Electric Actuator High Rigidity Slider Type

Low-profile/Low center of gravity

Height dimension reduced by approx.
31\% (Reduced by 28 mm)

Series	Work load lb (kg)	Speed (mm/s)	Motor output (W)
New LEJS40	$121(55)$	600	100
(Existing model) LJ1H20	$66(30)$	500	100

LEJS40

AC Servo Motor (1002200 w) Type

Ball Screw Drive Series LEJS

Size: 40, 63
Max. work load: 187 lb (85 kg)
Positioning repeatability: $\pm 0.02 \mathrm{~mm}$ Max. acceleration/deceleration: $20000 \mathrm{~mm} / \mathrm{s}^{2}$

Belt Drive Series LEJB

Size: 40, 63
Max. stroke: $\mathbf{3 0 0 0} \mathbf{~ m m}$ Max. speed: 3000 mm/s Max. acceleration/deceleration: $20000 \mathrm{~mm} / \mathrm{s}^{2}$

Series LEJ

- High precision/High rigidity

Double axis linear guide reduces deflection

- Reduction of the installation labor Possible to mount the main body without removing the external

Equipped with seal bands as standard
Covers the guide, ball screw and belt. Prevents grease from splashing and external foreign matter from entering

Table displacement

* LEJ $\square 63$: L = 64.5 mm

Weight reduction Lлінзо $^{\text {ren }}$

Weight reduced by approx. 37\%

* Stroke: 600 mm

LEJS63

37\%

- Workpiece does not interfere with the motor Table height > Motor height

Ball Screw Drive/Series LEJS

Electric Actuator/High Rigidity Slider Type

- Solid state auto switch can be mounted

- Switch wiring can be placed in the body
-D-M9 \square W (2-color indication), D-M9 \square

2-color indication solid state auto switch
Appropriate setting of the mounting position can be performed without mistakes. \qquad
\qquad

Application Examples

Glue dispensing/High speed trajectory is available

Recommended driver: LECSS
(SSCNET III)

Series Variations

Ball Screw Drive/Series LEJS
$(1 \mathrm{Kg}=2.2 \mathrm{lb})$

* Strokes shown in () are produced upon receipt of order. Strokes other than those shown above are produced as special order (1 mm increments).

Belt Drive/Series LEJB

[^0]
AC Servo Motor Driver

Series LECS \square list

		Compatible motor (100/200 VAC)		Control method			Application/ Function$\|$Note 2) Synchorous	Compatible option Setup software LEC-MR-SETUP221
		100 W	200 W	(Mote 1)	Pulse	Network direct input		
	LECSA (Pulse input type/ Positioning type)	\bigcirc	\bigcirc	Up to 7 7 points 0	\bigcirc			\bigcirc
	LECSB (Pulse input type)	\bigcirc	0		\bigcirc			\bigcirc
	LECSC (CC-Link direct input type)	\bigcirc	\bigcirc	Up to 255 points 255 points O		CC-Link Ver. 1.10		\bigcirc
	LECSS (SSCNET III type) Compatible with Mitsubishi Electric's servo system controller network	\bigcirc	\bigcirc			SSCNET III	0	\bigcirc

[^1]Note 2) Available when the Mitsubishi motion controller is used for the master equipment.

Servo adjustment using auto gain tuning

Auto resonant filter function

- Controls the difference in movement between command value and actual movement

Auto damping control function

- Automatically controls machine's low frequency vibrations (up to 100 Hz)

With display setting function

LECSA

(With the front cover opened) LECSB

LECSS

System Construction

Incremental encoder compatible Series LECSA
(Pulse input type/Positioning type)
Provided by customer

Power supply
Single phase 100 to 120 VAC $(50 / 60 \mathrm{~Hz})$
200 to 230 VAC $(50 / 60 \mathrm{~Hz})$

| OOption Page 36 |
| :--- | :---: |
| Regeneration option |
| Part no.: LEC-MR-RB- \square |

Motor cable	Page 36
Standard cable	Robotic cable
LE-CSM-S \square	LE-CSM-R $\square \square$
Lock cable	Page 36
Standard cable	Robotic cable
LE-CSB-S $\square \square$	LE-CSB-R $\square \square$

Encoder cable Page 36
LE-CSE-S $\square \square$ LE-CSE-R $\square \square$

Provided by customer
Control circuit power supply 24 VDC
Driver power supp

- Pro

Absolute encoder compatible Series LECSB
(Pulse input type)

Provided by customer

Power supply	
Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)	
200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
©Option Page 36Regeneration optionPart no.: LEC-MR-RB-	
Motor cable Page 36	
Standard cable	Robotic cable
LE-CSM-S■	LE-CSM-R $\square \square$
Lock cable Page 36	
Standard cable	Robotic cable
LE-CSB-S■	LE-CSB-R $\square \square$

Driver

System Construction

Absolute encoder compatible Series LECSS

(SSCNET III type)

Provided by customer
Power supply Single phase 100 to 120 VAC $(50 / 60 \mathrm{~Hz})$ 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$

O Option Page 36
Regeneration option
Part no.: LEC-MR-RB- \square

| Motor cable | |
| :---: | :---: | Page 36

Lock cable Page 36	
Standard cable	Robotic cable
LE-CSB-S $\square \square$	LE-CSB-R $\square \square$

Rod Type Step Motor (Senore2 VOC) Senvo Motor (24 VDO

Series LEY

Size	Pushing force Ibf (N)	Stroke (mm)
$\mathbf{1 6}$	$31.7(141)$	Up to 300
$\mathbf{2 5}$	$101.6(452)$	Up to 400
$\mathbf{3 2}$	$158.9(707)$	Up to 500

In-line motor type

 Series LEY \square D

Series LEYG

Size	Pushing force lbf (N)	Stroke (mm)
$\mathbf{1 6}$	$31.7(141)$	Up to 200
$\mathbf{2 5}$	$101.6(452)$	Up to 300
$\mathbf{3 2}$	$158.9(707)$	Up to 300

Guide rod type /In-line motor type Series LEYG $\square \mathbf{D}$

Rod Type AC Servo Motor (100R200 w

Series LEY
(In-line motor)

Size	Pushing force Ibf (N)	Stroke (mm)
$\mathbf{2 5}$	$109.0(485)$	Up to 400
$\mathbf{3 2}$	$165.5(736)$	Up to 500

Series LEYG (Motor parallel)

Size	Pushing force lbf (N)	Stroke (mm)
$\mathbf{2 5}$	$109.0(485)$	30 to 300
$\mathbf{3 2}$	$132.2(588)$	

Guide rod type /In-line motor type Series LEYG $\square \mathbf{D}$

Series LEYG (In-line motor)

Size	Pushing force lbf (N)	Stroke (mm)
$\mathbf{2 5}$	$109.0(485)$	30 to 300
$\mathbf{3 2}$	$165.5(736)$	

Slider Type Step Motor (Senor/24 VDC) Servo Motor (24 VDC)

Linear guide type
Ball screw drive
Series LEFS

Series LEFS		
Size	Max. work load lb (kg)	Stroke (mm)
$\mathbf{1 6}$	$22(10)$	Up to 400
$\mathbf{2 5}$	$44(20)$	Up to 600
$\mathbf{3 2}$	$99(45)$	Up to 800
$\mathbf{4 0}$	$132(60)$	Up to 1000

Series LEFB

Size	Max. work load $\mathbf{l b}(\mathbf{k g})$	Stroke (mm)
$\mathbf{1 6}$	$2.2(1)$	Up to 1000
$\mathbf{2 5}$	$11(5)$	Up to 2000
$\mathbf{3 2}$	$31(14)$	Up to 2000

AC Servo Motor (100/200/400 W)

Linear guide type
 Ball screw drive

Series LEFS

Series LEFS

Series LEFS		
Size	Max. work load $\mathbf{l b}(\mathbf{k g})$	Stroke (mm)
$\mathbf{2 5}$	$44(20)$	Up to 600
$\mathbf{3 2}$	$99(45)$	Up to 800
$\mathbf{4 0}$	$132(60)$	Up to 1000

High Rigidity Slider Type AC Seno Motor (100200 w

Features 7

Guide Rod Slider Step Motor (Senvera4voc)

Belt drive

Series LEL

Size	Max. work load lb (kg)	Stroke (mm)
25	11.0 (5)	Up to 1000

Miniature Step Motor (Seno/24 VDC)

CAT.NAS100-92

Rod type
 Series LEPY

Slide table type
Series LEPS

Series LEPY

Size	Max. work load $\mathbf{l b}(\mathbf{k g})$	Stroke $(\mathbf{m m})$
$\mathbf{6}$	$2.2(1.0)$	$25,50,75$
$\mathbf{1 0}$	$4.4(2.0)$	

