Escapements

Series MIWIMIS

ø8, ø12, ø20, ø25, ø32

Ideal for separating and feeding individual parts from vibratory feeders, magazines, and hoppers.

Series variations

Ideal for separating and from vibratory feeders.

Three variations of fingers
Flexibility in mounting the finger options

Finger options

Stroke adjuster (optional)

Optional stroke adjuster for precise adjustment of the retracted position of each piston rod.

For ø25 and ø32, lock mechanism for heavier load is available.
Mounting is possible from 2 directions.

Using through holes from top face	
Using tapped holes in the body from bottom face	

* Positioning pin holes allow for easy mounting.

Piping from three directions are possible (Two directions for MIS) Port position can be adjusted along with setting conditions by changing plug position.

feeding individual parts magazines, and hoppers.

MIW Double finger type

Single valve operation easi ly separates and feed each work piece.

MIS Single finger type

Operating speed and mounting position can be set according to the size of work piece and its operating condition.

Working principle

The cam locks Finger B.

Insertion
' When Finger A is extended to : Extension of Finger A rotates the reach the stroke end, air is supplied cam to unlock Finger B and lock finto retract Finger B.
ger A to allow retraction of Finger B.

Separation

Release

Model Selection

Selection procedure

Procedure 1 Confirmation of conditions

- The work piece moves horizontally on the conveyor.

Operation conditions
Operating pressure $\mathrm{P}(\mathrm{MPa})$
Work piece mass $m(\mathrm{Kg})$
Work piece quantity x (Oty.)
Point of application $\mathrm{L}(\mathrm{mm})$
Work piece transfer speed
V (m/min)
Coefficient of friction between the work piece and conveyor μ

- When the work piece drops vertically from a shooter, etc.

Procedure 2 Confirmation of impact

From the graph of operating range, obtain the point of intersection of the total mass of the work piece $x \cdot m$ (kg) indicated by the axis of ordinates and the transfer speed V ($\mathrm{m} / \mathrm{min}$) indicated by the axis of abscissas. Select a model so that the intersection will fall below the point of application L indicated by a line.

1. Calculation of work piece collision speed The collision speed V is calculated from the distance of work piece fall H .

Work piece collision speed $V=\sqrt{2 g H / 1000} \times 60(\mathrm{~m} / \mathrm{min})$
2. From the graph of operating range, obtain the intersection of the total mass of the work piece $\mathbf{x} \cdot \mathrm{m}(\mathrm{kg})$ indicated by the axis of ordinates and the collision speed V ($\mathrm{m} / \mathrm{min}$) obtained by calculation. Select a model so that the intersection will fall below the point of application L indicated by a line.

Procedure 3 Confirmation of allowable lateral load

1. Calculation of applied lateral load F

The lateral load F equals the coefficient between the work piece and the conveyor. Thus, from the total amount of the work piece and coefficient of friction,

$$
\mathbf{F}=\mu \cdot \mathbf{x} \cdot \mathbf{m} \cdot \mathbf{g}(\mathbf{N})
$$

2. From the graph of allowable lateral load, obtain the allowable lateral load F max from the intersection of the operating pressure and the point of application L indicated by the axis of abscissas. Select a model so that the value will be larger than the lateral load F applied in real operation.

Lateral load: $\mathbf{F} \leq$ Allowable lateral load: Fmax

1. Calculation of applied lateral load The lateral load F equals the total load of the work piece.

$$
\text { Thus, } F=x \cdot m \cdot g(N)
$$

Model Selection

Operating range

Procedure 1 Confirmation of conditions

- The work piece moves horizontally on the conveyor.

Operating conditions

Operating pressure Work piece mass Work piece quantity Point of application Work piece transfer speed Coefficient of friction between the work piece and conveyor $\mu=0.2$

- When the work piece drops vertically from a shooter, etc.

