Electric Actuator

Low-profile/Flat Height 48 mm

Profile reduced by side mounting of motor

Compatible with sliding bearing and ball bushing bearing
Max. stroke: 1000 mm Transfer speed: 1000 mm/s

No interference with motor, even with large workpieces!

Belt drive
With belt cover

For checking the limit and intermediate signal.
Applicable to the D-M9 \square and D-M9 $\square \mathrm{W}$ (2-color indication)

* The auto switches should be ordered separately. Refer to pages 8 and 9 for details.

Controller type	Part no.
LECP6	LEC-CN5- \square
LECP1 (Programless type)	LEC-CK4- \square

Electric actuator/ Page 4
Guide rod slider

Offering 2 Types of Controller

Step data input type series LECP6

Simple Setting to Use Straight Away

OEasy Mode for Simple Setting

If you want to use it right away, select "Easy Mode."

Step Motor (Servo/24 VDC) LECP6

Programless type series LECP1

No Programming

Capable of setting up an electric actuator operation without using a PC or teaching box

2 Setting a stop position
Moving the actuator to a stop position using FORWARD and REVERSE buttons
(3) Registration

Registering the stop position using SET button

Step Motor (Servo/24 VDC) LECP1

Features 3

© Normal Mode for Detailed Setting

Select normal mode when detailed setting is required.

- Step data can be set in detail.

Signals and terminal status can be monitored.

- Parameters can be set.

JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

<When a PC is used>

 Controller setting software- Step data setting, parameter setting, monitor, teaching, etc., are indicated in different windows.

<When a TB (teaching box) is used>
- Multiple step data can be stored in the teaching box, and transferred to the controller.
- Continuous test operation by up to 5 step data.

Teaching box screen

- Each function (step data setting, test, monitor, etc.) can be selected from the main menu.

The actuator and controller are provided as a set. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Function		
Item	Step data input type LECP6	Programless type LECP1
Step data and parameter setting	- Input the numerical value from controller setting software (PC) - Input the numerical value from teaching box	- Select using controller operation buttons
Step data "position" setting	- Input the numerical value from controller setting software (PC) - Input the numerical value from teaching box - Direct teaching - JOG teaching	- Direct teaching -JOG teaching
Number of step data	64 points	14 points
Operation command (I/O signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [N^{*}] input only
Completion signal	[INP] output	[OUT** output

Setting Items

TB: Teaching box PC: Controller setting software

	Item	Details	Step data input type LECP6	Easy mode		Normal mode	Programless type LECP1
				TB	PC	TB, PC	
Step data setting (Excerpt)	Movement method	Selection of "absolute position" and "relative position"	Set at ABS/INC	\times	-	\bigcirc	Fixed value (ABS)
	Speed	Transfer speed	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	\bigcirc	\bigcirc	-	Select from 16-level
	Position	[Position]: Target position [Pushing]: Pushing start position	Set in units of 0.01 mm	-	-	-	Direct teaching JOG teaching
	Acceleration/Deceleration	Acceleration/deceleration during movement	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	-	-	-	Select from 16-level
	Pushing force	Rate of force during pushing operation	Set in units of 1\%	\bigcirc	-	\bigcirc	Select from 3-level (weak, medium, strong)
	Trigger LV	Target force during pushing operation	Set in units of 1\%	\times	\bigcirc	-	No setting required (same value as pushing force)
	Pushing speed	Speed during pushing operation	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	\times	-	-	Fixed value
	Positioning force	Force during positioning operation	Set to 100\%	\times	-	-	Fixed value
	Area output	Conditions for area output signal to turn ON	Set in units of 0.01 mm	\times	-	-	-
	In position	[Position]: Width to the target position [Pushing]: How much it moves during pushing	Set to 1 mm or more (Units: 0.01 mm)	\times	-	-	Fixed value
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	Set in units of 0.01 mm	\times	\times	-	Fixed value
	Stroke (-)	- side limit of position	Set in units of 0.01 mm	\times	\times	-	Fixed value
	ORIG direction	Direction of the return to the original position can be set.	Compatible	\times	\times	-	Compatible
	ORIG speed	Speed when returning to the original position	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	\times	\times	\bigcirc	Fixed value
	ORIG ACC	Acceleration when returning to the original position	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	\times	\times	-	Fixed value
Test	JOG		Continuous operation at the set speed can be tested while the switch is being pressed.	-	-	-	Hold down MANUAL button (\odot) for uniform sending (speed is specified value)
	MOVE		Operation at the set distance and speed from the current position can be tested.	\times	-	-	Press MANUAL button (®®) once for sizing operation (speed, sizing amount are specified values)
	Return to ORIG		Compatible	\bigcirc	-	-	Compatible
	Test drive	Operation of the specified step data	Compatible	-	-	(Continuous operation)	Compatible
	Forced output	ON/OFF of the output terminal can be tested.	Compatible	\times	\times	\bigcirc	-
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	Compatible	-	-	-	-
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	Compatible	\times	\times	-	-
ALM	Status	Alarm currently being generated can be confirmed.	Compatible	\bigcirc	-	-	Compatible (display alarm group)
	ALM Log record	Alarm generated in the past can be confirmed.	Compatible	\times	\times	-	-
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	Compatible	\times	\times	-	-
Other	Language	Can be changed to Japanese or English.	Compatible	\bigcirc	-	-	-