Series LEPS

Size	Max. work load $\mathbf{l b}(\mathbf{k g})$	Stroke $(\mathbf{m m})$
$\mathbf{6}$	$2.2(1.0)$	25
$\mathbf{1 0}$	$4.4(2.0)$	50

Slide Table Step Motor (Senol/24 VDC) Servo Motor (24 vDC)

Rotary Table Step Motor (Sevol/24 VDC)

Gripper Step Motor (Sevoop4 voc)

Pa

Size	Max. gripping force lb (N)		Stroke/both sides (mm)
	Basic	Compact	
10	3.15 (14)	1.35 (6)	4
16		1.80 (8)	6
20	8.99 (40)	6.29 (28)	10
25			14
32	29.2 (130)	-	22
40	47.2 (210)	-	30

Series LEHF

Size	Max. gripping force lb (N)	Stroke/both sides (mm)
$\mathbf{1 0}$	$\mathbf{1 . 5 7}(7)$	$16(32)$
$\mathbf{2 0}$	$6.29(28)$	$24(48)$
$\mathbf{3 2}$	$27.0(120)$	$32(64)$
$\mathbf{4 0}$	$40.5(180)$	$40(80)$
Note) (): Long stroke		

3-finger type

 Series LEHS

Series LEHS

| Size | Max. gripping force lb (N) Stroke/both |
| :--- | :--- | :--- |

Si

Size
10
20
32
40

Controller

Controller

Fieldbus-compatible gateway (GW) unit Series LEC-G

Driver

AC Servo Motor Driver

Pulse input type/
Positioning type
Series LECSA

Control motor
AC servo motor (100/200 VAC)

Pulse input type Series LECSB

Control motor
AC servo motor (100/200 VAC)

CC-Link direct input type
Series LECSC

Control motor AC servo motor (100/200 VAC)

SSCNET III type Series LECSS

\qquad

Electric Actuator/High Rigidity Slider Type Ball Screw Drive Series LEJS

\qquadHow to Order

Page 9
\qquadSpecificationsPage 10
Construction Page 11
Dimensions Page 12
Electric Actuator/High Rigidity Slider Type Belt Drive Series LEJB
How to Order Page 14
Specifications Page 15
Construction Page 16
Dimensions Page 17
Specific Product Precautions Page 21
© AC Servo Motor Driver
Series LECSA/LECSB/LECSC/LECSS Page 24
Specific Product Precautions Page 38

Electric Actuator/High Rigidity Slider Type AC Servo Motor (100/200 W) Ball Screw Drive/Series LEJS Belt Drive/Series LEJB Model Selection

Model Selection

Step 1 Check the speed-work load.
Check the speed-work load.
Step 2 Check the cycle time.
Step 3 Check the allowable moment.
Selection Example

Operating conditions

- Workpiece mass: 60 [kg]
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 200 [mm]
- Mounting orientation: Horizontal
- Motor type: Incremental encoder
- External force: 10 [N]
- Workpiece mounting condition:

$1 \mathrm{~N}=0.224 \mathrm{lbf}$
Check the speed-work load.
Select the product by referring to "Speed-Work Load Graph" (Page 2).
Selection example) The LEJS63S3B-200 is temporarily selected based on the graph shown on the right.
The regeneration option (LEC-MR-RB032) may be necessary.
See the shaded area in the graph.

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.

Method 1: Check the cycle time graph (Page 3)

The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$ [s]

- T1 and T3 can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio.
Check that they do not exceed the upper limit, by referring to "Work load-Acceleration/Deceleration Graph (Guide)" (Page 4).
For the ball screw type, there is an upper limit of the speed depending on the stroke. Check that if it does not exceed the upper limit, by referring to the specifications (Page 10).
- T2 can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4 varies depending on the motor type and load. The value below is recommended.
T4 = 0.05 [s]

Step 3 Check the allowable moment.

Refer to "Dynamic Allowable Moment" graphs (Pages 6, 7).

Selection example)
Select the LEJS63S3B-200 from the graph on the right.
Confirm that the external force is $20[\mathrm{~N}]$ or less (Refer to the allowable external force on page 10.). (The external force is the resistance due to cable duct, flexible trunking or air tubing.)

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}]$
$T 2=\frac{L-0.5 \cdot V \cdot(T 1+T 3)}{V}$
$=\frac{200-0.5 \cdot 300 \cdot(0.1+0.1)}{300}$

$$
=0.57 \text { [s] }
$$

$\mathrm{T} 4=0.05$ [s]
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$
$=0.1+0.57+0.1+0.05$
$=0.82$ [s]

<Speed-Work load graph>
(LEJS63)

L: Stroke [mm]
V : Speed [mm/s]
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed
T5: Resting time [s]
Time the product is not running
T6: Total time [s]
Total time from T1 to T5
Duty ratio: Ratio of T to T6
$\mathrm{T} \div \mathrm{T} 6 \times 100$

<Dynamic allowable moment>

Speed-Work Load Graph (Guide)
LEJS40/Ball Screw Drive
$\mathrm{Kg}=2.2 \mathrm{lb}$

Horizontal

Vertical

Vertical

LEJB63/Belt Drive

Horizontal

[^2]Cycle Time Graph (Guide)

LEJS40/Ball Screw Drive

LEJS40 \square A

LEJS40 \square B

LEJS63/Ball Screw Drive

LEJS63 \square A

LEJB40/Belt Drive

LEJS63 \square B

LEJB63/Belt Drive

* Maximum speed/acceleration/deceleration values graph for each stroke

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS40/Ball Screw Drive: Vertical

LEJS40 \square B

* The products can be used up to 100% duty ratio.

The above graphs show examples of when the duty ratio is 75% and 50%.

Series LEJ

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS63/Ball Screw Drive: Horizontal
LEJS63 \square A

$1 \mathrm{Kg}=2.2 \mathrm{lb}$
LEJS63 \square B

LEJS63/Ball Screw Drive: Vertical

LEJS63 \square A

LEJB40/Belt Drive: Horizontal

LEJS63 \square B

LEJB63/Belt Drive: Horizontal

Model Selection Series LEJ
Dynamic Allowable Moment

Series LEJ

Dynamic Allowable Moment

$1 \mathrm{Kg}=2.2 \mathrm{lb}$

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	(1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
LEJ $\square \mathbf{4 0}$	0.05	0.03
LEJ $\square \mathbf{6 3}$	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table. (Table clearance is included.)

Electric Actuator/High Rigidity Slider Type Ball Screw Drive AC Sevo Moor fromenw

 Series LEJS C 6
How to Order

Symbol	Type	Output [W]	Actuator size	Compatible drivers*2
S2	AC servo motor (Incremental encoder)	100	40	LECSA \square-S1
S3	AC servo motor (Incremental encoder)	200	63	LECSA \square-S3
S6	AC servo motor (Absolute encoder)	100	40	$\begin{aligned} & \text { LECSB } \square \text {-S5 } \\ & \text { LECSC } \square \text {-S5 } \\ & \text { LECSS } \square \text {-S5 } \end{aligned}$
S7	AC servo motor (Absolute encoder)	200	63	$\begin{aligned} & \text { LECSB } \square \text {-S7 } \\ & \text { LECSC口-S7 } \\ & \text { LECSS } \square \text {-S7 } \\ & \hline \end{aligned}$

*1: For motor type S2 and S6, the compatible driver part number suffixes are S1
3 Lead [mm]

Symbol	LEJS 40	LEJS 63
A	16	20
B	8	10

*2: For details of the driver, refer to page 26.

200
to
*3: Refer to the table
below for details.

5 Motor option

Nil	Without lock
B	With lock

6 Cable type ${ }^{* 5, * 6, * 7}$
Nil
S
R
Robothout cable cable (Flexible cable)

* 6: The motor and encoder cables are included. (The lock cable is included when the motor with lock option is selected.)
* 7: Standard cable entry direction is "(A) Axis side".
(7) Cable length [m] ${ }^{* 5, * 8}$

Nil	Without cable
2	2 m
$\mathbf{5}$	5 m
A	10 m

*8: The length of the motor, encoder and lock cables are the same.

8 Driver type*5		
-	Compatible drivers	Power supply voltage (V)
Nil	Without driver	-
A1	LECSA1-S \square	100 to 120
A2	LECSA2-S \square	200 to 230
B1	LECSB1-S	100 to 120
B2	LECSB2-S \square	200 to 230
C1	LECSC1-S \square	100 to 120
C2	LECSC2-S \square	200 to 230
S1	LECSS1-S \square	100 to 120
S2	LECSS2-S \square	200 to 230

9) I/O connector

Nil	Without connector
H	With connector

Applicable Stroke Table ${ }^{* 4}$											
$\overbrace{\text { Model }}$Stroke (mm)	200	300	400	500	600	700	800	900	1000	1200	1500
LEJS40	\bullet	\bullet	\bigcirc	\bullet	\bullet	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	-
LEJS63	-	-	\bigcirc	-	-	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	0

* 4: Strokes other than those shown above are produced as special order (1 mm increments).

