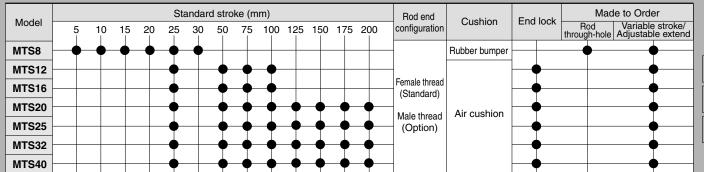
Precision Cylinder


Series MTS

Ø8, Ø12, Ø16, Ø20, Ø25, Ø32, Ø40

Cylinder with ball spline

Series Variations

D
-X

Individual

MXH

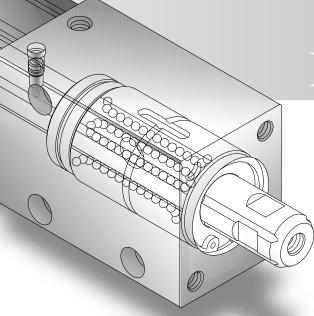
MXU

MXS

MXQ

MXF

MXW


MXJ

MXP

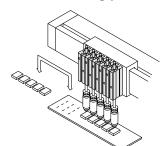
MXY

MTS

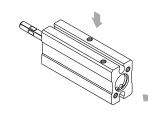
229

Precision Cylinder

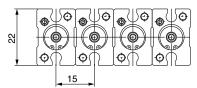
Precision Cylinder


Non-rotating accuracy: 0.1 ° or less

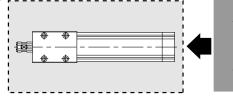
(0.2° or less for Ø8, within allowable torque values)

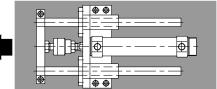

MTS8

Small size ø8 introduced to series

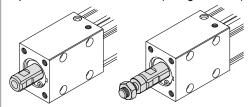

■ Rod through-hole allows vacuum piping (Made-to-order). Lifting and transfer of small electronic parts is possible with short mounting pitch.

■ Piping is possible from two directions.


Short mounting pitch: 15 mm



■ Uses new type compact auto switches (ø8 only). Two auto switches can be mounted even with the minimum 5 stroke (mm).


Mounting space reduced

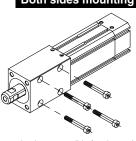
Two types of rod end configuration

Standard: Rod end female threads Option: Rod end male thread (Using stud bolt)

Rod end female thread

Rod end male thread

Auto switch capable


(Two sides for ø8)

on four sides

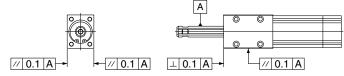
Three types of mounting are possible Tapped holes mounting

Bottom mounting Front mounting Through-holes mounting -

Both sides mounting

(Side mounting is not possible for size Ø8.)

with Internal Guide Function.


Series MTS

Deflection: 0.1 mm or less

(For MTS12-25, within allowable lateral load values)

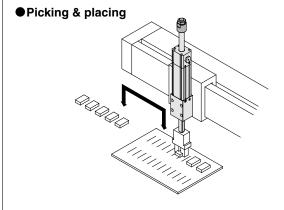
Reduced labor for design and assembly

Mounting is possible in high accuracy.

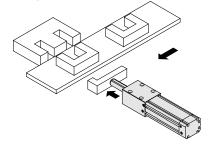
Parallelism of mounting surfaces (side, bottom) to rod: 0.1 mm or less Squareness of mounting surface (front) to rod: 0.1 mm or less

Air cushion standardized (ø8 equipped with rubber bumper)

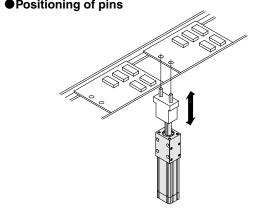
Rear end lock type added to series (ø12 to ø40)



Sealing and durability equivalent to conventional round rod models have been achieved with a specially configured rod seal.


Stroke adjustment mechanism/ Made to Order Specifications

Stroke adjustment is possible on the rod extension side. Stroke adjustment range: 0 to 10 mm (Ø8) : 0 to 25 mm (ø12 to ø40)



Transferring of workpieces

Positioning of pins

D-□

-X□

MXH

MXU

MXS

MXQ

MXF

MXW

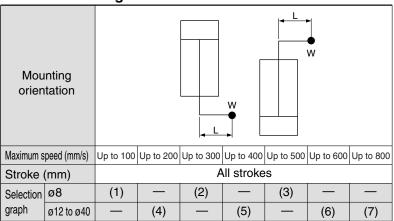
MXJ

MXP

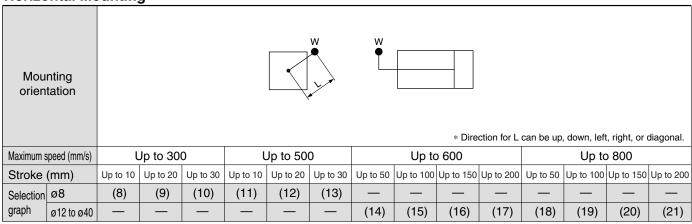
MXY

MTS

Individual

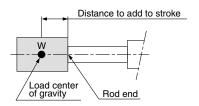


Model Selection


Caution Confirmation of theoretical output is required separately. Refer to "Theoretical Output" on page 239.

Selection Conditions/Follow the tables below in order to determine selection conditions and choose one selection graph.

Vertical Mounting


Horizontal Mounting

^{*} L: Overhang The distance between the cylinder's central axis and the load center of gravity

⚠ Caution

• In the case of horizontal mounting, when the load center of gravity is beyond the rod end, add that distance to the stroke to select a graph.

Selection Example

1. Selection conditions

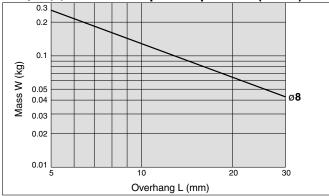
Mounting: Vertical Maximum speed: 800 mm/s Overhang: 50 mm Load mass: 2 kg

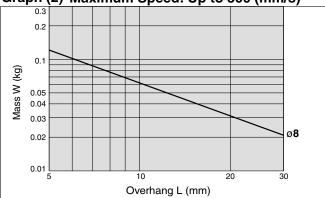
Refer to graph (7) based on vertical mounting and the maximum speed of 800 mm/s. On graph (7), find the intersecting point for the overhang of 50 mm and the load mass of 2 kg to determine a32.