Operating conditions

Operating pressure	$P=0.4 \mathrm{MPa}$
Work piece mass	$\mathrm{m}=0.05 \mathrm{~kg}$
Work piece quantity	$\mathrm{x}=5$
Point of application	$\mathrm{L}=60 \mathrm{~mm}$
Distance of work piece drop	$\mathrm{H}=15 \mathrm{~mm}$
Gravitation acceleration	$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& P=0.4 \mathrm{MPa} \\
& \mathrm{~m}=0.05 \mathrm{~kg} \\
& \mathrm{X}=5 \\
& \mathrm{~L}=60 \mathrm{~mm} \\
& \mathrm{H}=15 \mathrm{~mm} \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
=32.5(\mathrm{~m} / \mathrm{min})
$$

- Obtain the intersection of the collision speed V collision speed V
and the total mass of the work piece m . Confirm that the value is within the operating range of the point of application $L=60 \mathrm{~mm}$.
- Obtain the total amount of the work piece.

Total mass $\mathrm{m}=5 \times 0.05(\mathrm{~kg})=0.25(\mathrm{~kg})$

- Obtain the collision speed of the work piece V .
$\mathrm{V}=\sqrt{2 \mathrm{gH} / 1000} \times 60$

$$
=\sqrt{2 \times 9.8 \times 15 / 1000} \times 60
$$

Procedure 3 Confirmation of allowable lateral load

1. Calculation of applied lateral load F
$\mathbf{F}=\mu \cdot \mathbf{N} \cdot \mathbf{m} \cdot \mathbf{g}(\mathbf{N})$ $=0.2 \times 10 \times 0.1 \times 9.8$ $=2.1(\mathrm{~N})$
2. Confirmation of allowable lateral load From the graph, the allowable lateral load at $L=50 \mathrm{~mm}$ and $P=0.4 \mathrm{MPa}$ is 18 N .
Because 2.1 N < 18 N, it is applicable.

Therefore select MIW (MIS) 12.

MIW12

MIS12

1. Calculation of applied lateral load The lateral load F equals the total load of the work piece. Thus,
$\mathrm{F}=5 \times 0.05 \times 9.8$

$$
\text { = } 2.5 \text { (N) }
$$

2. Confirmation of allowable lateral load In the same way, the lateral load at $L=50 \mathrm{~mm}$ and $\mathrm{P}=0.4 \mathrm{MPa}$ is 48 N from the graph. Because $2.5 \mathrm{~N}<48 \mathrm{~N}$, it is applicable.

Series MIW/MIS

 Model Selection 2
Model Selection

Operating range

The graph at right shows conditions of the work piece to be stopped; that is, the mass, transfer speed and the operating range of the point of application L.

Transfer speed \mathbf{V} m/min

MIW25
MIS25

Transfer speed V ($\mathrm{m} / \mathrm{min}$)

MIW12 MIS12

MIW32
MIS32

Allowable lateral load

MIW12 MIS12

RSO

RSG
RS \square
MII

MIW25

MIS25

MIW32
MIS32

Escapements Series MIW/MIS ø8, ø12, ø20, ø25, ø32

How to Order

Applicable auto switches/Refer to pages 1719 to 1827 for detailed specifications of auto switches.

Type	Special function	Electrical entry		Wiring (output)	Load voltage			Auto switch models		Lead wire length (m)				Pre-wired connector	Applicable load	
					DC		AC	Perpendicular	In-line	$\begin{array}{\|c\|} \hline 0.5 \\ \text { (Nil) } \\ \hline \end{array}$	$\begin{gathered} 1 \\ (M) \end{gathered}$	$\begin{gathered} \hline 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
\bigcirc		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC
\%	-			3-wire (PNP)				M9PV	M9P	-	\bigcirc	\bullet	\bigcirc	\bigcirc		
$\stackrel{\text { d }}{\text { ¢ }}$				2-wire		12 V		M9BV	M9B	-	-	-	\bigcirc	\bigcirc	-	
\%	Diagnostic indication (2-color display)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	-	\bullet	\bullet	\bigcirc	\bigcirc	IC circuit	
응				3-wire (PNP)				M9PWV	M9PW	-	-	-	\bigcirc	\bigcirc		
¢				2-wire		12 V		M9BWV	M9BW	-	-	-	\bigcirc	\bigcirc	-	

[^0][^1]Specifications

Series	MIW (Double finger)	
Fluid (Single finger)		
Operating pressure	Air	
Ambient temperature and fluid temperature	0.2 to 0.7 MPa	
Lubrication	-10 to $60^{\circ} \mathrm{C}$ (No freezing)	
Action	Non-lube	
Auto switch (optional) ${ }^{\text {Note) }}$	Double acting	
Stroke tolerance	Solid state auto switch (3-wire, 2-wire)	