Compatible Drivers

*5: When the driver type is selected, the cable is included. Select cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type
Series	LECSA	LECSB	LECSC	LECSS
Number of point tables	Up to 7	-	Up to 255	-
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder
External communication	USB communication	USB communication, RS422 communication	USB communication, RS422 communication	USB communication, RS422 communication
Power supply voltage (V)	100 to 120 VAC ($50 / 60 \mathrm{~Hz}$) 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)			
Reference page	Page 26	Page 26	Page 26	Page 26

Electric Actuator/High Rigidity Slider Type Ball Screw Drive

Specifications

LEJS40/63 AC Servo Motor (100/200 W)

Model				LEJS40S ${ }_{6}^{2}$		LEJS63S ${ }_{7}^{3}$	
	Stroke [mm] Note 1)			$\begin{gathered} 200,300,(400), 500,600,(700), 800 \\ \text { (900), (1000), (1200) } \end{gathered}$		$\begin{gathered} 300,(400), 500,600,(700), 800,(900) \\ 1000,(1200),(1500) \end{gathered}$	
	Work load lb [kg] Note 2)		Horizontal	66 (30)	121 (55)	99 (45)	187 (85)
			Vertical	11 (5)	22 (10)	22 (10)	44 (20)
	Speed Note 3) [mm / s]	Stroke range	Up to 500	1200	600	1200	600
			501 to 600	1050	520	1200	600
			601 to 700	780	390	1200	600
			701 to 800	600	300	930	460
			801 to 900	480	240	740	370
			901 to 1000	390	190	600	300
			1001 to 1100	320	160	500	250
			1101 to 1200	270	130	420	210
			1201 to 1300	-	-	360	180
			1301 to 1400	-	-	310	150
			1401 to 1500	-	-	270	130
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			20000 (Refer to page 4 for limit according to work load and duty ratio.)			
	Positioning repeatability [mm] Note 4)			± 0.02			
	Lead [mm]			16	8	20	10
	Impact/Vibration resistance [m/s²] ${ }^{\text {Note 5) }}$			50/20			
	Actuation type			Ball screw			
	Guide type			Linear guide			
	Allowable external force			$4.5 \mathrm{lbf}(20 \mathrm{~N})$			
	Operating temperature range			41 to $104^{\circ} \mathrm{F}$ (5 to $40^{\circ} \mathrm{C}$)			
	Operating humidity range [\%RH]			90 or less (No condensation)			
	Regeneration option			May be required depending on speed and work load. (Refer to page 36.)			
	Motor output [W]/Size [mm]			100/ $\square 40$		200/ $\square 60$	
	Motor type			AC servo motor (100/200 VAC)			
	Encoder			Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S6, S7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)			
-	Type ${ }^{\text {Note 6) }}$			Non-magnetizing lock			
氕:	Holding force			22.7 lbf (101 N)	45.6 lbf (203 N)	74.2 (330 N)	148.4 lbf (660 N)
资:	Power consumption at $68{ }^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right.$ [W] Note 7)			6.3		7.9	
-	Rated voltage [V]			24 VDC ${ }_{-10 \%}^{0}$			

Note 1) Strokes shown in () are produced upon receipt of order. Strokes other than those shown above are produced as special order (1 mm increments).
Note 2) Check "Speed-Work Load Graph (Guide)" on page 2.
Note 3) The allowable speed will change depending on the stroke.
Note 4) Conforming to JIS B 6191-1999
Note 5) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 6) Only when motor option "With lock" is selected.
Note 7) For an actuator with lock, add the power consumption for the lock.

Weight

Model	LEJS40									
Stroke [mm]	200	300	(400)	500	600	(700)	800	(900)	(1000)	(1200)
Product weight lb [kg]	$12.3(5.6)$	$14.1(6.4)$	$15.7(7.1)$	$17.4(7.9)$	$19.2(8.7)$	$20.7(9.4)$	$22.5(10.2)$	$24.3(11.0)$	$25.8(11.7)$	$29.3(13.3)$
Additional weight with lock	$0.44 \mathrm{lb}(0.2 \mathrm{~kg})$ (Incremental encoder)/0.66 lb (0.3 Kg)(Absolute encoder)									

Model	LEJS63									
Stroke [mm]	300	(400)	500	600	(700)	800	(900)	1000	(1200)	(1500)
Product weight lb [kg]	25.1 (11.4)	28.0 (12.7)	30.6 (13.9)	33.5 (15.2)	36.2 (16.4)	39.0 (17.7)	41.7 (18.9)	44.3 (20.1)	49.8 (22.6)	58.2 (26.4)
Additional weight with lock	$0.88 \mathrm{lb}(0.4 \mathrm{Kg})$ (Incremental encoder)/1.54 lb (0.7 Kg) (Absolute encoder)									

Series LEJS

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Ball screw assembly	-	
3	Linear guide assembly	-	
4	Table	Aluminum alloy	Anodized
$\mathbf{5}$	Housing A	Aluminum alloy	Coating
6	Housing B	Aluminum alloy	Coating
$\mathbf{7}$	Seal magnet	-	
$\mathbf{8}$	Motor cover	Aluminum alloy	Anodized
9	End cover A	Aluminum alloy	Anodized
$\mathbf{1 0}$	Roller shaft	Stainless steel	
$\mathbf{1 1}$	Roller	Synthetic resin	
$\mathbf{1 2}$	Bearing stopper	Carbon steel	

Dimensions: Ball Screw Drive

LEJS40

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z phase first detecting position from the stroke end of the motor side.
Note 3) Auto switch magnet is located in the table center.

Model	L		A	B	n	C	D	E
	Without lock	With lock						
LEJS40S $\square \square$-200 $\square-\square \square \square \square$	523.5	563.5	206	260	6	1	200	80
LEJS40S $\square \square-300 \square-\square \square \square \square$	623.5	663.5	306	360	6	1	200	180
LEJS40S $\square \square$-400 \square - $\square \square \square \square$	723.5	763.5	406	460	8	2	400	80
LEJS40S $\square \square$-500 $\square-\square \square \square \square$	823.5	863.5	506	560	8	2	400	180
LEJS40S $\square \square$-600 \square - $\square \square \square \square$	923.5	963.5	606	660	10	3	600	80
LEJS40S $\square \square$-700 $\square-\square \square \square \square$	1023.5	1063.5	706	760	10	3	600	180
LEJS40S $\square \square-800 \square-\square \square \square \square$	1123.5	1163.5	806	860	12	4	800	80
LEJS40S $\square \square$-900 $\square-\square \square \square \square$	1223.5	1263.5	906	960	12	4	800	180
LEJS40S $\square \square$-1000 $\square-\square \square \square \square$	1323.5	1363.5	1006	1060	14	5	1000	80
LEJS40S $\square \square$-1200 $\square-\square \square \square \square$	1523.5	1563.5	1206	1260	16	6	1200	80

Series LEJS

Dimensions: Ball Screw Drive

LEJS63

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z phase first detecting position from the stroke end of the motor side.
Note 3) Auto switch magnet is located in the table center.
[mm]

Model	L		A	B	n	C	D	E
	Without lock	With lock						
LEJS63S $\square \square$-300 $\square-\square \square \square \square$	656.5	696.5	306	370	6	1	200	180
LEJS63S $\square \square$-400 $\square-\square \square \square \square$	756.5	796.5	406	470	8	2	400	80
LEJS63S $\square \square$-500 \square - $\square \square \square \square$	856.5	896.5	506	570	8	2	400	180
LEJS63S $\square \square$-600 \square - $\square \square \square \square$	956.5	996.5	606	670	10	3	600	80
LEJS63S $\square \square$-700 \square - $\square \square \square \square$	1056.5	1096.5	706	770	10	3	600	180
LEJS63S $\square \square$-800 \square - $\square \square \square \square$	1156.5	1196.5	806	870	12	4	800	80
LEJS63S $\square \square$-900 \square - $\square \square \square \square$	1256.5	1296.5	906	970	12	4	800	180
LEJS63S $\square \square$-1000 $\square-\square \square \square \square$	1356.5	1396.5	1006	1070	14	5	1000	80
LEJS63S $\square \square$-1200 \square - $\square \square \square \square$	1556.5	1596.5	1206	1270	16	6	1200	80
LEJS63S $\square \square$-1500 \square - $\square \square \square \square$	1856.5	1896.5	1506	1570	18	7	1400	180

Electric Actuator/High Rigidity Slider Type

Belt Drive cacsenowoornemw
 Series LEJB C

How to Order

*3: Strokes other than those shown above are produced as special order (1 mm increments).
For auto switches, refer to pages 19, 20.