Electric Actuator/Guide Rod Slider Series LEL

Controller LEC

LECP1

Rod Type Step Motor (Senor24 voci) Senvo Motor (e4 voci

Rod Type AC Seno Motor (H002000

Guide Rod Slider Step Motor (Senoro24 VOC)

CAT.NAS100-101

Front matter 2

Belt drive
Series LEL

Size	Stroke
25	100 to 1000

25100 to 1000

Basic type (R type)
Series LESH \square R

Size	Stroke
8	50,75
16	50,100
25	$50,100,150$

Symmetrical type (Ltype)
Series LESH \square L

Size	Stroke
$\mathbf{8}$	50,75
$\mathbf{1 6}$	50,100
$\mathbf{2 5}$	$50,100,150$

In-line motor type (D type) Series LESH \square D

Size	Stroke
$\mathbf{8}$	50,75
$\mathbf{1 6}$	50,100
25	$50,100,150$

CAT.NAS100-92

Rod type
Series LEPY

Slide table type
Series LEPS

Size	Stroke
6	25,50
10	

Rotary Table Step Motor (Senole4 voc)

High precision type

Series LERH

Size	Rotation angle $\left({ }^{\circ}\right)$
10	$310,180,90$
30	$320,180,90$
50	

CAT.NAS100-77

Z type (2 fingers)

Series LEHZ

Size	Opening/closing stroke
10	4
16	6
20	10
25	14
32	32
40	

With dust cover	
Series LEHZJ	
Size	Opening/closing stroke
$\mathbf{1 0}$	4
$\mathbf{1 6}$	6
$\mathbf{2 0}$	10
$\mathbf{2 5}$	14

F type (2 fingers)
Series LEHF
Size
10

S type (3 fingers)
Series LEHS

Size	Opening/closing stroke
$\mathbf{1 0}$	4
20	6
32	8
40	12

Controller

Step data input type for step motor
Series LECP6

Control motor
Step motor
(Servo/24 VDC)

Programless type
Series LECP1

Driver

AC Servo Motor Driver Incremental type
Series LECSA

Control motor
AC servo motor
(100/200 VAC)

AC Servo Motor Driver
Absolute type
Series LECSB

Electric Actuator/Guide Rod Slider Series LEL

Model Selection Page 1
How to Order Page 4
Specifications Page 5
Construction Page 6
Dimensions Page 7
Auto Switch Page 8
Specific Product Precautions Page 10
Step Motor (Servo/24 vDC) Controller
Step Data Input Type/Series LECP6 Page 13
Controller Setting Kit/LEC-W1 Page 21
Teaching Box/LEC-T1 Page 22
Programless Controller/Series LECP1 Page 24

\qquad

Series LEL Model Selection

Selection Procedure

-

Step 1
Check the work load - speed.

Step 2
Check the cycle time.
Step

Check the allowable moment.

Selection Example

Operating conditions

Step 1 Check the work load-speed. <Speed-Work load graph> (Pages 2 and 3)
Select the target model based on the workpiece mass and speed with reference to the (Speed-Work load graph).
Selection example) The LEL25LT-500 is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:
T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1:

Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$

- T2:

Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$

- T4:

Settling time varies depending on the conditions such as motor types, load and in positioning of the step data. Therefore, please calculate the settling time with reference to the following value.
T4 = 0.3 [s]
Step 3 Check the guide moment.

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}$
$=\frac{500-0.5 \cdot 300 \cdot(0.1+0.1)}{300}$

$$
=1.57[\mathrm{~s}]
$$

$\mathrm{T} 4=0.3$ [s]

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+1.57+0.1+0.3 \\
& =2.07[\mathrm{~s}]
\end{aligned}
$$

<Speed-Work load graph> (LEL25LStep motor)

L : Stroke [mm]
... (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$
... (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until in position is completed

Based on the above calculation result, the LEL25LT-500 is selected.

Series LEL

Speed-Work Load Graph (Guide)

* These graphs show the allowable value for the actuator alone

For applications where an exterior guide is mounted, please contact SMC

LEL25L

* Amount of displacement of the table when the load center of gravity is located at the table center in the middle of the stroke.