Option

Finger options	Standard, Tapped on upper and lower faces, Tapped on all faces (5 surfaces including end surface)
Stroke adjuster (Rear end stroke only)	MI $\square \mathbf{8}$: Arrangement range 4 mm
	MI $\square \mathbf{1 2}$: Arrangement range 6 mm
	MI $\square \mathbf{2 0}$: Arrangement range 12 mm
	MI $\square \mathbf{2 5}$: Arrangement range 15 mm
	MI $\square \mathbf{3 2}$: Arrangement range 20 mm
Scraper	Can be mounted on standard products

Theoretical Output

									Unit: N
Bore size (mm)	Rod size (mm)	Operating direction	Piston area (mm^{2})	Operating pressure MPa					
				0.2	0.3	0.4	0.5	0.6	0.7
8	4	OUT	50	10	15	20	26	31	36
		IN	38	7	11	15	19	23	26
12	6	OUT	113	23	34	45	57	68	79
		IN	85	17	26	34	43	51	60
20	10	OUT	314	63	94	126	157	188	220
		IN	236	47	71	94	118	142	165
25	10	OUT	491	98	147	196	245	295	344
		IN	412	82	124	165	206	247	288
32	12	OUT	804	161	241	322	402	482	563
		IN	691	138	207	276	346	415	484

Standard Stroke

Double finger type/MIW
(mm)

Bore size	Stroke
$\mathbf{8}$	8 mm
12	12 mm
20	20 mm
25	25 mm
32	32 mm

* For MIW, same stroke as bore size

Single finger type/MIS
(mm)

Bore size	Stroke
$\mathbf{8}$	$10,20 \mathrm{~mm}$
12	$10,20,30 \mathrm{~mm}$
20	$10,20,30 \mathrm{~mm}$
25	$30,50 \mathrm{~mm}$
32	$30,50 \mathrm{~mm}$

Made to Order	Made to Order (For detailes, refer to page 2020.)
Symbol	Specifications
$-\mathbf{X 4}$	Heat resistant (-10 to $\left.100^{\circ} \mathrm{C}\right)$
$-\mathbf{X 5}$	Fluororubber seal
$-\mathrm{X63}$	Fluorine grease
$-\mathrm{X79}$	Grease for food

Mass

Model	Model	Stroke (mm)	Mass (g)	Increase by stroke adjuster (g)	Increase by scraper (g)
MIW	MIW8-8D	8	110	6	3
	MIW12-12D	12	240	10	5
	MIW20-20D	20	650	30	10
	MIW25-25D	25	1550	30	20
	MIW32-32D	32	2650	100	35
MIS	MIS8-10D	10	62	3	2
	MIS8-20D	20	80		
	MIS12-10D	10	130	5	3
	MIS12-20D	20	160		
	MIS12-30D	30	190		
	MIS20-10D	10	300	15	5
	MIS20-20D	20	355		
	MIS20-30D	30	410		
	MIS25-30D	30	800	15	10
	MIS25-50D	50	1000		
	MIS32-30D	30	1350	50	18
	MIS32-50D	50	1650		

SMC1423

D- \square

Individual

 $-\mathrm{X} \square$
Series MIW/MIS

Construction/Double Finger Type (MIW)
$\varnothing 8$

$\varnothing 12, \varnothing 20$

$\varnothing 25, \varnothing 32$

Scraper Stroke adjuster
(18)
(ø32 only)

Component parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Hard anodized
$\mathbf{2}$	Piston assembly		
$\mathbf{3}$	Finger	Carbon steel	HeattreatmentSpecial treatment
$\mathbf{4}$	Cover	Aluminium alloy	Hard anodized
$\mathbf{5}$	Cap (W)	Aluminium alloy	White anodized
$\mathbf{6}$	Cam	Stainless steel	Heat treatment (MIW8 to 20)
$\mathbf{7}$	Roller holder	Stainless steel	Heat treatment (MIW25, 32)
$\mathbf{8}$	Bumper	Urethane rubber	
$\mathbf{9}$	Head bumper	Urethane rubber	
$\mathbf{1 0}$	Needle roller	High carbon chromium bearing steel	(MIW8 to 20)