2. Selection conditions

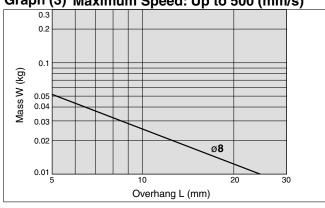
Mounting: Horizontal Maximum speed: 600 mm/s Stroke: 125 mm Overhang: 80 mm Load mass: 0.7 kg

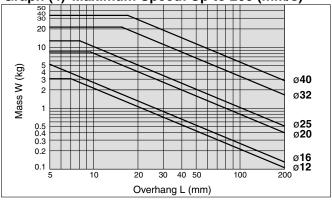
Refer to graph (16) based on horizontal mounting, the maximum speed of 600 mm/s, and 125 mm stroke. On graph (16), find the intersecting point for the overhang of 80 mm and the load mass of 0.7 kg to determine Ø25.



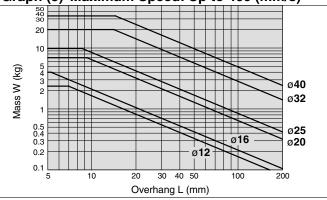

Vertical Mounting

ø8

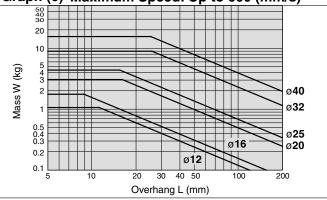

Graph (1) Maximum Speed: Up to 100 (mm/s)

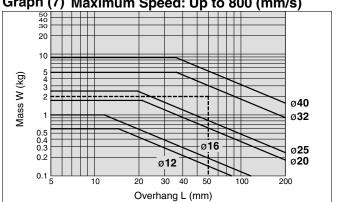


Graph (3) Maximum Speed: Up to 500 (mm/s)



ø12 to ø40


Graph (4) Maximum Speed: Up to 200 (mm/s)


Graph (5) Maximum Speed: Up to 400 (mm/s)

Graph (6) Maximum Speed: Up to 600 (mm/s)

Graph (7) Maximum Speed: Up to 800 (mm/s)

