge absorber for lightning separately from the grounding of the driver and its peripheral devices.

Wiring

© Warning

1. The driver will be damaged if a commercial power supply ($100 \mathrm{~V} / 200 \mathrm{~V}$) is added to the driver's servo motor power (U, V, W). Be sure to check wiring such as wiring mistakes when the power supply is turned on.
2. Connect the ends of the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ wires from the motor cable correctly to the phases ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the servo motor power. If these wires do not match up, it is unable to control the servo motor.

Grounding

\triangle Warning

1. For grounding actuator, connect the copper wire of the actuator to the driver's protective earth (PE) terminal and connect the copper wire of the driver to the earth via the control panel's protective earth (PE) terminal.
Do not connect them directly to the control panel's protective earth (PE) terminal.

2. In the unlikely event that malfunction is caused by the ground, it may be disconnected.

Maintenance

© Warning

1. Perform maintenance checks periodically.

Confirm wiring and screws are not loose.
Loose screws or wires may cause unexpected malfunction.
2. Conduct an appropriate functional inspection and test after completed maintenance.
In case of any abnormalities (if the actuator does not move or the equipment does not operate properly, etc.), stop the operation of the system.
Otherwise, unexpected malfunction may occur and safety cannot be assured.
Conduct a test of the emergency stop to confirm the safety of the equipment.
3. Do not disassemble, modify or repair the driver or its peripheral devices.
4. Do not put anything conductive or flammable inside the driver.
Otherwise, fire can result.
5. Do not conduct an insulation resistance test or insulation withstand voltage test.
6. Reserve sufficient space for maintenance.

Design the system so that it allows required space for maintenance.

Edition C * Addition of size 40

* Addition of programless controller, LECP1 series
* Addition of standard cable to actuator cable type
* Addition of AC servo motor (100/200/400 W) type
* Addition of AC servo motor driver, LECSA/LECSB series
* Number of pages from 44 to 80

Edition D * Addition of AC servo motor belt drive type, LEFB series

* Addition of clean room specification ball screw drive type, 11-LEFS series
* Addition of step motor driver, LECPA series
* Addition of gateway unit, LEC-G series
* Addition of AC servo motor driver, LECSC/LECSS series
* Addition of UL-compliant products
* Change of controller setting kit, LEC-W2 series
* Number of pages from 80 to 148

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

\triangle Caution:

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
\triangle Warning:
Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk
 which, if not avoided, will result in death or serious injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines.
(Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety.
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.

*2) Vacuum pads are excluded from this 1 year warranty.

A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

[^0]: *1 The size corresponds to the bore of the air cylinder with an equivalent force. (For the ball screw drive)
 *2 Consult with SMC for non-standard strokes as they are produced as special orders.
 *3 The belt drive actuator cannot be used vertically for applications.

[^1]: Encoder cable Page 119

 | Standard cable | Robotic cable |
 | :---: | :---: |
 | LE-CSE-S $\square \square$ | LE-CSE-R $\square \square$ |

[^2]: Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table

[^3]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^4]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^5]: * When the actuator is in the positioning range in the pushing operation, it does

[^6]: * "*ALARM" is expressed as negative-logic circuit.

[^7]: Trademark DeviceNet ${ }^{\text {TM }}$ is a trademark of ODVA. EtherNet/IPTM is a trademark of ODVA.

[^8]: * Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

[^9]: * "*ALARM" is expressed as negative-logic circuit.

[^10]: * Refer to the LECPA series Operation Manual for installation.

[^11]: Note 2) Please confirm the clearance and play of the guide separately.

[^12]: * Select whichever comes sooner.

[^13]: * Battery included.

[^14]: *1 USB communication and RS422 communication cannot be performed at the same time.

[^15]: Note 6) Connections from Axis 2 onward are omitted.
 Note 7) Up to 16 axes can be set.