Load center of gravity located at the center of the table

Table Displacement (Reference Value)

Load center of gravity located at a position offset when $L=25 \mathrm{~mm}$

Electric Actuator／Guide Rod Slider Belt Drive slep Noorsemezvec

 How to Order

 How to Order}

2）Bearing type
\mathbf{M}
L
Sliding bearing

（3）Equivalent lead T 48 mm
4 Stroke

100	100 mm
to	to
1000	1000 mm

＊Refer to the applicable stroke table．
5 Motor option

Nil	Without option
B	With lock
C	With motor cover＊

＊When［With lock］is selected， ［With motor cover］cannot be
selected．

Nil	Without controller	
6 N	LECP6 （Step data input type）	NPN
6P		PNP
1N	LECP1 （Programless type）	NPN
1P		PNP

＊For details about controllers and compatible motors， For details about controllers and compatib
refer to the compatible controllers below．
\qquad
9 I／O cable length［m］

Nil	Without cable
1	1.5^{*}
3	3^{*}
5	5^{*}

＊When＂Without controller＂is selected for controller types，I／O cable length cannot be selected．
11 Made to Order

Nil	Standard product
X5	With magnet／switch rail

（10）Controller mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting ${ }^{* 1}$

＊ 1 Only available for the controller types＂ 6 N ＂and＂ 6 P ＂
＊ 2 DIN rail is not included．Order it separately．

6 Actuator cable type＊

Nil	Without cable
S	Standard cable
R	Robotic cable（Flexible cable）

＊The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．
7 Actuator cable length［m］

Nil	Without cable	$\mathbf{8}$	8^{*}
$\mathbf{1}$	1.5	A	10^{*}
$\mathbf{3}$	3	B	15^{*}
$\mathbf{5}$	5	C	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 2）on page 5.
（

Specifications

Step Motor (Servo/24 VDC)

Note 1) Strokes shown in () are produced upon receipt of order.
Note 2) Speed is changed by the work load. Check "Speed-Work Load Graph (Guide)" on page 3. The work load is changed by the stroke and work load mounting condition.
Check "Dynamic Allowable Moment" graph on page 2. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both the stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz , when the actuator was tested in both stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.)
Note 4) Allowable external resistance is the allowable resistance when flexible moving tube or similar is used.
Note 5) Power consumption (including the controller) is for when the actuator is operating.
Note 6) Standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
Note 7) Momentary max. power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 8) With lock only
Note 9) For an actuator with lock, add the power consumption for the lock.

Actuator Product Weight

Stroke [mm]		(100)	(200)	300	400	500	600	(700)	(800)	(900)	(1000)
Product weight [lb]	LEL25M	4.7	5.4	6.2	7.0	7.8	8.5	9.3	10.1	10.8	11.6
	LEL25L	5.2	6.0	6.8	7.5	8.3	9.1	9.9	10.6	11.4	12.2
Additional weight with lock [lb]		0.57									
Additional weight with cover [lb]		0.088									

Electric Actuator/Guide Rod Slider Series $L E L$

Construction

Motor option:
With motor cover

A-A (LEL25MT- \square)

Motor option: With lock

Component Parts

No.	Description	Material	Note
1	Table	Aluminum alloy	Anodized
2	Motor end plate	Aluminum alloy	Anodized
3	End plate	Aluminum alloy	Anodized
4	Motor mount	Aluminum die-cast	Painting
5	Pulley holder	Aluminum alloy	
6	Belt cover	Aluminum alloy	Anodized
7	Guide rod	Carbon steel	Hard chrome anodized
8	Belt holder A	Carbon steel	Chromating
9	Pulley shaft	Stainless steel	
10	Spacer	Aluminum alloy	
11	Belt holder B	Aluminum alloy	
12	Tension plate	Aluminum alloy	Anodized
13	Motor cover	Synthetic resin	"With motor cover" only
14	Grommet	Synthetic resin	"With motor cover" only
15	Motor pulley	Aluminum alloy	Anodized
16	End pulley	Aluminum alloy	Anodized
17	Motor	-	
18	Belt	-	
19	Bushing	-	
19	Ball bushing bearing	-	
20	Bearing	-	
21	Bearing	-	
22	Hexagon bolt	Carbon steel	Chromating

Series LEL

Dimensions

LEL25 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{T}$

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.