Compatible Drivers

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type
Series	LECSA	LECSB	LECSC	LECSS
Number of point tables	Up to 7	-	Up to 255	-
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder
External communication	USB communication	USB communication, RS422 communication	SB communication, RS422 communicatio	B communication, RS422 communication
Power supply voltage (V)		$\begin{aligned} & 100 \text { to } 120 \mathrm{~V} \\ & 200 \text { to } 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{C}(50 / 60 \mathrm{~Hz}) \\ & \mathrm{C}(50 / 60 \mathrm{~Hz}) \end{aligned}$	
Reference page	Page 26	Page 26	Page 26	Page 26

Series LEJB

Specifications

LEJB40/63 AC Servo Motor (100/200 W)

Model			LEJB40S ${ }_{6}$	LEJB63S ${ }_{7}$
	Stroke [mm] ${ }^{\text {Note 1) }}$		(200), 300, (400), 500, (600), (700), 800 (900), 1000, (1200), (1500), (2000)	$\begin{gathered} (300),(400), 500,(600),(700), 800 \\ (900), 1000,1200,(1500),(2000),(3000) \end{gathered}$
	Work load lb [kg]	Horizontal	44.0 (20) (If the stroke exceeds 1000 mm : 10)	66.1 (30)
	Speed [mm/s] ${ }^{\text {Note } 2]}$		2000	3000
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		20000 (Refer to page 4 for limit according to work load and duty ratio.)	
	Positioning repeatability [mm] ${ }^{\text {Note 3) }}$		± 0.04	
	Lead [mm]		27	42
	Impact/Vibration resistance [m/s²] Note 4)		50/20	
	Actuation type		Belt	
	Guide type		Linear guide	
	Allowable external force		$4.5 \mathrm{lbf}(20 \mathrm{~N})$	
	Operating temperature range		41 to $104^{\circ} \mathrm{F}$ (5 to $40^{\circ} \mathrm{C}$)	
	Operating humidity range [\%RH]		90 or less (No condensation)	
	Regeneration option		May be required depending on speed and work load. (Refer to page 36.)	
	Motor output [W]/Size [mm]		100/ $\square 40$	200/ $\square 60$
	Motor type		AC servo motor (100/200 VAC)	
	Encoder		Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S6, S7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)	
	Type Note 5)		Non-magnetizing lock	
	Holding force		$13.5 \mathrm{lbf}(60 \mathrm{~N})$	$42.5 \mathrm{lbf}(189 \mathrm{~N})$
	Power consumption at $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)[\mathrm{W}]^{\text {Note }}$ 6)		6.3	7.9
	Rated voltage [V]		24 VDC ${ }_{-10 \%}^{0}$	

Note 1) Strokes shown in () are produced upon receipt of order. Strokes other than those shown above are produced as special order (1 mm increments).
Note 2) Check "Speed-Work Load Graph (Guide)" on page 2.
Note 3) Conforming to JIS B 6191-1999
Note 4) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) Only when motor option "With lock" is selected.
Note 6) For an actuator with lock, add the power consumption for the lock.

Weight

Model	LEJB40											
Stroke [mm]	(200)	300	(400)	500	(600)	(700)	800	(900)	1000	(1200)	(1500)	(2000)
Product weight lb [kg]	12.6 (5.7)	14.1 (6.4)	15.7 (7.1)	17.0 (7.7)	18.5 (8.4)	20.1 (9.1)	21.6 (9.8)	23.1 (10.5)	24.7 (11.2)	27.8 (12.6)	32.4 (14.7)	40.0 (18.1)
Additional weight with lock	$0.44 \mathrm{lb}(0.2 \mathrm{~kg})$ (Incremental encoder)/0.66 lg (0.3 lb) (Absolute encoder)											
Model	LEJB63											
Stroke [mm]	(300)	(400)	500	(600)	(700)	800	(900)	1000	1200	(1500)	(2000)	(3000)
Product weight lb [kg]	25.4 (11.5)	28.0 (12.7)	30.4 (13.8)	33.0 (15.0)	35.7 (16.2)	38.4 (17.4)	41.0 (18.6)	43.4 (19.7)	48.7 (22.1)	56.7 (25.7)	70.0 (31.6)	95.7 (43.4)
Additional weight with lock	$0.88 \mathrm{lb}(0.4 \mathrm{~kg})$ ($\mathrm{Incremental} \mathrm{encoder)/1.54} \mathrm{lb} \mathrm{(0.7} \mathrm{kg)} \mathrm{(Absolute} \mathrm{encoder)}$											

Motor details

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Belt	-	
3	Belt holder	Carbon steel	
4	Belt stopper	Aluminum alloy	
5	Linear guide assembly	-	
6	Table	Aluminum alloy	Anodized
7	Housing A	Aluminum alloy	Coating
8	Housing B	Aluminum alloy	Coating
9	Seal magnet	Aluminum alloy	Anodized
10	Motor cover	Aluminum alloy	Anodized
11	End cover A	Aluminum alloy	Anodized
12	End cover B	Stainless steel	
13	Roller shaft	Synthetic resin	
14	Roller	Aluminum alloy	
15	Pulley holder	Aluminum alloy	
16	Drive pulley	Aluminum alloy	
17	Speed reduction pulley	Aluminum alloy	
18	Motor pulley	Aluminum alloy	
19	Spacer		

No.	Description	Material	Note
$\mathbf{2 0}$	Pulley shaft A	Stainless steel	
$\mathbf{2 1}$	Pulley shaft B	Stainless steel	
$\mathbf{2 2}$	Table cap	Synthetic resin	
$\mathbf{2 3}$	Seal band stopper	Synthetic resin	
$\mathbf{2 4}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{2 5}$	Motor mount plate	Carbon steel	
$\mathbf{2 6}$	Pulley block	Aluminum alloy	Anodized
$\mathbf{2 7}$	Pulley cover	Aluminum alloy	Anodized
$\mathbf{2 8}$	Belt stopper	Aluminum alloy	
$\mathbf{2 9}$	Side plate	Aluminum alloy	Anodized
$\mathbf{3 0}$	Motor plate	Carbon steel	
$\mathbf{3 1}$	Belt	-	
$\mathbf{3 2}$	Motor	-	
$\mathbf{3 3}$	Grommet	NBR	
$\mathbf{3 4}$	Dust seal band	Stainless steel	
$\mathbf{3 5}$	Bearing	-	
$\mathbf{3 6}$	Bearing	-	
$\mathbf{3 7}$	Stopper pin	Stainless steel	
$\mathbf{3 8}$	Magnet	-	

Series LEJB

Dimensions: Belt Drive

LEJB40

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z phase first detecting position from the stroke end of the motor side.
Note 3) Auto switch magnet is located in the table center.

Model	L	A	B	n	C	D	E
LEJB40S $\square \square$-200 $\square-\square \square \square \square$	542	206	260	6	1	200	80
LEJB40S $\square \square-300 \square-\square \square \square \square$	642	306	360	6	1	200	180
LEJB40S $\square \square-400 \square-\square \square \square \square$	742	406	460	8	2	400	80
LEJB40S $\square \square$-500 $\square-\square \square \square \square$	842	506	560	8	2	400	180
LEJB40S $\square \square-600 \square-\square \square \square \square$	942	606	660	10	3	600	80
LEJB40S $\square \square-700 \square-\square \square \square \square$	1042	706	760	10	3	600	180
LEJB40S $\square \square-800 \square-\square \square \square \square$	1142	806	860	12	4	800	80
LEJB40S $\square \square$-900 $\square-\square \square \square \square$	1242	906	960	12	4	800	180
LEJB40S $\square \square$-1000 $\square-\square \square \square \square$	1342	1006	1060	14	5	1000	80
LEJB40S $\square \square$-1200 $\square-\square \square \square \square$	1542	1206	1260	16	6	1200	80
LEJB40S $\square \square$-1500 $\square-\square \square \square \square$	1842	1506	1560	18	7	1400	180
LEJB40S $\square \square$-2000 $\square-\square \square \square \square$	2342	2006	2060	24	10	2000	80
			MC				

LECS \square

[mm]

Model	L	A	B	n	C	D	E
LEJB63S $\square \square$-300 $\square-\square \square \square \square$	704	306	370	6	1	200	180
LEJB63S $\square \square-400 \square-\square \square \square \square$	804	406	470	8	2	400	80
LEJB63S $\square \square$-500 \square - $\square \square \square \square$	904	506	570	8	2	400	180
LEJB63S $\square \square$-600 $\square-\square \square \square \square$	1004	606	670	10	3	600	80
LEJB63S $\square \square$-700 $\square-\square \square \square \square$	1104	706	770	10	3	600	180
LEJB63S $\square \square$-800 $\square-\square \square \square \square$	1204	806	870	12	4	800	80
LEJB63S $\square \square$-900 \square - $\square \square \square \square$	1304	906	970	12	4	800	180
LEJB63S $\square \square$-1000 $\square-\square \square \square \square$	1404	1006	1070	14	5	1000	80
LEJB63S $\square \square$-1200 $\square-\square \square \square \square$	1604	1206	1270	16	6	1200	80
LEJB63S $\square \square$-1500 $\square-\square \square \square \square$	1904	1506	1570	18	7	1400	180
LEJB63S $\square \square$-2000 $\square-\square \square \square \square$	2404	2006	2070	24	10	2000	80
LEJB63S $\square \square$-3000 $\square-\square \square \square \square$	3404	3006	3070	34	15	3000	80

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

D-M9B/M9BV

Auto Switch Specifications
Refer to SMC website for details about products conforming to the international standards.