Option: adjuster

No.	Description	Material	Note
$\mathbf{1 9}$	Hexagon nut with flange	Carbon steel	Nickel plated
$\mathbf{2 0}$	Adjustment bolt	Carbon steel	Nickel plated
$\mathbf{2 1}$	Adjustment bumper	Urethane rubber	
$\mathbf{2 2}$	Adjustment cap	Aluminium alloy	White anodized
$\mathbf{2 3}$	Die thread		

Replacement parts

Description Model	Finger			Seal kit	Scraper assembly	Grease pack
	Standard	Tapped on upper and lower faces	Tapped on all faces			
MIW8-8D	MI-A0801-8	MI-A0802-8	MI-A0803-8	MIW8-PS	MIW-A0804	MH-G01 (contents quantity $30 \mathrm{~g})$
MIW12-12D	MI-A1201-12	MI-A1202-12	MI-A1203-12	MIW12-PS	MIW-A1204	
MIW20-20D	MI-A2001-20	MI-A2002-20	MI-A2003-20	MIW20-PS	MIW-A2004	
MIW25-25D	MI-A2501-25	MI-A2502-25	MI-A2503-25	MIW25-PS	MIW-A2504	
MIW32-32D	MI-A3201-32	MI-A3202-32	MI-A3203-32	MIW32-PS	MIW-A3204	
Main parts No.	(3) (1 pc.)			(14), (15), (16)	(24)	

ø25, ø32
Option

RSO
RSG

MII

Stroke adjuster

Component parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminium alloy	Hard anodized
$\mathbf{2}$	Piston assembly		
$\mathbf{3}$	Finger	Carbon steel	Heat treatmentSpecial treament
$\mathbf{4}$	Cover	Aluminium alloy	Hard anodized
$\mathbf{5}$	Cap (S)	Aluminium alloy	White anodized
$\mathbf{6}$	Bumper	Urethane rubber	
$\mathbf{7}$	Head bumper	Urethane rubber	
$\mathbf{8}$	Clip	Carbon steel	(MIS8)
$\mathbf{9}$	R shape retaining ring	Carbon steel	(MIS12 to 32)

Option: adjuster

No.	Description	Material	Note
15	Hexagon nut with flange	Carbon steel	Nickel plated
16	Adjustment bolt	Carbon steel	Nickel plated
17	Adjustment bumper	Urethane rubber	
18	Adjustment cap	Aluminium alloy	White anodized
19	Die thread		

No.	Description	Material	Note
10	Piston seal	NBR	
11	Rod seal	NBR	
12	Gasket	NBR	
13	Plug		$(\mathrm{MIS8} \cdots \mathrm{M}-3 \mathrm{P})$
			$(\mathrm{MIS12}$ to $25 \cdots \mathrm{M}-5 \mathrm{P})$
14	Hexagon socket taper plug		$(\mathrm{MIS32} \cdots \mathrm{Rc} 1 / 8)$

Option: scraper

No.	Description	Material	Note
$\mathbf{2 0}$	Scraper	Stainless steel + NBR	

Replacement parts

Model Description	Finger			Seal kit	Scraper assembly	Grease pack
	Standard	Tapped on upper and lower faces	Tapped on all faces			
MIS8-10D	MI-A0801-10	MI-A0802-10	MI-A0803-10	MIS8-PS	MIS-A0804	MH-G01 (contents quantity $30 \mathrm{~g})$
MIS8-20D	MI-A0801-20	MI-A0802-20	MI-A0803-20			
MIS12-10D	MI-A1201-10	MI-A1202-10	MI-A1203-10	MIS12-PS	MIS-A1204	
MIS12-20D	MI-A1201-20	MI-A1202-20	MI-A1203-20			
MIS12-30D	MI-A1201-30	MI-A1202-30	MI-A1203-30			
MIS20-10D	MI-A2001-10	MI-A2002-10	MI-A2003-10	MIS20-PS	MIS-A2004	
MIS20-20D	MI-A2001-20	MI-A2002-20	MI-A2003-20			
MIS20-30D	MI-A2001-30	MI-A2002-30	MI-A2003-30			
MIS25-30D	MI-A2501-30	MI-A2502-30	MI-A2503-30	MIS25-PS	MIS-A2504	
MIS25-50D	MI-A2501-50	MI-A2502-50	MI-A2503-50			
MIS32-30D	MI-A3201-30	MI-A3202-30	MI-A3203-30	MIS32-PS	MIS-A3204	
MIS32-50D	MI-A3201-50	MI-A3202-50	MI-A3203-50			
Main parts No.	(3) (1 pc.)			(10), (11), (12)	(20)	