Model	L	L*	A	B	C	D	E
LEL25MT-100 $\square-\square \square \square \square$	272.5	280	210	106	63	3	64
LEL25MT-200 $\square-\square \square \square \square \square$	372.5	380	310	206			
LEL25MT-300 $\square-\square \square \square \square \square$	472.5	480	410	306			
LEL25MT-400 $\square-\square \square \square \square \square$	572.5	580	510	406			
LEL25MT-500 $\square-\square \square \square \square \square$	672.5	680	610	506			
LEL25MT-600 $\square-\square \square \square \square \square$	772.5	780	710	606			
LEL25MT-700 $\square-\square \square \square \square \square$	872.5	880	810	706			
LEL25MT-800 $\square-\square \square \square \square \square$	972.5	980	910	806			
LEL25MT-900 $\square-\square \square \square \square \square$	1072.5	1080	1010	906			
LEL25MT-1000 $\square-\square \square \square \square \square$	1172.5	1180	1110	1006			
LEL25LT-100 $\square-\square \square \square \square \square$	292.5	300	230	108	73	4	82
LEL25LT-200 $\square-\square \square \square \square \square$	392.5	400	330	208			
LEL25LT-300 \square - $\square \square \square \square \square$	492.5	500	430	308			
LEL25LT-400 $\square-\square \square \square \square \square$	592.5	600	530	408			
LEL25LT-500 $\square-\square \square \square \square \square$	692.5	700	630	508			
LEL25LT-600 \square - $\square \square \square \square \square$	792.5	800	730	608			
LEL25LT-700 $\square-\square \square \square \square \square$	892.5	900	830	708			
LEL25LT-800 $\square-\square \square \square \square \square$	992.5	1000	930	808			
LEL25LT-900 \square - $\square \square \square \square \square$	1092.5	1100	1030	908			
LEL25LT-1000 $\square-\square \square \square \square \square$	1192.5	1200	1130	1008			

* With motor cover

Solid State Auto Switch/Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V)

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

D-M9P(V)

D-M9B(V)

Auto Switch Specifications

Refer to SMC website for details about products conforming to the international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at $10 \mathrm{~mA}(2 \mathrm{~V}$ or less at 40 mA$)$				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking					

- Lead wires - Oilproof flexible heavy-duty vinyl cord: ø2.7 x 3.2 ellipse, $0.15 \mathrm{~mm}^{2}, 2$ cores
(D-M9B(V)), 3 cores (D-M9N(V)/D-M9P(V))
Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.
Weight
[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
[mm]
D-M9 \square

D-M9 \square V

SMC

2-Color Indication Solid State Auto Switch/Direct Mounting Style D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the conventional model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Internal Circuit

D-M9PW(V)

D-M9BW(V)

Indicator light/Indication method

Auto Switch Specifications
products conforming to the ints about products conforming to the international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED lights up. Optimum operating range \qquad Green LED lights up.					
Standards	CE marking					

- Lead wires - Oilproof flexible heavy-duty vinyl cord: ø2.7 x 3.2 ellipse, $0.15 \mathrm{~mm}^{2}$, 2 cores ($\mathrm{D}-\mathrm{M} 9 \mathrm{BW}(\mathrm{V})$), 3 cores (D-M9NW(V), D-M9PW(V))
Note) Refer to Best Pneumatics No. 2 for solid state auto switch common specifications.

Weight

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length (m)	0.5	8	8	7
	1	14	14	13
	3	41	41	38
	5	68	68	63

How to Order

Dimensions
D-M9 $\square \mathbf{W}$

D-M9 \square WV

Series LEL
Electric Actuator/Guide Rod Slider
Specific Product Precautions 1
Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions. Please download it via our website, http://www.smcworld.com

Design

\triangle Caution

1. Do not apply a load in excess of the operating limit.

A product should be selected based on the maximum load and allowable moment. If the product is used outside of the operating limit, eccentric load applied to the guide will become excessive and have adverse effects such as creating play at the guide, degraded accuracy and shortened product life.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.
3. Because of the guide mechanism type, vibration that comes from an external source may be introduced into the workpiece during operation. Do not use this product in a location where vibration is not allowed.

Handling

1. Caution

1. Set the position determination width in the step data to at least 1.
Otherwise, completion signal of in position may not be output.
2. INP output signal
1) Positioning operation

When the product comes within the set range by step data [ln position], the INP output signal will be turned on.
Initial value: Set to [1] or higher.

Handling

\triangle Caution

3. Never hit at the stroke end other than returning to the original position.
The internal stopper can be broken.

4. The positioning force should be the initial value.

If the positioning force is set below the initial value, it may cause an alarm.
5. Actual speed of the product can be changed by load.

When selecting a product, check the catalog for the instructions regarding selection.
6. Do not apply a load, impact or resistance in addition to a transferred load during returning to the original position.
Otherwise, the original position can be displaced since it is based on detected motor torque.
7. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
It may cause a loss of parallelism in the mounting surfaces, looseness in the guide unit, an increase in sliding resistance or other problems.
8. When attaching a workpiece, do not apply strong impact or large moment.
If an external force over the allowable moment is applied, it may cause looseness in the guide unit, an increase in sliding resistance or other problems.
9. Keep the flatness of mounting surface 0.2 mm or less.