D-□ **-X**□

MXH

MXU

MXS

MXQ

MXF

MXW

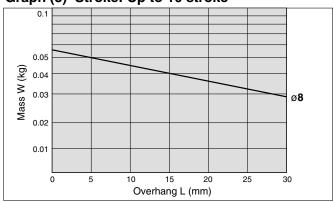
MXJ

MXP

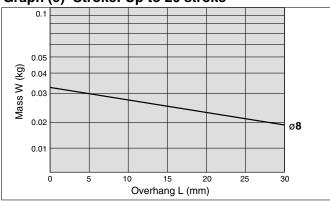
MXY

MTS

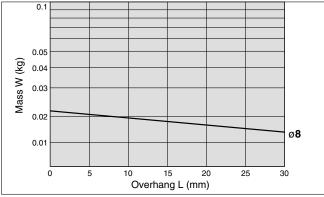
Individual



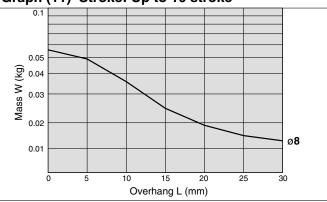
Horizontal Mounting


ø8

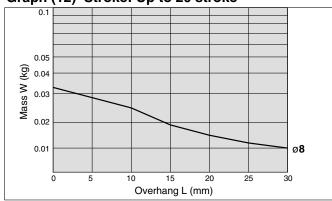
Maximum speed: Up to 300 mm/s


Graph (8) Stroke: Up to 10 stroke

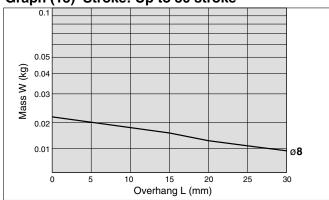
Graph (9) Stroke: Up to 20 stroke



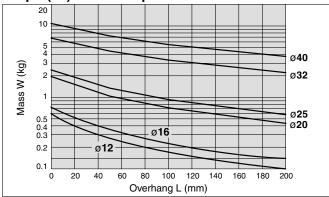
Graph (10) Stroke: Up to 30 stroke

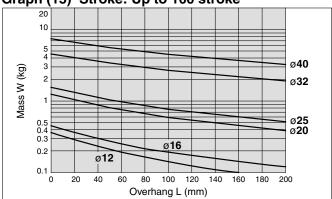


Maximum speed: Up to 500 mm/s

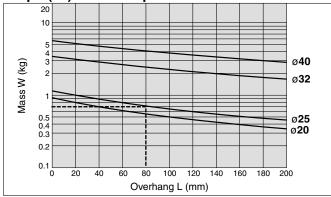

Graph (11) Stroke: Up to 10 stroke

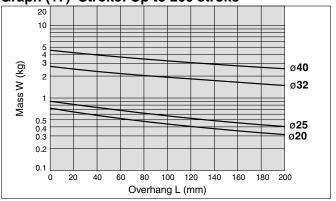
Graph (12) Stroke: Up to 20 stroke


Graph (13) Stroke: Up to 30 stroke

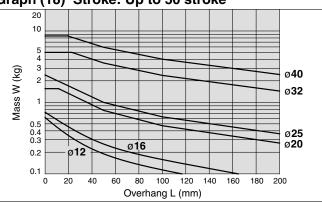

ø12 to ø40

Maximum speed: Up to 600 mm/s

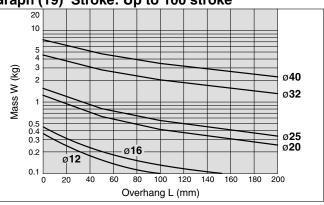

Graph (14) Stroke: Up to 50 stroke


Graph (15) Stroke: Up to 100 stroke

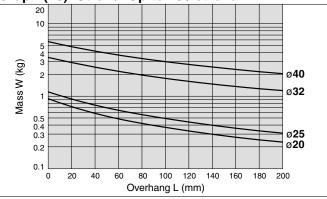
Graph (16) Stroke: Up to 150 stroke

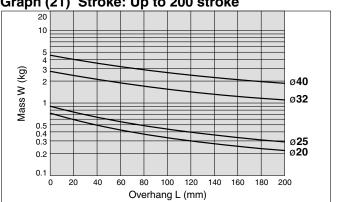


Graph (17) Stroke: Up to 200 stroke



Maximum speed: Up to 800 mm/s


Graph (18) Stroke: Up to 50 stroke


Graph (19) Stroke: Up to 100 stroke

Graph (20) Stroke: Up to 150 stroke

Graph (21) Stroke: Up to 200 stroke

MXH

MXU

MXS

MXQ

MXF

MXW

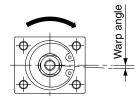
MXJ

MXP

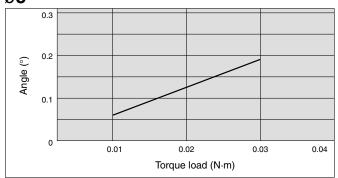
MXY

MTS

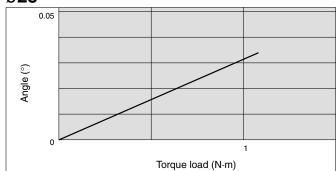
Individual

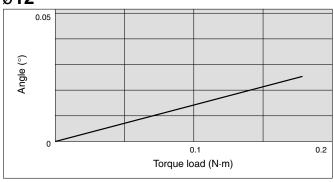


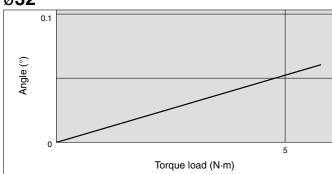
Spline Rod Displacement

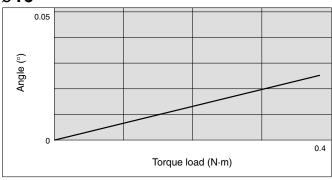

Warp Angle

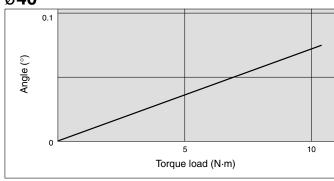
Displacement angle of spline rod due to torque load

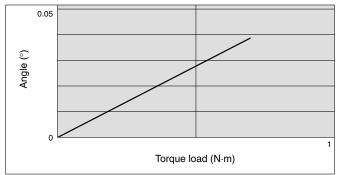

The displacement angle when a static load is applied in the direction of the arrow, with the spline rod retracted.


ø8

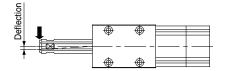

ø**25**

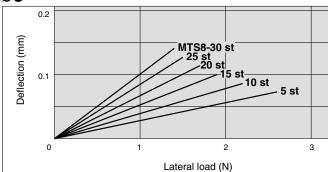

Ø12


ø32

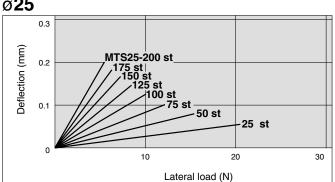

ø16

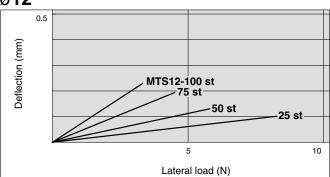
ø40

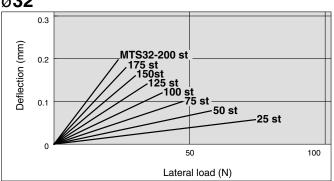

ø**20**

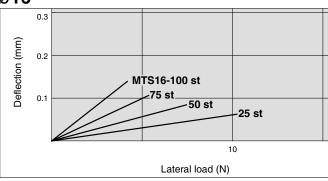

Deflection Amount

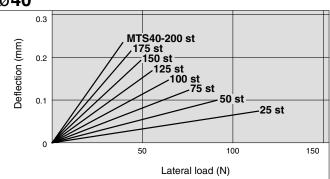
Displacement of spline rod due to pitch moment load

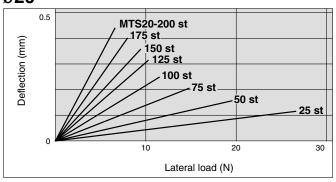

Displacement of the rod end when a static load is applied in the direction of the arrow, with the spline rod fully extended.


Ø8


ø25


ø12


ø32


ø16

ø40

ø20

Caution on Design

⚠ Caution

1. Displacement may increase after an impact load has been applied.

If an impact load is applied to the spline rod, the guide unit may be permanently deformed and displacement may increase.

MXH

MXU

MXS

MXQ

MXF

MXW

MXJ

MXP

MXY

MTS

-X□ Individual -X□

Precision Cylinder Series MTS ø8, ø12, ø16, ø20, ø25, ø32, ø40

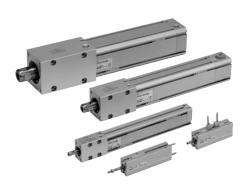
How to Order

Applicable Auto Switch/Refer to pages 1719 to 1827 for further information on auto switches.

			ight	14 <i>0</i> ·	L	oad volta	ge	Auto switc	h model	Lead	wire	length	n (m)	D		
Type	Special function	Electrical entry	Indicator light	Wiring (Output)	DC		AC	Perpendicular In-line		0.5 (Nil)	1 (M)	3 (L)	5	Pre-wired connector	Applicable load	
당				3-wire (NPN)		5 V, 12 V		M9NV	M9N	•	•	•	0	0	IC	
switch				3-wire (PNP)	24 V	5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit	
		Grommet	Yes	2-wire		12 V		M9BV	M9B	•	•	•	0	0	_	Relay,
state	Diagnostic indication			3-wire (NPN)		5 V, 12 V		M9NWV	M9NW	•	•	•	0	0	IC	PLĆ
Solid	(2-color indication)			3-wire (PNP)		3 V, 12 V		M9PWV	M9PW	•	•	•	0	0	circuit	
S	(= 00:0:			2-wire		12 V		M9BWV	M9BW	•	•	•	0	0		
Reed		Grommet	Srommot Se	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	_	_	IC circuit	_
Swi				2-wire 24 V	04.1/	24 V 12 V	100 V	A93V	A93	•	_	•	_	_	_	Relay,
			2		∠4 V		100 V or less	A90V	A90	•	_	•	_	_	IC circuit	PLĆ

* Solid state auto switches marked with "O" are produced upon receipt of order.

1 m------ M (Example) M9NWM 3 m----- L (Example) M9NWL 5 m----- Z (Example) M9NWZ


* Since there are other applicable auto switches than listed, refer to page 249 for details.

* For details about auto switches with pre-wired connector, refer to pages 1784 and 1785.

* Auto switches are shipped together (not assembled).

^{*} Lead wire length symbols: 0.5 m······· Nil (Example) M9NW

Specifications

Made to	Made to Order Specifications (For details, refer to pages 1886 and 1933.)
Olar	(For details, refer to pages 1886 and 1933.)