Series MIW/MIS

Dimensions/Double Finger Type

Model	A	B	C	D	EA	EB	FA	FB	FC	FD	FE	FF	FG	GA	GB	GC	GD
MIW8-8	83	34	16	57	26	18	6 -0.1	7h9-0.036	15	M3 x 0.5	4	7	6 (Effective depth 2.5)	2.6	9	22	28
MIW12-12	111	44	21	76	35	23	8.0 .1	10h9-0.036	19	M3 $\times 0.5$	4.5	9.5	6 (Effective depth 3)	3.3	12.5	34	37
MIW20-20	155	64	29.5	106.5	48.5	28.5	11-0.1	13h9-0.043	25.5	M5 x 0.8	6.5	12.5	10 (Effective depth 4)	5.1	16.5	43.5	54
MIW25-25	200	84	40	134	66	41	15.0.1	17h9-0.043	37	M6 x 1	10	17	15 (Effective depth 7)	6.8	20	58	71
MIW32-32	256	95	47	169	87	55	19.5-0.1	21h9 ${ }_{-0.052}$	51	M8 x 1.25	12.5	22	17 (Effective depth 8.5)	8.6	24.5	73	80

Model	HA, HB	HC	HD	HE	JA	JB	KA	KB	LA	LB
MIW8-8	$2 \mathrm{H} 9{ }_{0}^{+0.025}$	2	3	15	14.5	7.5	20.3	1.6	M2 x 0.4	28.4
MIW12-12	$2.5 \mathrm{H9}{ }^{+0.025}$	4	3.5	25	19	11	7.6	2.2	M2.6 $\times 0.45$	37
MIW20-20	$4 \mathrm{H} 9^{+0.030}$	5	5	35.5	28.5	15	14.5	2.8	M 3×0.5	53
MIW25-25	$5 \mathrm{H} 90^{+0.030}$	5	7	40	35.5	20	24.5	3	M3 $\times 0.5$	70
MIW32-32	$6 \mathrm{H9}{ }_{0}^{+0.030}$	6	8	50	44.5	25	24.1	2.5	M4 $\times 0.7$	81

1426

Finger options

Tapped on upper and lower faces

Stroke adjuster

Scraper

Note) Observe the specified adjustment range when adjusting with a stroke adjuster.

Model	LC	MA	MB	MC	MD	ME	NA	NB	P	PA	PB	PC	PD	PE	RA	RB	RC	RD
MIW8-8	4.5	M3 x 0.5	6	9	22	28	7.5	14.5	M3 x 0.5	22.5	24	8	4.5	2.2	M 4×0.7	7	2	5.7
MIW12-12	7.5	$\mathrm{M} 4 \times 0.7$	7	12.5	34	37	11	19	M5 x 0.8	25	27	10	6	2.8	M5 x 0.8	8	2.5	6
MIW20-20	9.5	M6 x 1	10	16.5	43.5	54	15	28.5	M5 x 0.8	41.5	44	12	7	2.7	M8 $\times 1$	12	4	9
MIW25-25	12	M8 x 1.25	12	20	58	71	20	35.5	M5 x 0.8	50	55	14	8.5	2.7	M8 $\times 1$	12	4	9
MIW32-32	16.5	M10 x 1.5	15	24.5	73	80	25	44.5	Rc1/8	69.5	75.5	14.5	11	-	M12 $\times 1.25$	17	6	12.4

Model	RE	RF	RG	SA	SB	SC
MIW8-8	12.5	4	8.5	33	14.5	1.4
MIW12-12	14	6	8	43	18.5	1.8
MIW20-20	22.5	12	10.5	62	27	2.2
MIW25-25	26	15	11	81	35	2.8
MIW32-32	33	20	13	93	42	3.4

Series MIW/MIS

Dimensions/Single Finger Type
MIS \square - \square D

Finger options
Tapped on upper and lower faces

With adjuster

With scraper

RSO
RSG
RS \square
MI \square

Note) Observe the specified adjustment range when adjusting with a stroke adjuster.