Insufficient flatness of a workpiece or base mounted on the body of the product can cause play at the guide and increased sliding resistance.
10. When mounting the product, keep the 40 mm or more for bending the cable.
11. Do not hit the table with the workpiece in the positioning operation and positioning range.
12. Hold by the end plates when moving the body. Do not hold the belt cover.

Series LEL Electric Actuator/Guide Rod Slider Specific Product Precautions 2
Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions. Please download it via our website, http://www.smcworld.com

Handling

\triangle Caution

13. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Workpiece fixed

Model	Bolt	Max. tightening torque $[\mathrm{lbf} \cdot \mathrm{ft}]$	$\mathbf{L}($ Max. screw-in depth) $[\mathrm{mm}]$
LEL25	$\mathrm{M} 5 \times 0.8$	0.67	8

To prevent the workpiece fixing bolts from touching the body, use bolts that are 0.5 mm or shorter than the maximum screw-in depth. If long bolts are used, they can touch the body and cause a malfunction, etc.
14. Do not operate by fixing the table and moving the actuator body.
15. Belt drive actuator cannot be used for vertically mounted applications.
16. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.
17. In the case of the belt driven actuator, vibration may occur during operation at speeds within the actuator specification, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.
\square

Maintenance

\triangle Warning

Maintenance frequency
Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months/1000 km/ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

* Select whichever comes sooner.

- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

Controller

Programless type
Page 24

Step Motor
(Servo/24 VDC)
Series LECP1

Controller (Step data input type) Step Motor (Servo/24 VDC) Series LECP6

<Check the following before use.>

(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	Specifications
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC $\pm 10 \%$ Current consumption: 3 A (Peak 5 A) Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)
Parallel output	13 outputs (Photo-coupler isolation)
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 5 or less Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range	32 to $104^{\circ} \mathrm{F}$ (0 to $40^{\circ} \mathrm{C}$) (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range	14 to $140^{\circ} \mathrm{F}$ (-10 to $60^{\circ} \mathrm{F}$) (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M Ω]	Between the housing (radiation fin) and SG terminal 50 (500 VDC)
Weight	5.3 oz (150 g) (Screw mounting) $6.0 \mathrm{oz}(170 \mathrm{~g})$ (DIN rail mounting)

[^0]
Controller (Step data input type)/Step Motor (Servo/24 vDC) Series LECP6

How to Mount

a) Screw mounting (LECP6 $\square \square-\square$) (Installation with two M4 screws)

b) DIN rail mounting (LECP6 $\square \square \mathrm{D}-\square$) (Installation with the DIN rail)

Hook the controller on the DIN rail and press the lever
of section \mathbf{A} in the arrow direction to lock it.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 15 for the mounting dimensions.

DIN rail mounting adapter

LEC-D0 (with 2 mounting screws)

[^1]
Dimensions

a) Screw mounting (LECP6 $\square \square-\square$)

b) DIN rail mounting (LECP6 $\square \square \mathrm{D}-\square$)

Controller (Step data input type)/Step Motor (Servo/24 vDC) Series LECP6

Wiring Example 1

Power Supply Connector: CN1 *Power supply plug is an accessory.
Power supply plug for LECP6
CN1 Power Supply Connector Terminal for LECP6 (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0V	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/BK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Output Signal

Name	Details
OUTO to OUT5	Outputs the step data no. during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to the original position
INP	Outputs when target position or target force is reached (Turns on when the positioning or pushing is completed.)
SVRE	Outputs when servo is on
*ESTOP Note)	Not output when EMG stop is instructed
*ALARM Note)	Not output when alarm is generated

Note) Signal of negative-logic circuit (N.C.)

Step Data Setting

Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position. The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Positioning)		Need to be set. Need to be adjusted as required. -: Setting is not required.
Necessity	Item	Details
()	Movement method	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
()	Speed	Transfer speed to the target position
()	Position	Target position
(0)	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
(Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0. (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Positioning force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

Signal Timing

Return to Origin

"*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

If the actuator is within the "in position" range of the step
data, INP will be turned ON, but if not, it will remain OFF.

* "OUT" is output when "DRIVE" is changed from ON to OFF.
(When power supply is applied, "DRIVE" or "RESET" is turned ON or
"*ESTOP" is turned OFF, all of the "OUT" outputs are turned OFF.)

* When the actuator is in the positioning range in the pushing operation, it does not stop even if HOLD signal is input.