Symbol Specifications						
—XC8	djustable stroke cylinder/Adjustable extention type					
—XC38	Vacuum (Rod through-hole)					

Bore siz	e (mm))	8	12	16	20	25	32	40	
Spline rod size	e (mm))	4	6	8	10	13	16	20	
Fluid						Air				
Min. operating Without end lock		0.15 MPa	0.15 MPa 0.12 MPa 0.1 MPa							
pressure	With end lock *		_	0.17	MPa		0.15	МРа		
Maximum oper	oressure				0.7 MPa					
Proof pressure					1.0 MPa					
Ambient and fl	perature	-10 to 60°C (No freezing)								
Bearing type		Ball spline								
Cushion		Rubber bumper Air cushion								
Effective cushi	ion len	gth (mm)	_	9	10	11	12	17	17	
Lubrication			Not required (Non-lube)							
Piston speed	(mm/s))	50 to 500 50 to 800							
Allowable kine	etic en	ergy (J)	0.02	0.19	0.32	0.55	0.78	1.6	2.8	
Stroke toleran	се		+1.0 mm							
Non-rotating a	су	0.2° or less (within allowable torque values)								
		_	M3 x 0.5	M5 x 0.8	M5 x 0.8	M5 x 0.8	M5 x 0.8	Rc 1/8	Rc 1/8	
Piping port size	ze	TN	_	_	_	_	_	NPT 1/8	NPT 1/8	
		TF			_	_	_	G 1/8	G 1/8	

^{*} Except lock unit, 0.12 MPa for ø12 and 16; 0.10 MPa for ø20 to 40 respectively.

Standard Stroke

Bore size (mm)	Standard stroke (mm)					
8	5, 10, 15, 20, 25, 30					
12, 16	25, 50, 75, 100					
20, 25, 32, 40	25, 50, 75, 100, 125, 150, 175, 200					

^{*} Strokes other than the above are produced upon receipt of order.

Stud Bolt Part No.

Bore size (mm)	Part no.					
8	MT-S8					
12	MT-S12					
16	MT-S16					
20	MT-S20					
25	MT-S25					
32	MT-S32					
40	MT-S40					

- * Replacement parts for rod end male thread.
- * Rod end nut is attached.

⚠ Caution

Mounting

 When attaching or removing loads, be sure to do so while securing the spline rod's width across flats and not to apply a rotating torque on the spline nut.

If rotational torque must be applied due to unavoidable circumstances, use the table below to make sure the allowable rotational torque is not exceeded.

Bore size (mm)	8	12	16	20	25	32	40
Allowable rotating torque (N·m)	0.03	0.18	0.38	0.69	1.08	5.75	10.4

End Lock Specifications

Bore size (mm)	12	16	20	25	32	40	
Lock position	Head end only						
Holding force (Max.) (N)	29	29 53 82 125		211	329		
Backlash	1 mm						
Manual release	Non-lock type only						

Theoretical Output

								(IN)			
Bore size	Operating	Piston area	Operating pressure (MPa)								
(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7			
8	OUT	50	10	15	20	25	30	35			
0	IN	37	8	11	15	19	22	26			
12	OUT	113	23	34	45	57	68	79			
12	IN	84	17	25	34	42	50	59			
16	OUT	201	40	60	80	101	121	141			
10	IN	150	30	45	60	75	90	105			
20	OUT	314	63	94	126	157	188	220			
20	IN	235	47	71	94	118	141	165			
25	OUT	490	98	147	196	245	294	343			
25	IN	358	72	107	143	179	215	251			
22	OUT	804	161	241	322	402	482	563			
32	IN	603	121	181	241	302	362	422			
40	OUT	1,256	251	377	502	628	754	879			
40	IN	942	188	283	377	471	565	659			

⚠ Caution Do not apply a load that is 50% or more of the theoretical output.

Mass

														(g)
Model		Standard stroke (mm)												End lock
Model	5	10	15	20	25	30	50	75	100	125	150	175	200	additional mass
MTS8	36	40	44	48	52	56	_	_	_	_	_	_	_	_
MTS12	_	_	_	_	138	_	157	175	194	_	_	_	_	29
MTS16	_		_	_	186	_	222	258	294	_	_	_	_	34
MTS20	_	_	_	_	350	_	400	450	500	549	599	649	699	42
MTS25	_	_	_	_	487	_	547	608	669	729	790	851	912	55
MTS32	_	_	_	_	918	_	1,000	1,083	1,165	1,247	1,330	1,412	1,495	90
MTS40	_	_	_	_	1,420	_	1,533	1,645	1,758	1,870	1,983	2,095	2,208	133

Individual

MXH

MXU

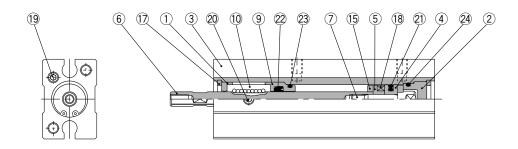
MXS

MXQ

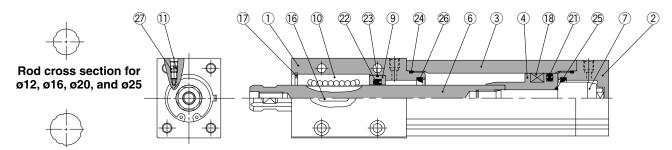
MXF

MXW

MXJ

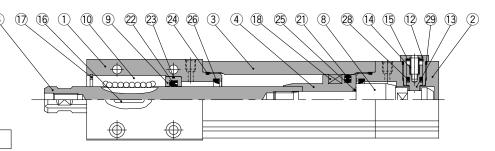

MXP

MXY


MTS

Construction

Basic style Ø8



ø12 to ø40

Rod cross section for ø32 and ø40

With end lock Ø12 to Ø40

⚠ Caution

Disassembly/Replacement

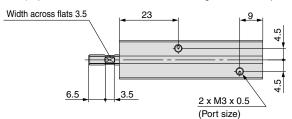
A special tool is required when reassembling the cylinder after disassembled.

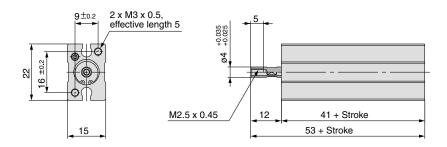
Contact SMC when replacing component parts.