Model	HC	HD	HE	JA	JB	KA	KB	LA	LB	LC	MA	MB	MC	MD	ME	N	P	PA	PB	PC
MIS8-10	2	3	14	9.5	7.5	6.2	1.6	M2 x 0.4	14	3	M3 x 0.5	5	4	20	13	7.5	M3 x 0.5	19	8	4.5
MIS8-20														30				29		
MIS12-10	4	3.5	17.5	13	11	11.6	2.2	M2.6 0.45	19	4	M4 x 0.7	7	5	28	18	11	M5 x 0.8	19	10	6
MIS12-20														38				29		
MIS12-30														48				39		
MIS20-10	5	5	26	17.5	15	14	2.8	M3 x 0.5	26	6	M6 x 1	10	7	32	25	15	M5 x 0.8	20.5	12	8
MIS20-20														42				30.5		
MIS20-30														52				40.5		
MIS25-30	5	7	32	20.5	20	11	3	M 3×0.5	32	10	M8 $\times 1.25$	14	10	55	28	20	M5 x 0.8	47	14	12
MIS25-50														75				67		
MIS32-30	6	8	40	25	25	20.4	2.5	M4 x 0.7	39	12	M10 $\times 1.5$	15	12	64	34	25	Rc1/8	47	14.5	11
MIS32-50														84				67		

Model	PD	PE	RA	RB	RC	RD	RE	RF	RG	SA	SB	SC
MIS8-10	6	2.2	M4 x 0.7	7	2	5.7	12.5	4	8.5	18.6	14	1.4
MIS8-20												
MIS12-10	7	2.8	M5 x 0.8	8	2.5	6	14	6	8	24	18	1.8
MIS12-20												
MIS12-30												
MIS20-10	10	2.7	M8x 1	12	4	9	22.5	12	10.5	34	26	2.2
MIS20-20												
MIS20-30												
MIS25-30	14	2.7	M8 $\times 1$	12	4	9	26	15	11	40	36	2.8
MIS25-50												
MIS32-30	27	-	M12 x 1.25	17	6	12.4	33	20	13	49	41	3.4
MIS32-50												

Series MIW/MIS

Auto Switch Mounting

When mounting an auto switch, insert the auto switch in the switch mounting groove on the escapement from the direction as below figure. Having set the mounting position, tighten the attached auto switch mounting screws with a flat head watchmaker's screwdriver.

* When adjusting the auto switch mounting screws, use a watchmaker's screwdriver with a handle 5 to 6 mm in diamterer. (This is to prevent fracture due to an excessive torque.) The guideline of the tightening torque is 0.1 to $0.15 \mathrm{~N} \cdot \mathrm{~m}$.

Proper mounting position for stroke end detection

Model	Electrical entry is in the \rightarrow direction
$\begin{aligned} & \text { M9 } \square \mathbf{V} \\ & \text { M9 } \square \mathbf{V} \\ & \text { M9 } \square \mathbf{W} \text { (V) } \end{aligned}$	
	Electrical entry is in the \leftarrow direction

Auto Switch Operating Range
MIW

Auto switch model	$\varnothing \mathbf{8}$	$\varnothing 12$	$\varnothing \mathbf{2 0}$	$\varnothing \mathbf{2 5}$	$\varnothing \mathbf{3 2}$
D-M9 $\square(V)$ D-M9 \square W(V)	3	2.5	4	5.5	7

MIS					(mm)
Auto switch model	$\varnothing 8$	$\varnothing 12$	$\varnothing 20$	ø25	$ø 32$
$\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \mathrm{D}-\mathrm{M} 9 \square \mathbf{W}(\mathrm{~V}) \end{aligned}$	3	3.5	4.5	5.5	7

Note) The operating ranges are provided as guidelines including hysteresis and are not guaranteed values (with $\pm 30 \%$ variations). Hysteresis may fluctuate due to the operating environments.

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Series MIW/MIS Specific Product Precautions 1

\triangle
Be sure to read before handling.
Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Selection

4 Warning

1. Design the attachment to be light and short.
1) A long and heavy attachment can cause a large inertia force in operation, sometimes affecting the life time.
2) Design the attachment to be as short and light as possible even within the limitation.

Mounting

. Warning

1. Do not scratch or gouge the escapement by dropping or bumping it when mounting.
Even a slight deformation can cause inaccuracy or malfunction.
2. Please observe the specified torque limits when tightening screws to mount the attachment.
A tightening torque beyond the specified limits can cause malfunction, while a tightening torque below the specified limits can cause dislocation or drop off.