D-M9 $\square, ~ D-M 9 \square V$ (With indicator light)

Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking					

- Lead wires - Oilproof flexible heavy-duty vinyl cord: ø2.7 $\times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}, 2$ cores
(D-M9B(V)), 3 cores (D-M9N(V)/D-M9P(V))
Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.
Weight
[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
[mm]
D-M9 \square

D-M9 $\square \mathbf{V}$

2-Color Indication Solid State Auto Switch / Direct Mounting Style D-M9NW(V)/D-M9PW(V)/D-M9BW(V) (\in RoHs
 Refer to SMC website for details about products

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

D-M9NW/M9NWV

D-M8PW/M9PWV

D-M9BW/M9BWV

Indicator light/Indication method

Auto Switch Specifications conforming to the international standards.

PLC: Programmable Logic Controller						
D-M9■W, D-M9 $\mathrm{C}^{\text {WV (}}$ (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3 -wire				2-wire	
Output type		PN		NP		
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less		-	24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA$)$				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED lights up. Optimum operating range Green LED lights up.					
Standards	CE marking					
- Lead wires - Oilproof flexible heavy-duty vinyl cord: $\varnothing 2.7 \times 3.2$ ellipse, $0.15 \mathrm{~mm}^{2}, 2$ cores (D-M9BW(V)), 3 cores (D-M9NW(V), D-M9PW(V)) Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.						

Weight

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions

[mm]

[Series LEJ Electric Actuator/
Specific Product Precautions 1
Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions. Please download it via our website, http://www.smcworld.com

Design

\triangle Caution

1. Do not apply a load in excess of the operating limit.

A product should be selected based on the maximum load and allowable moment. If the product is used outside of the operating limit, eccentric load applied to the guide will become excessive and have adverse effects such as creating play at the guide, degraded accuracy and shortened product life.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
The product can be damaged.
The components including the motor are manufactured to precise tolerances. So that even a slight deformation may cause faulty operation or seizure.

Selection

\triangle Warning

1. Do not exceed the speed limit of the actuator specification.
Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. Noise or reduction of accuracy may occur if the actuator is operated in excess of its specification and could lead to reduced accuracy and reduced product file.
2. When the product repeatedly cycles with partial strokes (100 mm or less), lubrication can run out. Operate it at a full stroke at least once a day or every 1000 strokes.
3. When external force is applied to the table, it is necessary to add external force to the work load as the total carried load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.

Handling
 © Caution
 1. Do not allow the table to hit the end of stroke. It can cause damage to the actuator.

Handle the actuator with care, especially when it is used in the vertical direction.
2. The actual speed of this actuator is affected by the work load and stroke.

Check specifications with reference to the model selection section of the catalog.
3. Do not apply a load, impact or resistance in addition to a transferred load during returning to the original position.
4. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
It may cause a loss of parallelism in the mounting surfaces, looseness in the guide unit, an increase in sliding resistance or other problems.
5. Do not apply strong impact or an excessive moment while mounting the product or a workpiece.
If an external force over the allowable moment is applied, it may cause looseness in the guide unit, an increase in sliding resistance or other problems.
6. Keep the flatness of mounting surface 0.1 mm or less.

Insufficient flatness of a workpiece or base mounted on the body of the product can cause play at the guide and increased sliding resistance.
In the case of overhang mounting (including cantilever), to avoid deflection of the actuator body, use a support plate or support guide.
7. When mounting the actuator, use all mounting holes.

If all mounting holes are not used, it influences the specifications, e.g., the amount of displacement of the table increases.
8. Do not hit the table with the workpiece in the positioning operation and positioning range.
9. Do not apply external force to the dust seal band.

Particularly during the transportation.

Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions. Please download it via our website, http://www.smcworld.com

Handling

1 Caution

10. When mounting the product, use screws with adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Workpiece fixed

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause malfunction, etc.
11. Do not operate by fixing the table and moving the actuator body.
12. The belt drive actuator cannot be used for vertically applications.
13. Vibration may occur during operation, this could be caused by the operating conditions.
If it occurs, adjust response value of auto tuning of driver to be lower.
During the first auto tuning noise may occur, the noise will stop when the tuning is complete.
14. When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of chamfering. (Recommended height 6 mm)

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

* Select whichever comes sooner.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.

* For lubrication, use lithium grease No. 2.

2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

Pulse input type/
Positioning type

Incremental type Series LECSA

Pulse input type
 Series LECSB

CC-Link direct input type

Absolute type
Series LECSC

SSCNET III type

Absolute type Series LECSS

Series LECSA (Pulse input type/Positioning type)

- Up to 7 positioning points by point table
- Input type: Pulse input
- Control encoder: Incremental 17-bit encoder (Resolution: 131072 pulse/rev)
- Parallel input: 6 inputs
output: 4 outputs

Series LECSB (Pulse input type)

- Input type: Pulse input
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)
- Parallel input: 10 inputs output: 6 outputs

Series LECSC (CC-Link direct input type)

- Position data/speed data setting and operation start/stop
- Positioning by up to 255 point tables (when 2 stations occupied)
- Up to 32 drivers connectable (when 2 stations occupied) with CC-Link communication
- Applicable Fieldbus protocol: CC-Link (Ver. 1.10, max. communication speed: 10 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

Series LECSS (SSCNET III type)

- Compatible with Mitsubishi Electric's servo system controller network
- Reduced wiring and SSCNET III optical cable for one-touch connection
- SSCNET III optical cable provides enhanced noise resistance
- Up to 16 drivers connectable with SSCNET III communication
- Applicable Fieldbus protocol: SSCNET III
(High-speed optical communication, max. bidirectional communication speed: 100 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

 Absolute Type
 Series LECSB/LECSC/LECSS
 (Pulse Input Type) (CC-Link Direct Input Type) (SSCNET III Type)

LECSC \square

Connector name	Description
CN1	CC-Link connector
CN2	Encoder connector
CN3	RS-422 communication connector
CN4	Battery connector
CN5	USB communication connector
CN6	//O signal connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

LECSS \square

Connector name	Description
CN1A	Front axis connector for SSCNET III optical cable
CN1B	Rear axis connector for SSCNET III optical cable
CN2	Encoder connector
CN3	I/O signal connector
CN4	Battery connector
CN5	USB communication connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

[^3]
AC Servo Motor Driver Series LECS \square

Specifications

Series LECSA

Model		LECSA1-S1	LECSA1-S3	LECSA2-S1	LECSA2-S3
Compatible motor capacity [W]		100	200	100	200
Compatible encoder		Incremental 17-bit encoder (Resolution: 131072 pulse/rev)			
Main power supply	Power voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC	
	Rated current [A]	3.0	5.0	1.5	2.4
Control power supply	Control power supply voltage [V]	24 VDC			
	Allowable voltage fluctuation [V]	21.6 to 26.4 VDC			
	Rated current [A]	0.5			
Parallel input		6 inputs			
Parallel output		4 outputs			
Max. input pulse frequency [pps]		1 M (when differential receiver), 200 k (when open collector)			
Function	In-position range setting [pulse]	0 to ± 65535 (Command pulse unit)			
	Error excessive	± 3 rotations			
	Torque limit	Parameter setting			
	Setting communication	USB communication			
Operating temperature range		32 to $131{ }^{\circ} \mathrm{F}\left(0\right.$ to $\left.55^{\circ} \mathrm{C}\right)$ (No freezing)			
Operating humidity range [\%RH]		90 or less (No condensation)			
Storage temperature range [${ }^{\mathrm{C}} \mathrm{C}$]		-4 to $149^{\circ} \mathrm{F}\left(-20\right.$ to $\left.65^{\circ} \mathrm{C}\right)$ (No freezing)			
Storage humidity range [\%RH]		90 or less (No condensation)			
Insulation resistance [M 2]		Between case and SG: 10 (500 VDC)			
Weight		$21.2 \mathrm{oz} \mathrm{(600} \mathrm{g)}$			