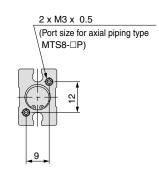
Component Parts

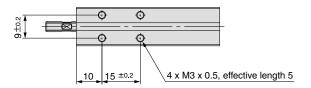
No.	Description	Material	Qty.	Note
1	Rod cover	Aluminum alloy	1	Clear anodized
2	Head cover	Aluminum alloy	1	Clear anodized
3	Cylinder tube	Aluminum alloy	1	Hard anodized
4	Piston	Aluminum alloy	1	Chromated
5	Spacer for switch type	Aluminum alloy	1	Chromated
6	Culing and	Stainless steel	1	ø8: Quenched
0	Spline rod	Carbon steel	1	ø12 to ø40: Quenched/Hard chrome plated
7	Cushion bolt	Stainless steel		ø8 to ø16
,	Cusinon boil	Carbon steel	1	ø20 to ø40: Zinc chromated
8	End lock bolt	Carbon steel	1	Quenched/Zinc chromated
9	Collar	Aluminum alloy	1	Chromated
10	Spline nut		1	
11	Cushion needle	Carbon steel	2	Nickel plated
12	Сар	Copper alloy	1	Nickel plated
13	Lock piston	Carbon steel	1	Quenched/Hard chrome plated
14	Lock spring	Steel wire	1	Zinc chromated

No.	Description	Material	Qty.	Note
15	Dumman	Urethane	2	ø8
15	Bumper	Oremane	1	ø12 to ø40
16	Key	Carbon steel	1	
17	Type C retaining	Carbon tool steel	2	ø8: Nickel plated
- 17	ring for hole	Carbon tool steel	1	ø12 to ø40: Nickel plated
18	Magnet	_	1	
19	Plug	Alloy steel	3	Nickel plated
20	Hexagon socket head set screw	Alloy steel	1	Black zinc chromated
21	Piston seal	NBR	1	
22	Spline seal	NBR	1	Rod seal for ø8
23	Collar gasket	NBR	1	
24		NBR	1	ø8
	Tube gasket	INDIN	2	ø12 to ø40
25	Piston gasket	NBR	1	
26	Cushion seal	Urethane	2	
27	Needle gasket	NBR	2	
28	Piston seal for lock	NBR	1	
29	Cap gasket	NBR	1	

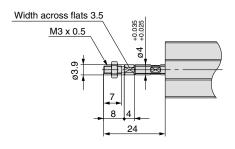


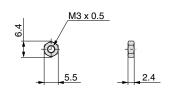

Dimensions: Ø8


MTS8


Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic style





Rod end male thread

Stud bolt part no.: MT-S8 Material: Chromium molybdenum steel (Nickel plated)

Rod end nut part no.: NTJ-006A Material: Carbon steel (Nickel plated)

D-□

-X□

MXH

MXU

MXS

MXQ

MXF

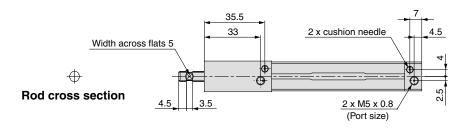
MXW

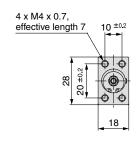
MXJ

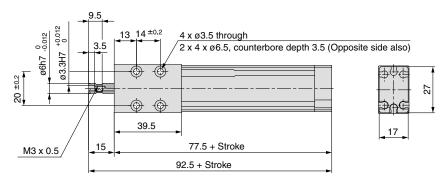
MXP

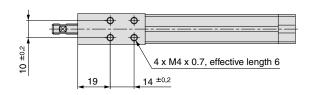
MXY

MTS

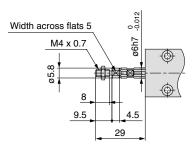

Individual -X□

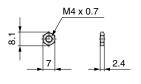

Dimensions: ø12


MTS12

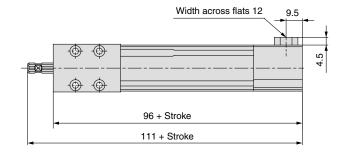

Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic style





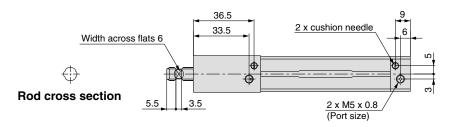
Rod end male thread

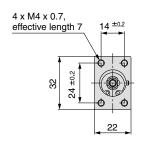


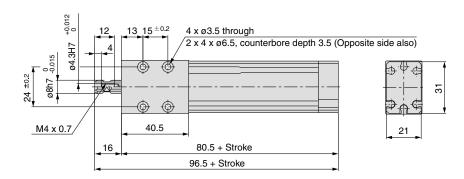
Stud bolt part no.: MT-S12 Material: Chromium molybdenum steel (Nickel plated)

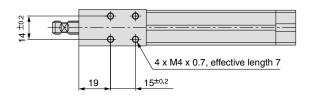
Rod end nut part no.: NTP-010 Material: Carbon steel (Nickel plated)

With end lock

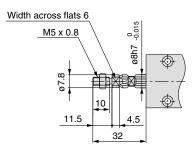


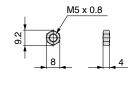

Dimensions: Ø16


MTS16

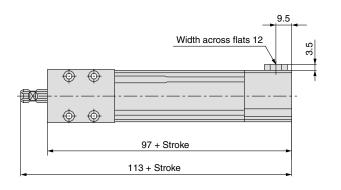

Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic style





Rod end male thread



Stud bolt part no.: MT-S16 Material: Chromium molybdenum steel (Nickel plated)

Rod end nut part no.: NTJ-015A Material: Carbon steel (Nickel plated)

With end lock

MXH

MXU

MXS

MXQ

MXF

MXW

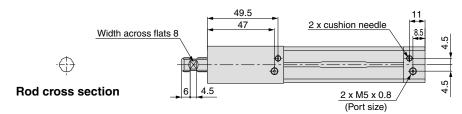
MXJ

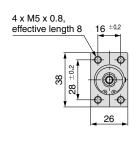
MXP

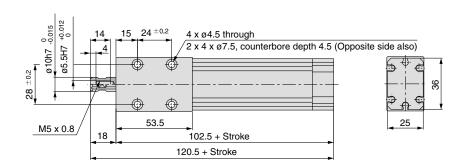
MXY

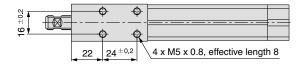
MTS

Individual -X□

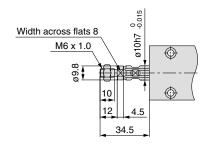


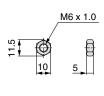

Dimensions: ø20


MTS20

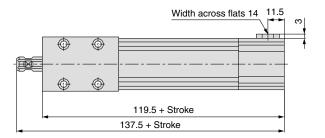

Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic style





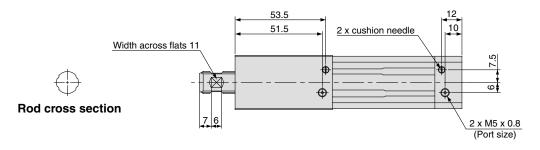
Rod end male thread



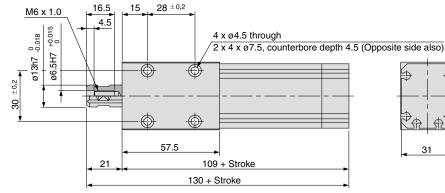
Stud bolt part no.: MT-S20 Material: Chromium molybdenum steel (Nickel plated)