Mounting attachment on finger

When mounting an attachment on the finger, support the finger with a tool like a spanner to prevent twisting
Mount attachments by inserting bolts, etc. into the female mounting threads on the fingers and tightening with the torque shown in the table below.

Model	Bolt	Max tightening torque (N•m)
MIW8	M3 $\times 0.5$	0.88
MIS8		0.88
MIW12		
MIS12	M5 $\times 0.8$	4.3
MIW20		M6 $\times 1$

3. Please observe the specified torque limits when tightening screws to mount the attachment.
A tightening torque above the specified limits can cause malfunction, while a tightening torque below the specified limits can cause dislocation or drop off.
Mounting

Mounting

Body tap

Model	Bolt	Max tightening torque ($\mathrm{N} \cdot \mathrm{m}$)	Max screw-in depth (mm)
MIW8	M3 x 0.5	0.88	6
MIS8		0.63	4.5
MIW12	M4 x 0.7	1.5	6
MIS12			
MIW20	M6 x 1	5.2	9
MIS20			
MIW25	M8x 1.25	12.5	12
MIS25			
MIW32	M10 $\times 1.5$	24.5	15
MIS32			

Body through hole

Model	Bolt	Max tightening torque (N.m)
MIW8	M2.5 $\times 0.45$	0.5
MIS8	M3 $\times 0.5$	0.88
MIW12		
MIS12	M5 $\times 0.8$	4.3
MIW20	MIS20	M6 $\times 1$

\triangle Caution

1. When mounting an attachment on the finger, support the finger with a tool like a spanner to prevent twisting.
Otherwise malfunction may result.
2. Please do not scratch or gouge the sliding part of the finger.
It may increase the sliding resistance or cause abrasion.
3. Use a speed controller, etc. to keep the operating speed of the finger within the proper range.
Otherwise the life time may be adversely affected by inertia force of the attachment.
4. Conduct meter-out control to throttle down the speed. Applicable speed controller
Direct connection type -AS120■ Piping type - AS1001F
Direct connection type -AS220■ Piping type - AS2001F etc.

Series MIW/MIS Specific Product Precautions 2

\triangle

Be sure to read before handling.
 Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Changing of Piping Directions

\triangle Caution

1. Please observe the specified torque limits when tightening a plug to change the piping directions.
A tightening torque above the specified limits can cause a damage to the plug, while tightening torque below the specified limits can cause a damage to seal or the screw come loose during the operation

Model	Port size	How to tight
MIW8 MIS8	$\begin{gathered} M 3 \times 0.5 \\ \binom{\text { Plug part no: }}{M-3 P} \end{gathered}$	Turn another $1 / 4$ turn with a tool after manual tightening.
MIW12 MIS12	$\begin{gathered} \text { M5 x } 0.8 \\ \binom{\text { Plug part no: }}{\text { M-5P }} \end{gathered}$	Turn another $1 / 6$ turn with a tool after manual tightening.
$\begin{aligned} & \text { MIW20 } \\ & \text { MIS20 } \end{aligned}$		
$\begin{aligned} & \text { MIW25 } \\ & \text { MIS25 } \end{aligned}$		
MIW32 MIS32	Rc1/8	Tightening torque 7 to $9 \mathrm{~N} \cdot \mathrm{~m}$

Supply port operation

Pressured from A port \rightarrow Finger A extends, finger B retracts
Pressure from B port \rightarrow Finger B extends, finger A retracts

Handling of Adjuster Options

Stroke adjuster

Warning

1. Observe the specified adjustment range as shown on right when adjusting with a stroke adjuster.
Bolts may shoot out when adjusting stroke adjuster over the maximum stroke as shown on right. Be sure to observe the specified adjustment range, otherwise malfunction may results.

Handling of Adjuster Options			
Model	At the maximum stroke (mm)	At the maximum adjustment (mm)	Adjustment range (mm)
MIW8	125	8.4	4
MIS8	12.5		
MIW12	14	8	6
MIS12	14	8	6
MIW20	2.5		
MIS20	22.5	10.5	12
MIW25			
MIS25	26	11	15
MIW32			
MIS32	33	13	20

2. Be sure to use specified adjuster bolts for replacement. Otherwise, fracture may be caused by an impact etc.
3. Refer to the table below for the lock nut tightening torque.
Insufficient tightening can cause air leakage.