Series LECP6

Options: Actuator Cable
[Robotic cable, standard cable for step motor (servo/24 VDC)]

LE-CP- ${ }_{5}^{\frac{1}{3}}$ /Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{A}^{8} \mathrm{~B}$ /Cable length: $\mathbf{8 \mathrm { m } , 1 0 \mathrm { m } , 1 5 \mathrm { m } , \mathbf { 2 0 } \mathrm { m }}$ (* Produced upon receipt of order)

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
		Shield	Cable color	Connector D terminal no.
Vcc	B-4	$\bigcirc \bigcirc$	Brown	12
GND	A-4	1	Black	13
$\overline{\mathrm{A}}$	B-5	$1 \times$ -	Red	7
A	A-5		Black	6
$\overline{\mathrm{B}}$	B-6	+	Orange	9
B	A-6	!	Black	8
			-	3

[Robotic cable, standard cable with lock and sensor for step motor (servo/24 VDC)]

* Produced upon receipt of order (Robotic cable only)

With lock and sensor

Cable type

Nil	Robotic cable (Flexible cable)
S	Standard cable

LE-CP- ${ }_{5}^{1}$ /Cable length: $1.5 \mathrm{~m}, \mathbf{3} \mathbf{~ m , 5 m}$

LE-CP- ${ }_{\mathrm{A}}^{8} \mathrm{C}$ /Cable length: $\mathbf{8 \mathrm { m } , 1 0 \mathrm { m } , 1 5 \mathrm { m } , \mathbf { 2 0 } \mathrm { m }}$ (* Produced upon receipt of order)

Options: I/O Cable

I/O cable

Connector pin no.	Insulation color	Dot mark	$\begin{aligned} & \text { Dot } \\ & \text { color } \end{aligned}$
A1	Light brown	\square	Black
A2	Light brown	\square	Red
A3	Yellow	\square	Black
A4	Yellow	\square	Red
A5	Light green	\square	Black
A6	Light green	\square	Red
A7	Gray	\square	Black
A8	Gray	\square	Red
A9	White	\square	Black
A10	White	\square	Red
A11	Light brown	$\square \square$	Black
A12	Light brown	$\square \square$	Red
A13	Yellow	$\square \square$	Black

Connector pin no.	Insulation color	Dot mark	$\begin{aligned} & \text { Dot } \\ & \text { color } \end{aligned}$
B1	Yellow	■ ■	Red
B2	Light green	■ ■	Black
B3	Light green	■ ■	Red
B4	Gray	■ ■	Black
B5	Gray	■ ■	Red
B6	White	$\square \square$	Black
B7	White	■ ■	Red
B8	Light brown	■■■	Black
B9	Light brown	■■■	Red
B10	Yellow	■■■	Black
B11	Yellow	■■■	Red
B12	Light green	■■■	Black
B13	Light green	■■■	Red
-	Shield		

Series LEC

Controller Setting Kit/LEC-W1

How to Order

Contents

(1) Controller setting software (CD-ROM)
(2) Communication cable
(3) USB cable
(Cable between the PC and the conversion unit)

Hardware Requirements

PC/AT compatible machine installed with Windows XP and equipped with USB1.1 or USB2.0 ports.

* Windows ${ }^{\circledR}$ and Windows $X P^{\circledR}$ are registered trademarks of Microsoft Corporation.

Screen Example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Series LEC Teaching Box/LEC-T1

How to Order

Specifications

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range	41 to $122^{\circ} \mathrm{F}\left(5\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Operating humidity range [\%RH]	90 or less (No condensation)
Weight	$12.3 \mathrm{oz}(350 \mathrm{~g})$ (Except cable)

Note) CE-compliance
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis - Setting of easy/normal mode - Setting of step data and selection of items from easy mode monitor

Menu Operations Flowchart

Series LEC

Normal Mode

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

How to Order

The controller is sold as single unit after the compatible actuator is set.
 Confirm that the combination of the controller and the actuator is correct.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	Specifications
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC $\pm 10 \%$ Max. current consumption: 3 A (Peak 5 A) Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7-segment display (red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range	32 to $104^{\circ} \mathrm{F}$ (0 to $40^{\circ} \mathrm{C}$) (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range	14 to $140^{\circ} \mathrm{F}$ (-10 to $60^{\circ} \mathrm{C}$) (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M ${ }^{\text {] }}$	Between the housing (radiation fin) and SG terminal 50 (500 VDC)
Weight	4.6 oz (130 g)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

	8	8	E	8	5	5
Decimal display	10	11	12	13	14	15
Hexadecimal display	A	b	c	d	E	F

Note 4) Applicable to non-magnetizing lock.

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON: Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm: Red turns on Parameter setting: Red flashes
(3)	-	Cover	Change and protection of the mode SW (Close the cover after changing SW)
(4)	-	FG	Frame ground (Tighten the bolt with the nut when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	MAN	Manual forward button	Perform forward jog and inching.
(10)	MA	Manual reverse button	Perform reverse jog and inching.
(11)		Forward speed switch	16 forward speeds are available.
(12)		Reverse speed switch	16 reverse speeds are available.
(13)	ACCEL	Forward acceleration switch	16 forward acceleration steps are available.
(14)	ACCEL	Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)

 (Installation with two M4 screws)
2. Grounding

Tighten the bolt with the nut when mounting the ground wire as shown below.