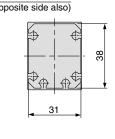
Rod end nut part no.: NT-015A Material: Carbon steel (Nickel plated)

With end lock




Dimensions: ø25


MTS25


Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.

Basic style

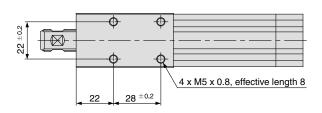
MXH

MXU

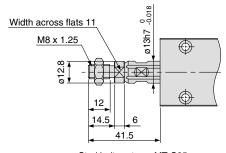
MXS

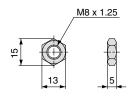
MXQ

MXF


MXW

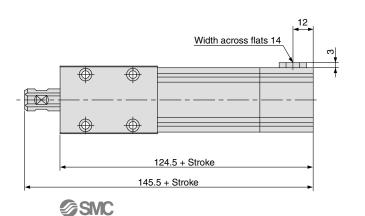
MXJ


MXP


MXY

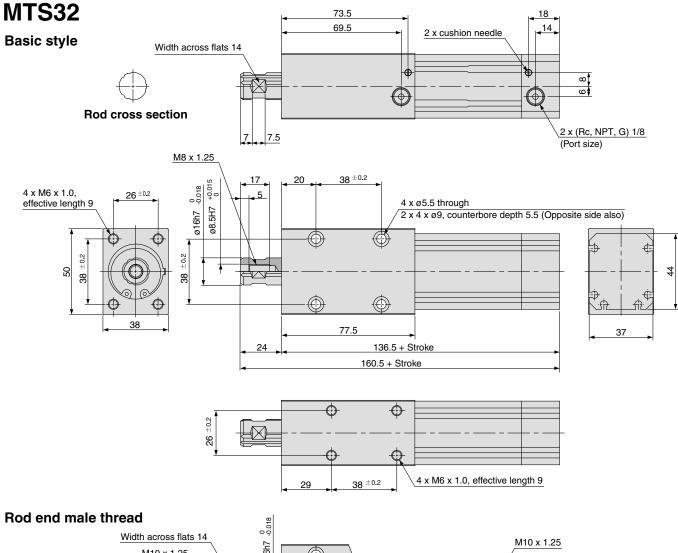
MTS

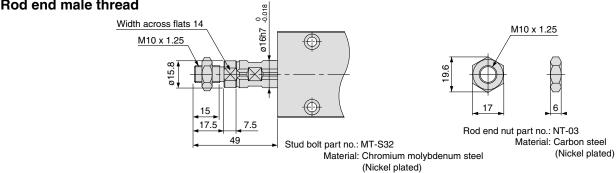
Rod end male thread



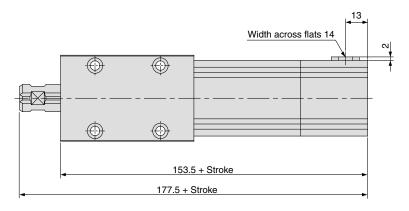
Stud bolt part no.: MT-S25 . Material: Chromium molybdenum steel (Nickel plated)

Rod end nut part no.: NT-02 Material: Carbon steel (Nickel plated)

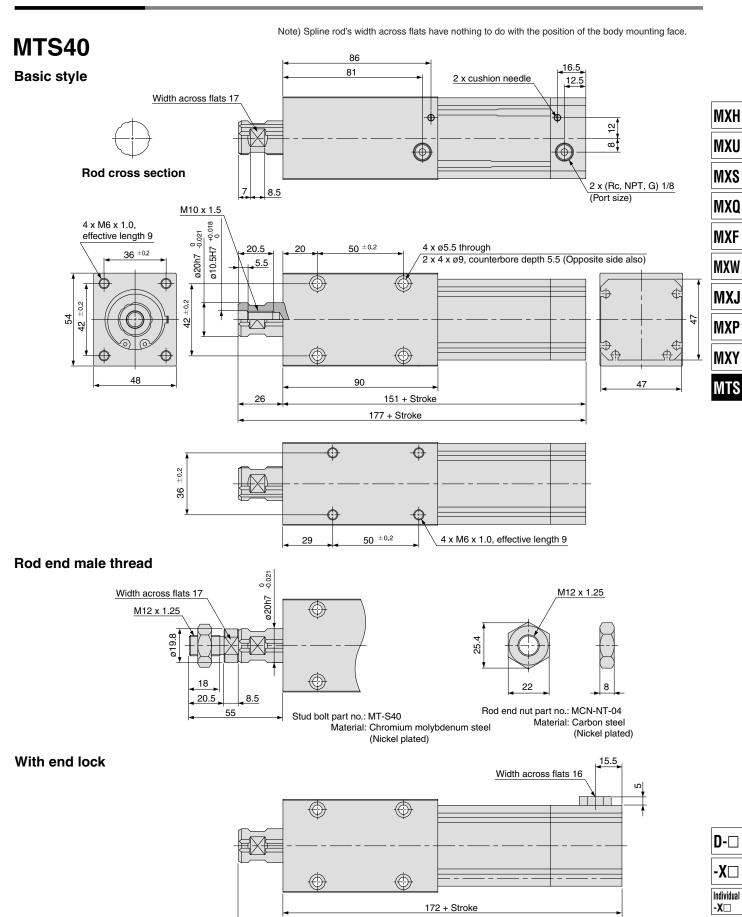

With end lock



Individual -X□

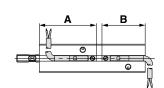

Dimensions: Ø32

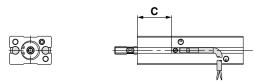
Note) Spline rod's width across flats have nothing to do with the position of the body mounting face.