Series LECSB

Model		LECSB1-S5	LECSB1-S7	LECSB2-S5	LECSB2-S7
Compatible motor capacity [W]		100	200	100	200
Compatible encoder		Absolute 18-bit encoder (Resolution: 262144 pulse/rev)			
Main power supply	Power voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC	
	Rated current [A]	3.0	5.0	0.9	1.5
Control power supply	Control power supply voltage [V]	Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC	
	Rated current [A]	0.4		0.2	
Parallel input		10 inputs			
Parallel output		6 outputs			
Max. input pulse frequency [pps]		1 M (when differential receiver), 200 k (when open collector)			
Function	In-position range setting [pulse]	0 to ± 10000 (Command pulse unit)			
	Error excessive	± 3 rotations			
	Torque limit	Parameter setup or external analog input setup (0 to 10 VDC)			
	Setting communication	USB communication, RS422 communication*1			
Operating temperature range		32 to $131{ }^{\circ} \mathrm{F}$ (0 to $55^{\circ} \mathrm{C}$) (No freezing)			
Operating humidity range [\%RH]		90 or less (No condensation)			
Storage temperature range		-4 to $149^{\circ} \mathrm{F}\left(-20\right.$ to $\left.65^{\circ} \mathrm{C}\right)$ (No freezing)			
Storage humidity range [\%RH]		90 or less (No condensation)			
Insulation resistance [M Ω]		Between case and SG: 10 (500 VDC)			
Weight		28.2 oz (800 g)			

[^4]
Specifications

Series LECSC

Model			LECSC1-S5	LECSC1-S7	LECSC2-S5	LECSC2-S7
Compatible motor capacity [W]			100	200	100	200
Compatible encoder			Absolute 18-bit encoder (Resolution: 262144 pulse/rev)			
Main power supply	Power voltage [V]		Single phase 100 to 120 VAC$(50 / 60 \mathrm{~Hz})$		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$) Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC	
	Rated current [A]		3.0	5.0	0.9	1.5
Control power supply	Control power supply voltage [V]		$\begin{gathered} \text { Single phase } 100 \text { to } 120 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$		Single phase 200 to 230 VAC$(50 / 60 \mathrm{~Hz})$	
	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Single phase 170 to 253 VAC	
	Rated current [A]		0.4		0.2	
	Applicable Fieldbus protocol (Version)		CC-Link communication (Ver. 1.10)			
	Connection cable		CC-Link Ver. 1.10 compliant cable (Shielded 3-core twisted pair cable)**			
	Remote station number		1 to 64			
	Cable length	Communication speed [bps]	16 k	625 k	2.5 M	5 M
		Maximum overall cable length [m]	1200	900	400	160
		Cable length between stations [m]	0.2 or more			
	//O occupation area (Inputs/Outputs)		1 station occupied (Remote I/O 32 points/32 points)/(Remote register 4 words/4 words) 2 stations occupied (Remote I/O 64 points/ 64 points)/(Remote register 8 words/ 8 words)			
	Number of connectable drivers		Up to 42 (when 1 station is occupied by 1 driver), Up to 32 (when 2 stations are occupied by 1 driver), when there are only remote device stations.			
Command method	Remote register input		Available with CC-Link communication (2 stations occupied)			
	Point table No. input		Available with CC-Link communication, RS422 communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points RS422 communication: 255 points			
	Indexer positioning input		Available with CC-Link communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points			
Setting communication			USB communication, RS422 communication*2			
Operating temperature range			32 to $131^{\circ} \mathrm{F}\left(0\right.$ to $\left.55^{\circ} \mathrm{C}\right)$ (No freezing)			
Operating humidity range [\%RH]			90 or less (No condensation)			
Storage temperature range			-4 to $149^{\circ} \mathrm{F}\left(-20\right.$ to $\left.65^{\circ} \mathrm{C}\right)($ No freezing)			
Storage humidity range [\%RH]			90 or less (No condensation)			
Insulation resistance [M 2]			Between case and SG: 10 (500 VDC)			
Weight			$28.2 \mathrm{oz}(800 \mathrm{~g})$			

*1 If the system comprises of both CC-Link Ver. 1.00 and Ver. 1.10 compliant cables, Ver. 1.00 specifications are applied to the cable extensions and the cable length between stations. *2 USB communication and RS422 communication cannot be performed at the same time.

Series LECSS

Model		LECSS1-S5	LECSS1-S7	LECSS2-S5	LECSS2-S7
Compatible motor capacity [W]		100	200	100	200
Compatible encoder		Absolute 18-bit encoder (Resolution: 262144 pulse/rev)			
Main power supply	Power voltage [V]	$\begin{gathered} \text { Single phase } 100 \text { to } 120 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$) Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC	
	Rated current [A]	3.0	5.0	0.9	1.5
Control power supply	Control power supply voltage [V]	$\begin{gathered} \text { Single phase } 100 \text { to } 120 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \\ \hline \end{gathered}$		Single phase 200 to 230 VAC$(50 / 60 \mathrm{~Hz})$	
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC	
	Rated current [A]	0.4		0.2	
Applicable Fieldbus protocol		SSCNET III (High-speed optical communication)			
Setting communication		USB communication			
Operating temperature range		32 to $131{ }^{\circ} \mathrm{F}\left(0\right.$ to $\left.55^{\circ} \mathrm{C}\right)$ (No freezing)			
Operating humidity range [\%RH]		90 or less (No condensation)			
Storage temperature range		-4 to $149^{\circ} \mathrm{F}\left(-20\right.$ to $\left.65^{\circ} \mathrm{C}\right)$ (No freezing)			
Storage humidity range [\%RH]		90 or less (No condensation)			
Insulation resistance [$\mathrm{M} \Omega$]		Between case and SG: 10 (500 VDC)			
Weight		28.2 oz (800 g)			

Power Supply Wiring Example: LECSA

LECSA $\square-\square$

Main Circuit Power Supply Connector: CNP1			* Accessory
Terminal name	Function	Details	
$\stackrel{1}{\square}$	Protective earth (PE)	Should be grounded by connect terminal and the control panel's	g the servo motor's earth rotective earth (PE).
L1	Main circuit power supply	Connect the main circuit power supply. LECSA1: Single phase 100 to 120 VAC, $50 / 60 \mathrm{~Hz}$ LECSA2: Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$	
L2			
P	Regeneration option	Terminal to connect regeneration option LECSA \square-S1: No need for connection LECSA \square-S3, S4: Connected at time of shipping. * If regeneration option is required for "Model Selection", connect to this terminal.	
C			
U	Servo motor power (U)	Connect to motor cable (U, V, W)	
V	Servo motor power (V)		
W	Servo motor power (W)		

$|$| Control Circuit Power Supply Connector: CNP2 | | |
| :---: | :--- | :--- |

Terminal name	Function	Details
24 V	Control circuit power supply $(24 \mathrm{~V})$	24 V side of the control circuit power supply (24 VDC) which supplies the driver.
0 V	Control circuit power supply $(0 \mathrm{~V})$	0 V side of the control circuit power supply (24 VDC) which supplies the driver.

Power Supply Wiring Example: LECSB, LECSC, LECSS
LECSB1- \square
LECSC1- \square
LECSS1- \square

LECSB2- \square
LECSC2- \square
LECSS2- \square
For single phase 200 VAC

For three phase 200 VAC

Note) For single phase 200 to 230 VAC, power supply should be connected to L_{1} and L_{2} terminals, with nothing connected to L_{3}.
Main Circuit Power Supply Connector: CNP1 * Accessory

Terminal name	Function	Details	
L1	Main circuit power supply	Connect the main circuit power supply. LECSB1/LECSC1/LECSS1: Single phase 100 to 120 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2 LECSB2/LECSC2/LECSS2: Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2 Three phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1, L2, L3	
L2			
L3			
N	Do not connect.		
P1	Connect between P_{1} and P_{2}. (Connected at time of shipping.)		
P2			

Control Circuit Power Supply Connector: CNP2

* Accessory

Terminal name	Function	Details		
P	Regeneration			
option				Connect between P and D. (Connected at time of shipping.)
:---				
* If regeneration option is required for "Model Selection", connect to this				
terminal.				

Motor Connector: CNP3 * Accessory

Terminal name	Function	
U	Servo motor power (U)	
V	Servo motor power (V)	Connect to motor cable (U, V, W)
W	Servo motor power (W)	

This wiring example shows connection with a PLC (FX3U- $\square \square M T / E S$) manufactured by Mitsubishi Electric as when used in position control mode. Refer to the LECSA operation manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver circuit power supply connector (CNP1)'s protective earth (PE) terminal to the control panel's protective earth (PE).
Note 2) For interface use, supply 24 VDC $\pm 10 \% 200 \mathrm{~mA}$ using an external source. 200 mA is the value when all I/O command signals are used and reducing the number of inputs/outputs can decrease current capacity. Refer to "Operation Manual" for required current for interface.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program. Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with an open collector method. When a positioning unit loaded with a differential line driver method is used, it is 10 m or less.