© Caution

- M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.
- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).

Size

End width L: 2.0 to 2.4 [mm] End thickness W: 0.5 to $0.6[\mathrm{~mm}]$

Programless Controller Series LECP1

Wiring Example 1

Power Supply Connector: CN1

* When you connect a CN1 power supply connector, please use the power supply cable (LEC-CK1-1). * Power supply cable (LEC-CK1-1) is an accessory.

CN1 Power Supply Connector Terminal for LECP1

Power supply cable for LECP1 (LEC-CK1-1)

Terminal name	Cable color	Function	Details
0V	Blue	Common supply (-$)$	M24V terminal/C24V terminal/BK RLS terminal are common (-).
M24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Wiring Example 2

Parallel I/O Connector: CN4

 * When you connect a PLC, etc., to the CN4 parallel I/O connector, please use the I/O cable (LEC-CK4- \square). * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).
NPN

Input Signal

Name	Details		
COM +	Connects the power supply 24 V for input/output signal		
COM-	Connects the power supply 0 V for input/output signal •Instruction to drive (input as a combination of IN0 to IN3) \bullet • Instruction to return to the origin position (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)		
INO to IN3	IN3 IN2 IN1 IN0 OFF ON OFF ON		

RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)

Input Signal [INO - IN3] Position Number Chart

PNP

Output Signal

Name	Details		
OUT0 to OUT3	Turns on when the positioning or pushing is completed. (Output is instructed in the combination of OUT0 to 3.) Example - (operation complete for position no. 3)		
\qquadOUT3 OUT2 OUT1 OFF OFF OUT0 BUSY Outputs when the actuator is moving *ALARM Note) Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUT0
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	-	\bigcirc
3	\bigcirc	\bigcirc	-	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	-	\bigcirc	-
6	\bigcirc	-	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	-	\bigcirc	\bigcirc	\bigcirc
9	-	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	-	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	-	\bigcirc	\bigcirc	-
14 (E)	-	\bigcirc	\bigcirc	\bigcirc
Retun to origin	-	\bigcirc	\bigcirc	\bigcirc

Signal Timing
（1）Return to Origin

＂＊ALARM＂is expressed as negative－logic circuit．

（2）Positioning Operation

（3）Cut－off Stop（Reset Stop）

（4）Stop by the STOP Signal

（5）Alarm Reset

[^2]

Series LECP1

Options: Actuator Cable

[Robotic cable, standard cable for step motor (servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (servo/24 VDC)]

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1} / C a b l e ~ l e n g t h: ~ 1.5 ~ m, ~ 3 ~ m, ~ 5 ~ m ~$

LE-CP- ${ }_{A C}^{8 B}$ /Cable length: $\mathbf{8 m , 1 0 ~ m , 1 5 ~ m , ~} 20 \mathrm{~m}$

Signal	Connector A terminal no.		Cable color	Connector C terminal no.	
A	B-1		Brown	2	
$\overline{\mathrm{A}}$	A-1		Red	1	
B	B-2		Orange	6	
\bar{B}	A-2		Yellow	5	
COM-A/COM	B-3		Green	3	
COM-B/-	A-3	Shield	Blue	4	
			Cable color	Connector D terminal no.	
		Brown	12		
GND	A-4		1	Black	13
$\overline{\mathrm{A}}$	B-5	1	Red	7	
A	A-5		Black	6	
$\overline{\mathrm{B}}$	B-6	1	Orange	9	
B	A-6	$\xrightarrow[1]{\prime}$	Black	8	
Signal	Connector B terminal no.		-	3	
			-		
Lock (+)	B-1		Red	4	
Lock (-)	A-1		Black	5	
Sensor (+) Note)	B-3		Brown	1	
Sensor (-) Note)	A-3	,	Blue	2	

Options

[Power supply cable]

[I/O cable]

Terminal no.	Insulation color	Dot mark	Dot color	Function
1	Light brown	\square	Black	COM +
2	Light brown	\square	Red	COM -
3	Yellow	\square	Black	OUT0
4	Yellow	\square	Red	OUT1
5	Light green	\square	Black	OUT2
6	Light green	\square	Red	OUT3
7	Gray	\square	Black	BUSY
8	Gray	\square	Red	ALARM
9	White	\square	Black	INO
10	White	\square	Red	IN1
11	Light brown	■ ■	Black	IN2
12	Light brown	$\square \square$	Red	IN3
13	Yellow	■ ■	Black	RESET
14	Yellow	■ ■	Red	STOP

* Conductor size: AWG26
* Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.
A Caution:
Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.
Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.
Danger indicates a hazard with a high level of risk
Danger: which, if not avoided, will result in death or serious injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems. ISO 4413: Hydraulic fluid power - General rules relating to systems. IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety. etc.