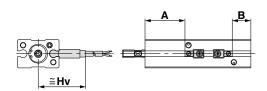
With end lock

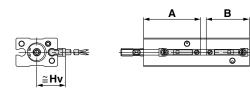
Dimensions: ø40


198 + Stroke


SMC

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height


ø8



D-A9□V D-M9□V D-M9□WV

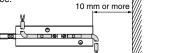
Operating Range

Auto switch model	Bore size (mm)										
Auto switch model	8	12	16	20	25	32	40				
D-A9□/A9□V	5	6	7.5	7.5	8	7	8				
D-M9□/M9□V D-M9□W/M9□WV	3.0	4.5	4	4.5	5	4.5	5.5				
D-F8□	2.5	4	4.5	4.5	4.5	4.5	5				

^{*} Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately 30% dispersion.)

Auto Switch Proper Mounting Position

Bore		Reed auto switch				Solid state auto switch							2-color indication solid state auto switch								
size				D-M9□		D-M9□V		D-F8□		D-M9□W		D-M9□WV		٧V							
(mm)	Α	В	С	Α	В	Hv	Α	В	С	Α	В	Hv	Α	В	Hv	Α	В	С	Α	В	Hv
8	36	25	16	36	25	15	32	21	20	32	21	17.5	18	7	25	32	21	20	32	21	17.5

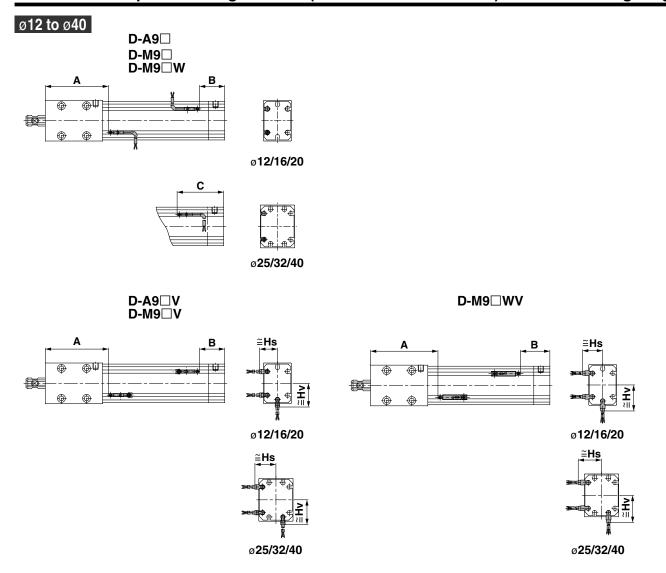

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting Stroke for Ø8

Distinct discontinu	Manusation of a securitation	A souli sold a south of south			Stroke	e (mm)			NI-4-
Piping direction	Mounting condition	Applicable auto switch	5	10	15	20	25	30	Note
Standard piping type (1)	2 pcs. on same side	D-A9□	×	×	×	0	0	0	(2)
		D-M9□, D-M9□W	×	×	0	0	0	0	(2)
		D-A9□V	×	×	×	0	0	0	
	1 pc. each on 2 sides	D-A9□	×	0	0	0	0	0	(2)
2 v port oizo		D-M9□, D-M9□W	0	0	0	0	0	0	(2)
2 x port size		D-A9□V	×	0	0	0	0	0	
Axial piping type	2 pcs. on same side	D-A9 □	×	×	×	0	0	0	(2)
		D-M9□, D-M9□W	×	×	0	0	0	0	(2)
		D-A9□V	×	×	×	0	0	0	
		D-M9□V, D-M9□WV	×	×	0	0	0	0	
		D-F8□	0	0	0	0	0	0	
	1 pc. each on 2 sides	D-A9□	×	0	0	0	0	0	(2)
		D-M9□, D-M9□W	0	0	0	0	0	0	(2)
2 v nort sine		D-A9□V	×	0	0	0	0	0	
2 x port size		D-M9□V, D-M9□WV	0	0	0	0	0	0	
		D-F8□	0	0	0	0	0	0	

Note 1) With the standard piping type, solid state auto switches D-F8□, D-M9□V, and D-M9□WV with perpendicular electrical entry cannot be mounted due to the interference of the fitting and speed controller.

Note 2) When mounting auto switches with in-line electrical entry, allow a space of 10 mm or more at the rear end to prevent lead wire interference.


○ ··· Mountable

× ··· Not mountable

There may be the case it will vary substantially depending on an ambient environment.

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height

Auto Switch Proper Mounting Position

Bore	Reed auto switch							Solid st	ate aut	o switch	h		2-color indication solid state auto switch								
size	D-A9□ D-A9□V				ı	D-M9□			D-M9□W			D-M9□WV									
(mm)	Α	В	С	Α	В	Hs	Hv	Α	В	С	Α	В	Hs	Hv	Α	В	С	Α	В	Hs	Hv
12	42	15.5	35.5	42	15.5	13	18	46	19.5	31.5	46	19.5	15	20	46	19.5	31.5	46	19.5	15	20
16	43.5	17	37	43.5	17	15	20	47.5	21	33	47.5	21	17	22	47.5	21	33	47.5	21	17	22
20	59.5	23	43	59.5	23	17	22.5	63.5	27	39	63.5	27	19	24.5	63.5	27	39	63.5	27	19	24.5
25	63	26	46	63	26	20	23.5	67	30	42	67	30	22	25.5	67	30	42	67	30	22	25.5
32	84.5	32	52	84.5	32	23	26.5	88.5	36	48	88.5	36	25	28.5	88.5	36	48	88.5	36	25	28.5
40	98.5	32.5	52.5	98.5	32.5	28	28	102.5	36.5	48.5	102.5	36.5	30	30	102.5	36.5	48.5	102.5	36.5	30	30

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted. For detailed specifications, refer to pages 1719 to 1827.

Auto switch type	Model	Electrical entry (Fetching direction)	Features	Applicable bore size (mm)		
	D-F8N					
Solid state	D-F8P	Grommet (Perpendicular)	With indicator light	ø8 to ø40		
	D-F8B					

^{*} Normally closed (NC = b contact), solid state auto switch (D-F9G/F9H type) are also available. For details, refer to page 1746.