Control Signal Wiring Example: LECSB

This wiring example shows connection with a positioning unit (QD75D) manufactured by Mitsubishi Electric as when used in position control mode. Refer to the LECSB operation manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver's protective earth (PE) terminal to the control panel's protective earth (PE).
Note 2) For interface use, supply $24 \mathrm{VDC} \pm 10 \% 300 \mathrm{~mA}$ using an external source.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program. Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with a differential line driver method. For open collector method, it is 2 m or less.

Forced stop
Proximity dog
Forward rotation stroke end Reverse rotation stroke end

Note 1) For preventing electric shock, be sure to connect the driver's protective earth (PE) terminal (marked O) to the control panel's protective earth (PE). Note 2) For interface use, supply $24 \mathrm{VDC} \pm 10 \% 150 \mathrm{~mA}$ using an external source.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.

Note 6) Connections from Axis 2 onward are omitted.
Note 7) Up to 16 axes can be set.
Note 8) Be sure to place a cap on unused CN1A/CN1B.

Options

Motor cable, Lock cable, Encoder cable (LECS \square common)

* LE-CSM-S $\square \square$ is MR-PWS1CBL \square M-A \square-L manufactured by Mitsubishi Electric. LE-CSB-S $\square \square$ is MR-BKS1CBL \square M-A $\square-L$ manufactured by Mitsubishi Electric. LE-CSE-S $\square \square$ is MR-J3ENCBL \square M-A \square-L manufactured by Mitsubishi Electric. LE-CSM-R $\square \square$ is MR-PWS1CBL \square M-A \square-H manufactured by Mitsubishi Electric. LE-CSB-R $\square \square$ is MR-BKS1CBL \square M-A \square-H manufactured by Mitsubishi Electric. LE-CSE-R $\square \square$ is MR-J3ENCBL \square M-A \square-H manufactured by Mitsubishi Electric.

I/O connector

	LE - CSN \mathbf{A}
Driver typed	

* LE-CSNA: 10126-3000EL (connector)/10326-3210-0000 (shell kit) manufactured by 3 M or equivalent item.
LE-CSNB: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by 3 M or equivalent item.
LE-CSNS: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by 3 M or equivalent item.

Regeneration option (LECS \square common)

* Confirm regeneration option to be used in "Model Selection".

Dimensions [mm]

Model	LA	LB	LC	LD
LEC-MR-RB-032	30	119	99	1.6
LEC-MR-RB-12	40	169	149	2

* MR-RB- \square manufactured by Mitsubishi Electric.

SSCNET III optical cable

LE-CSM- $\square \square$: Motor cable

LE-CSB- $\square \square$: Lock cable

LE-CSE- $\square \square$: Encoder cable

LE-CSNA
LE-CSNB
LE-CSNS

Series LECS

Options

LECSA

包田路
USB cable

Setup software （MR Configurator ${ }^{T M}$ ）

Setup software（MR Configurator ${ }^{\text {TM }}$ ）（LECSA，LECSB，LECSC，LECSS common）

＊MRZJW3－SETUP221 manufactured by Mitsubishi Electric．
Refer to Mitsubishi Electric＇s website for operating environment and version update information．
MR Configurator ${ }^{\text {TM }}$ is a registered trademark or trademark of Mitsubishi Electric
Adjustment，motor display，diagnostics，parameter read／write，and test operation can be performed upon a PC． Compatible PC
When using setup software（MR Configurator ${ }^{\text {TM }}$ ），use an IBM PC／AT compatible PC that meets the following operating conditions．

Hardware Requirements

Equipment		Setup software（MR Configurator ${ }^{\text {TM }}$ ） LEC－MR－SETUP221
Note 1）Note 2）Note 3） PC	OS	Windows ${ }^{\circledR} 98$ ，Windows ${ }^{\circledR}$ Me，Windows ${ }^{\circledR} 2000$ Professional， Windows ${ }^{\circledR}$ XP Professional／Home Edition， Windows Vista ${ }^{\circledR}$ Home Basic／Home Premium／Business／Ultimate／Enterprise Windows ${ }^{\circledR 7}$ Starter／Home Premium／Professional／Ultimate／Enterprise
	Available HD space	130 MB or more
	Communication interface	Use USB port
Display		Resolution 1024×768 or more Must be capable of high color（16－bit）display． The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable		LEC－MR－J3USB Note 4，5）

Note 1）Before using a PC for setting LECSA point table method／program method or LECSC point table No．input，upgrade to version C5（Japanese version） ／version C4（English version）．Refer to Mitsubishi Electric＇s website for version upgrade information．
Note 2）Windows，Windows Vista，Windows 7 are registered trademarks of Microsoft Corporation in the United States and／or other countries．
Note 3）This software may not run correctly depending on the PC that you are using．
Note 4）Not compatible with 64－bit Windows ${ }^{\circledR}$ XP and 64 －bit Windows Vista ${ }^{\circledR}$ ．
Note 5）Order USB cable separately．

USB cable（3 m）

LEC－MR－J3USB

＊MR－J3USB manufactured by Mitsubishi Electric．
Cable for connecting PC and driver when using the setup software（MR Configurator ${ }^{\text {TM }}$ ）．
Do not use any cable other than this cable．

Battery（only for LECSB，LECSC or LECSS）
LEC－MR－J3BAT
＊MR－J3BAT manufactured by Mitsubishi Electric．
Battery for replacement．
Absolute position data is maintained by installing the battery to the driver．

Design/Selection

\triangle Warning

1. Use the specified voltage.

If the applied voltage is higher than the specified voltage, malfunction and damage to the controller may result. If the applied voltage is lower than the specified voltage, there is a possibility that the load cannot be moved due to internal voltage drop. Check the operating voltage prior to start. Also, confirm that the operating voltage does not drop below the specified voltage during operation.
2. Do not use the products outside the specifications.

Otherwise, fire, malfunction or damage to the driver/actuator can result. Check the specifications prior to use.
3. Install an emergency stop circuit.

Install an emergency stop outside the enclosure in easy reach to the operator so that the operator can stop the system operation immediately and intercept the power supply.
4. To prevent danger and damage due to a breakdown or malfunction of these products, which may occur at a certain probability, a backup system should be arranged in advance by using a multiple-layered structure or by making a fail-safe equipment design, etc.
5. If there is a risk of fire or personal injury due to abnormal heat generation, sparking, smoke generated by the product, etc., cut off the power supply from this product and the system immediately.

Handling

\triangle Warning

1. Never touch the inside of the driver and its peripheral devices.
Otherwise, electric shock or failure can result.
2. Do not operate or set up this equipment with wet hands. Otherwise, electric shock can result.
3. Do not use a product that is damaged or missing any components.
Electric shock, fire or injury can result.
4. Use only the specified combination between the electric actuator and driver.
Otherwise, it may cause damage to the driver or to the other equipment.
5. Be careful not to touch, get caught or hit by the workpiece while the actuator is moving.
An injury can result.
6. Do not connect the power supply or power up the product until it is confirmed that the workpiece can be moved safely within the area that can be reached by the workpiece.
Otherwise, the movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after the power has been disconnected, as it is very hot.
Otherwise, it may cause burns due to the high temperature.
8. Check the voltage using a tester at least 5 minutes after power-off when performing installation, wiring and maintenance.
Otherwise, electric shock, fire or injury can result.

Handling

\triangle Warning

9. Static electricity may cause a malfunction or damage the driver. Do not touch the driver while power is supplied to it.
Take sufficient safety measures to eliminate static electricity when it is necessary to touch the driver for maintenance.
10. Do not use the products in an area where they could be exposed to dust, metallic powder, machining chips or splashes of water, oil or chemicals.
Otherwise, a failure or malfunction can result.
11. Do not use the products in a magnetic field.

Otherwise, a malfunction or failure can result.
12. Do not use the products in an environment where flammable, explosive or corrosive gases, liquids or other substances are present.
Otherwise, fire, explosion or corrosion can result.
13. Avoid heat radiation from strong heat sources, such as direct sunlight or a hot furnace.
Otherwise, it will cause a failure to the driver or its peripheral devices.
14. Do not use the products in an environment with cyclic temperature changes.
Otherwise, it will cause a failure to the driver or its peripheral devices.
15. Do not use the products in an environment where surges are generated.
Devices (solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge around the product may lead to deterioration or damage to the internal circuits of the products. Avoid supplies of surge generation and crossed lines.
16. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
17. When a surge generating load such as a relay or solenoid valve is directly driven, use a product that incorporates a surge absorption element.