Model	Tightening torque ($\mathrm{N} \cdot \mathrm{m}$)
MIW8	1.2 to 1.5
MIS8	
MIW12	2.5 to 3.0
MIS12	
MIW20	10.5 to 12.5
MIS20	
MIW25	10.5 to 12.5
MIS25	
MIW32	34 to 42
MIS32	

Operating Environment

\triangle Caution

1. Do not use in an environment where the product is directly exposed to liquid such as cutting lubricant.
Avoid use in an environment where the product is exposed to cutting lubricant, liquid coolant or oil mist. It can cause rattles, increase in sliding resistance and air leakage.
2. Do not use in an environment where the product is directly exposed to foreign matter such as dust, coarse particular, chips and polishing powder from a spatter grinder, etc.
It can cause rattles, increase in sliding resistance and air leakage.

Series MIW/MIS Specific Product Precautions 3

\triangle
Be sure to read before handling.
Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Operating Environment

\triangle Caution

3. Provide shading in an environment where the product is exposed to the sunlight.
4. Block off heat radiation in an environment where a heat source is at a close distance.
Block off heat radiation with a cover if a heat source is at a close distance because the temperature of the product can rise to exceed the operating temperature range due to radiation.
5. Do not use in an environment where vibration or impact occurs.
Contact SMC about use under such conditions because it can cause fracture or malfunction.

Lubrication

Caution

1. The non-lubricant type escapement is lubricated at the factory and does not need further lubrication for use.
In case the product is lubricated by the customer, apply class 1 turbin oil (non additive) ISO VG32.
In case the product is lubricated by the customer, be sure to continue lubrication.
If it is discontinued, malfunction may result due to loss of initial lubricant.

Maintenance

© Warning

1. Keep away hands and other body parts from the fingers of the escapement or movement range of the attachment.
It can lead to an injury or accident.
2. When removing the escapement, first block off or remove the work piece on the primary side of the escapement, release compressed air and remove it.
If the work piece remains, it can be transferred by mistake and cause failure to the equipment on the secondary side.

Finger replacement

1. Remove the hexagon socket head screws.
2. Remove the cover.
3. Replace the finger.

Apply the specified grease to the sliding part and T groove part of the finger.
Insert the piston in the T groove so that it will be hooked there.
4. Mount the cover and tighten the hexagon socket head screws with the tightening torque in the table below.

Bore size	Hexagon socket head screw	Hexagon width across flats	Tightening torque $(\mathrm{N} \cdot \mathrm{m})$
$\mathbf{8}$	$\mathrm{M} 2 \times 6$	1.5	0.24
$\mathbf{1 2}$	$\mathrm{M} 2.5 \times 6$	2	0.36
$\mathbf{2 0}$	$\mathrm{M} 4 \times 10$	3	1.5
$\mathbf{2 5}$	$\mathrm{M} 5 \times 14$	4	3.0
$\mathbf{3 2}$	$\mathrm{M} 6 \times 15$	5	5.2

For information on the replacement parts and specified grease, refer to the replacement parts on page 1425.

Scraper Option

\triangle Caution

1. Please observe the specified torque limits when mounting a scraper.
A tightening torque above the specified limits can cause a damage, while tightening torque below the specified limits can cause a dislocation or drop off.
Tightening torque

Model	Bolt (N•m)
MIW8	0.176
MIS8	
MIW12	0.36
MIS12	
MIW20	0.63
MIS20	
MIW25	0.63
MIS25	
MIW32	1.5
MIS32	

Individual

- $\quad \square$

[^0]: * Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW
 * Solid state auto switches marked with " \bigcirc " are produced upon receipt of order.

 | $1 \mathrm{~m} \ldots \ldots . . \mathrm{M}$ | (Example) M9NWM |
 | :---: | :--- |
 | $3 \mathrm{~m} \ldots \ldots . . \mathrm{L}$ | (Example) M9NWL |
 | $5 \mathrm{~m} \ldots \ldots . \mathrm{Z}$ | (Example) M9NWZ |

[^1]: * Refer to pages 1784 and 1785 for the details of auto switches with a pre-wired connector.
 * Auto switches are shipped together (not assembled).