Individual

MXH

MXU

MXS

MXQ

MXF

MXW

MXJ

MXP

MXY

MTS

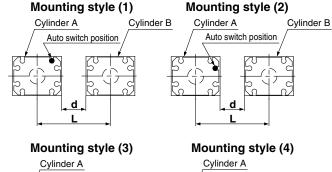
| -^_

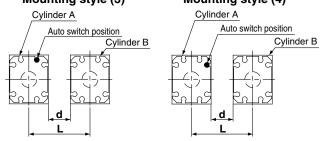
Caution on Installing in Close Proximity to Each Other

⚠ Caution

1. When cylinders are used in close proximity to one another as in mounting patterns (1) through (4), the magnetic force of the auto switch magnets in cylinder B may have an effect on the operation of the auto switches on cylinder A. The mounting pitch of cylinders should be at least the values given in the table below.

ø8


Mounting style (1) Cylinder A Auto switch position Auto switch position Cylinder B Cylinder A Cylinder B Auto switch position Cylinder B


Dimensions by Mounting Style

Bore size	Auto switch	(1	1)	(2)			
(mm)	model	L	d	L	d		
	D-A9□, D-A9□V	27 (37)	5 (15)	15	0		
	D-M9□, D-M9□V	27 (39)	5 (17)	15	0		
8	D-F8□	47	25	15	0		
	D-M9□W, D-M9□WV	27 (39)	5 (17)	15	0		

(): Denotes the values of D-A9□V, D-M9□V and D-M9□WV.

Ø12 to Ø40

Dimensions by Mounting Style

Bore size	Auto switch	(1	1)	(2	2)	(3	3)	(4	4)
(mm)	model	L	d	L	d	L	d	L	d
	D-A9□, D-A9□V	28	0	28 (43)	0 (15)	18	0	18 (33)	0 (15
12	D-M9□, D-M9□V D-M9□W, D-M9□WV	28	0	33 (45)	5 (17)	18	0	28 (35)	10 (17)
	D-A9□, D-A9□V	32	0	32 (47)	0 (15)	22	0	22 (37)	0 (15)
16	D-M9□, D-M9□V D-M9□W, D-M9□WV	32	0	37 (49)	5 (17)	22	0	32 (39)	10 (17)
	D-A9□, D-A9□V	38	0	38 (53)	0 (15)	26	0	26 (41)	0 (15)
20	D-M9□, D-M9□V D-M9□W, D-M9□WV	38	0	38 (55)	0 (17)	26	0	56 (63)	30 (37)
	D-A9□, D-A9□V	40	0	40 (55)	0 (15)	32	0	32 (47)	0 (15)
25	D-M9□,D-M9□V D-M9□W, D-M9□WV	40	0	50 (57)	10 (17)	47	15	72 (74)	40 (42)
	D-A9□, D-A9□V	50	0	50 (61)	0 (11)	38	0	38 (53)	0 (15)
32	D-M9□, D-M9□V D-M9□W, D-M9□WV	50	0	55 (63)	5 (13)	38	0	48 (55)	10 (17)
	D-A9□, D-A9□V	54	0	54 (64)	0 (10)	48	0	48 (63)	0 (15)
40	D-M9□, D-M9□V D-M9□W, D-M9□WV	54	0	59 (66)	5 (12)	48	0	63 (70)	15 (22)

(): Denotes the values of D-A9 V, D-M9 V and D-M9 WV.

If cylinders are used with a mounting pitch less than shown above, they must be shielded with iron plates or the separately sold magnetic shielding plate (part no.: MU-S025). Please contact SMC for further information.

2. Avoid wiring patterns in which bending stress and pulling force are repeatedly applied to the lead wires.

When a bending stress is repeatedly applied to the lead wires, be sure to secure the lead wire close to the switch and to maintain a bending radius of R40 to R80 or more as a guideline.

Applying a stress or pulling force to the connection part of a lead wire and an auto switch may cause broken wires, or a sheath to be dropped outs. Be sure that no force of any kind is applied to the connection part.

Series MTS Specific Product Precautions

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Caution on Using End Lock Type

Operating Precautions

⚠ Caution

1. Do not use 3 position solenoid valves.

Avoid use in combination with 3 position solenoid valves (especially closed center metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time, due to air leaking from the solenoid valve and entering the cylinder.

2. Back pressure is required when releasing the lock.

Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism. There is a possibility that the lock may not be released. (Refer to the section on releasing the lock.)

3. Release the lock when mounting or adjusting the cylinder.

If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.

4. Operate with a load ratio of 50% or less.

If the load ratio exceeds 50%, this may cause problems such as failure of the lock to release, or damage to the lock unit.

Do not operate multiple cylinders in synchronization.

Avoid applications in which two or more end lock cylinders are synchronized to move one workpiece, as one of the cylinder locks may not be able to release when required.

6. Use a speed controller with meter-out control.

It may not be possible to release the lock with meter-in control.

Be sure to operate completely to the cylinder stroke end on the side with the lock.

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible.

Operating Pressure

⚠ Caution

 Apply air pressure of at least that shown in the table below to the port on the lock mechanism side. This is necessary to release the lock.

Bore size (mm)	Operating pressure (MPa)
12, 16	0.17
20, 25, 32, 40	0.15

Exhaust Speed

⚠ Caution

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05 MPa or less. In the cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid valve exhaust port can produce the same effect.

Relation to Cushion

⚠ Caution

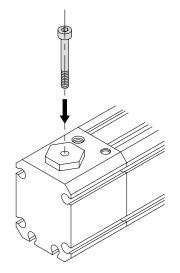
1. When the cushion valve on the lock mechanism side is closed or nearly closed, the spline rod may not reach the stroke end, and consequently the lock may not engage. Moreover, if the lock does engage when the cushion valve is nearly closed, it may not be possible for the lock to release. Therefore, the cushion valve should be adjusted properly.

Releasing the Lock

⚠ Warning

1. Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. If the lock is released when the port on the other side is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and may be damaged.

Furthermore, sudden movement of the spline rod is very dangerous.


Manual Release

⚠ Caution

 Insert the bolt, screw it into the lock piston, and then pull it to release the lock. If you stop pulling the bolt, the lock will return to an operational state. Thread sizes, pulling forces and strokes are as shown below.

Bore size (mm)	Thread size	Pulling force (N)	Stroke (mm)
12, 16	M2 x 0.4 x 15ℓ or more	2	1.5
20, 25, 32	M3 x 0.5 x 30 ℓ or more	3	2
40	M3 x 0.5 x 30 ℓ or more	4	3

* Remove the bolt for normal operation. It can cause lock malfunction or faulty release

MXH

MXU

MXS

MXQ

MXF

MXW

MXJ

MXP

MXY

MTS

Individual -X□