Global Manufacturing，Distribution and Service Network

Worldwide Subsidiaries

	Asia／Oceania
	［0］SRI LANKA（Distributor）Electro－Serv（Pvt．）Ltd．
	\square IRAN（Distributor）Abzarchian Co．Ltd．
	U．A．E．（Distributor）Machinery People Trading Co．L．L．C．
	\square KUWAIT（Distributor）Esco Kuwait Equip \＆Petroleum App．Est．
	SAUDI ARABIA（Distributor）Assaggaff Trading Est．
	BAHRAIN（Distributor）
	Mohammed Jalal \＆Sons W．L．L．Technical \＆Automative Services
	SYRIA（Distributor）Miak Corporation
	F JORDAN（Distributor）Atafawok Trading Est．
	BANGLADESH（Distributor）Chemie International
	㞔：${ }^{\text {P }}$ AUSTRALIA SMC Pneumatics（Australia）Pty．Ltd．
	\square JAPAN SMC Corporation
	Europe／Africa
	GERMANY SMC Pneumatik GmbH
	＋SWITZERLAND SMC Pneumatik AG
	E⿴囗才⿺⿻⿻一㇂㇒丶⿱一口心夊 U．K．SMC Pneumatics（U．K．）Ltd．
	\square FRANCE SMC Pneumatique SA
	SPAIN／PORTUGAL SMC España S．A．
	\square ITALY SMC Italia S．p．A．
	\％e Greece SmC hellas E．P．E
	\square IRELAND SMC Pneumatics（Ireland）Ltd．
	NETHERLANDS（Associated company）SMC Pneumatics BV
	\square BELGIUM（Associated company）SMC Pneumatics N．V．／S．A．
	F｜DENMARK SMC Pneumatik A／S
	AUSTRIA SMC Pneumatik GmbH（Austria）

Europe／Africa

\square CZECH REPUBLIC SMC Industrial Automation CZ s．r．o． HUNGARY SMC Hungary Ipari Automatizálási Kft． POLAND SMC Industrial Automation Polska Sp．z o．o． SLOVAKIA SMC Priemyselná Automatizácia Spol s．r．o． SLOVENIA SMC Industrijska Avtomatika d．o．o． BULGARIA SMC Industrial Automation Bulgaria EOOD CROATIA SMC Industrijska Automatika d．o．o． I BOSNIA AND HERZEGOVINA（Distributor）A．M．Pneumatik d．o．o． SERBIA（Distributor）Best Pneumatics d．o．o． UKRAINE（Distributor）PNEUMOTEC Corp． FINLAND SMC Pneumatics Finland Oy NORWAY SMC Pneumatics Norway AS
SWEDEN SMC Pneumatics Sweden AB ESTONIA SMC Pneumatics Estonia Oü
LATVIA SMC Pneumatics Latvia SIA LITHUANIA（LIETUVA）UAB＂SMC Pneumatics＂ D ROMANIA SMC Romania S．r．I．
RUSSIA SMC Pneumatik LLC．
\square KAZAKHSTAN SMC Kazakhstan，LLC．
C• TURKEY（Distributor）Entek Pnömatik Sanayi ve．Ticaret Şirketi \square MOROCCO（Distributor）Soraflex
© TUNISIA（Distributor）Byms
EGYPT（Distributor）Saadani Trading \＆Industrial Services
\square NIGERIA（Distributor）Faraday Engineering Company Ltd．
SOUTH AFRICA（Distributor）Hyflo Southern Africa（Pty．）Ltd．

U．S．\＆Canadian Sales Offices

WEST
Austin
Dallas
Los Angeles
Phoenix
Portland
San Francisco
Vancouver
CENTRAL
Chicago
Cincinnati
Cleveland
Detroit
Indianapolis
Milwaukee
Minneapolis
St．Louis
Toronto
Windsor

EAST
Atlanta
Birmingham
Boston
Charlotte
Nashville
New Jersey
Richmond
Rochester
Tampa
Montreal

SMC Corporation of America
10100 SMC Blvd．，Noblesville，IN 46060 www．smcusa．com
SMC Pneumatics（Canada）Ltd．
www．smepneumatics．ca
（800）SMC．SMC1（762－7621）
e－mail：sales＠smcusa．com
For International inquiries：www．smcworld．com

[^0]: Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply.
 Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details. Note 3) Applicable to non-magnetizing lock.

[^1]: This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterwards.

[^2]: ＂＊ALARM＂is expressed as negative－logic circuit．