Mounting

\triangle Warning

1. Install the driver and its peripheral devices on fireproof material.
Direct installation on or near flammable material may cause fire.
2. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
3. The driver should be mounted on a vertical wall in a vertical direction.
Also, do not cover the driver's suction/exhaust ports.
4. Install the driver and its peripheral devices on a flat surface.
If the mounting surface is not flat or uneven, excessive force may be applied to the housing and other parts resulting in a malfunction.

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems. ISO 4413: Hydraulic fluid power - General rules relating to systems. IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety. etc.

© Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered.*2)
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided.
This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

Global Manufacturing，Distribution and Service Network

Worldwide Subsidiaries

North \＆South America	Asia／Oceania
U．S．A．SMC Corporation of America	［囲 SRI LANKA（Distributor）Electro－Serv（Pvt．）Ltd．
＊CANADA SMC Pneumatics（Canada）Ltd．	\square IRAN（Distributor）Abzarchian Co．Ltd．
－MEXICO SMC Corporation（México），S．A．de C．V．	U．A．E．（Distributor）Machinery People Trading Co．L．L．C．
－BRAZIL SMC Pneumãticos do Brasil Ltda．	KUWAIT（Distributor）Esco Kuwait Equip \＆Petroleum App．Est．
\square CHILE SMC Pneumatics（Chile）S．A．	\＃SAUDI ARABIA（Distributor）Assaggaff Trading Est．
COLOMBIA SMC Colombia Sucursal de SMC Chile S．A．	BAHRAIN（Distributor）
\square ARGENTINA SMC Argentina S．A．	Mohammed Jalal \＆Sons W．L．L．Technical \＆Automative Services
－BOLIVIA SMC Pneumatics Bolivia S．r．l．	SYRIA（Distributor）Miak Corporation
\square VENEZUELA SMC Neumatica Venezuela S．A．	JORDAN（Distributor）Atafawok Trading Est．
＊PERU（Distributor）IMPECO Automatización Industrial S．A．C．	Q BANGLADESH（Distributor）Chemie International
ECUADOR（Distributor）ASSISTECH CIA．LTDA．	怴：AUSTRALIA SMC Pneumatics（Australia）Pty．Ltd．
	厓男 NEW ZEALAND SMC Pneumatics（N．Z．）Ltd．
Asia／Oceania	\square JAPAN SMC Corporation
CHINA SMC（China）Co．，Ltd．	
CHINA SMC Pneumatics（Guangzhou）Ltd．	Europe／Africa
\％HONG KONG SMC Pneumatics（Hong Kong）Ltd．	\square GERMANY SMC Pneumatik GmbH
0 TAIWAN SMC Pneumatics（Taiwan）Co．，Ltd．	\dagger SWITZERLAND SMC Pneumatik AG
： $0:$ KOREA SMC Pneumatics Korea Co．，Ltd．	构辰 U．K．SMC Pneumatics（U．K．）Ltd．
\square SINGAPORE SMC Pneumatics（S．E．A．）Pte．Ltd．	\square FRANCE SMC Pneumatique SA
	S SPAIN／PORTUGAL SMC España S．A．
THAILAND SMC（Thailand）Ltd．	\square ITALY SMC Italia S．p．A．
\triangle PHILIPPINES Shoketsu SMC Corporation	\＃\％GREECE SMC HELLAS E．P．E
\square－INDIA SMC Pneumatics（India）Pvt．Ltd．	\square IRELAND SMC Pneumatics（Ireland）Ltd．
\％ISRAEL（Distributor）Baccara Geva A．C．S．Ltd．	NETHERLANDS（Associated company）SMC Pneumatics BV
INDONESIA（Distributor）PT．Sinar Mutiara Cemerlang	\square BELGIUM（Associated company）SMC Pneumatics N．V．／S．A．
\star VIETNAM（Distributor）Dy Dan Trading Co．，Ltd．	\square DENMARK SMC Pneumatik A／S
C PAKISTAN（Distributor）Jubilee Corporation	\square AUSTRIA SMC Pneumatik GmbH（Austria）

North \＆South America

ㄹ．S．A．SMC Corporation of America
© MEXICO SMC Corporation（México），S．A．de C．V．
BRAZIL SMC Pneumãticos do Brasil Ltda．
\square CHILE SMC Pneumatics（Chile）S．A．
COLOMBIA SMC Colombia Sucursal de SMC Chile S．A．
－BOLIVIA SMC Pneumatics
VENEZUELA SMC Neumatica Venezuela S．A．
\square ECUADOR（Distributor）ASSISTECH CIA．LTDA．

Asia／Oceania

SRI LANKA（Distributor）Electro－Serv（Pvt．）Ltd． U．A．E．（Distributor）Machinery People Trading Co．L．L．C． KUWAIT（Distributor）Esco Kuwait Equip \＆Petroleum App．Est． SAUDI ARABIA（Distributor）Assaggaff Trading Est． BAHRAIN（Distributor） Mohammed Jalal \＆Sons W．L．L．Technical \＆Automative Services
\therefore SYRIA（Distributor）Miak Corporation
ㄹ․ JORDAN（Distributor）Atafawok Trading Est．
－ NEW ZEALAND SMC Pneumatics（N．Z．）Ltd．

Europe／Africa

－

t SPAIN／PORTUGAL SMC España S．A
\square ITALY SMC Italia S．p．A．
GREECE SMC HELLAS E．P．E
NETHERLANDS（Associated company）SMC Pneumatics BV
BELGIUM（Associated company）SMC Pneumatics N．V．／S．A dENMARK SMC Pneumatik A／S
\square AUSTRIA SMC Pneumatik GmbH（Austria）

Europe／Africa

\square CZECH REPUBLIC SMC Industrial Automation CZ s．r．o． HUNGARY SMC Hungary Ipari Automatizáási Kft． POLAND SMC Industrial Automation Polska Sp．z o．o． SLOVAKIA SMC Priemyselná Automatizácia Spol s．r．o SLOVENIA SMC Industrijska Avtomatika d．o．o． BULGARIA SMC Industrial Automation Bulgaria EOOD Tell CROATIA SMC Industrijska Automatika d．o．o．
BOSNIA AND HERZEGOVINA（Distributor）A．M．Pneumatik d．o．o．
\＄SERBIA（Distributor）Best Pneumatics d．o．o． UKRAINE（Distributor）PNEUMOTEC Corp． FINLAND SMC Pneumatics Finland Oy NORWAY SMC Pneumatics Norway AS
파 SWEDEN SMC Pneumatics Sweden AB ESTONIA SMC Pneumatics Estonia Oü LATVIA SMC Pneumatics Latvia SIA
\square LITHUANIA（LIETUVA）UAB＂SMC Pneumatics＂
\square ROMANIA SMC Romania S．r．I．
\square RUSSIA SMC Pneumatik LLC．
KAZAKHSTAN SMC Kazakhstan，LLC．
C．TURKEY（Distributor）Entek Pnömatik Sanayi ve．Ticaret Şirketi

\square MOROCCO（Distributor）Soraflex

© TUNISIA（Distributor）Byms
EGYPT（Distributor）Saadani Trading \＆Industrial Services \square NIGERIA（Distributor）Faraday Engineering Company Ltd．
\geqslant SOUTH AFRICA（Distributor）Hyflo Southern Africa（Pty．）Ltd．

U．S．\＆Canadian Sales Offices

WEST
Austin
Dallas
Los Angeles
Phoenix
Portland
San Francisco
Vancouver
CENTRAL
Chicago
Cincinnati
Cleveland
Detroit
Indianapolis
Milwaukee
Minneapolis
St．Louis
Toronto
Windsor

EAST
Atlanta
Birmingham
Boston
Charlotte
Nashville
New Jersey
Richmond
Rochester
Tampa
Montreal

SMC Corporation of America
10100 SMC Blvd．，Noblesville，IN 46060 www．smcusa．com
SMC Pneumatics（Canada）Ltd．
www．smcpneumatics．ca
（800）SMC．SMC1（762－7621）
e－mail：sales＠smcusa．com
For International inquiries：www．smcworld．com

[^0]: * 1 Strokes shown in () are produced upon receipt of order. Strokes other than those shown above are produced as special order (1 mm increments).
 * 2 The belt drive actuator cannot be used for vertically applications.

[^1]: Note 1) For positioning type, setting needs to be changed to use with maximum set values.
 Setup software (MR Configurator) LEC-MR-SETUP221 is required.

[^2]: * When the stroke of the LEJB40 series exceeds 1000 mm , the work load is 10 kg .
 * The shaded area in the graph requires the regeneration option (LEC-MR-RB032).
 * The belt drive actuator cannot be used for vertical applications.

[^3]: * Battery included.

[^4]: *1 USB communication and RS422 communication cannot be performed at the same time.

