Air Slide Table

Series MXJ

(1)Piping port
(2Axial piping plate
3Axial piping port
(4) Retraction end stroke adjuster
(5) Extension end stroke adjuster

6Switch rail
(7Vacuum port (clean specifications)

BAxial Piping

Symmetric Style

Piping ports are provided both on the right and left sides. Switch rails and axial piping plates are interchangeable between the right and left side.

Variations

Model		$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Standard stroke (mm)				Adjuster option			Piping option
Standard type	Symmetric type		5	10	15	20	Extension end	Retraction end	Both ends	Axial piping type
MXJ4	MXJ4L	4.5	-	-	-	-	-	-	-	-
MXJ6	MXJ6L	6	-	-	-	-	-	-	-	-
MXJ8	MXJ8L	8	-	\bullet	-	-	-	-	-	-

Clean Specification

Clean specification products are available with no dimensional changes. The same options are available as for standard products.

* Operating pressure: 0.5 MPa when operating direction is OUT. OUT $\leftarrow \square \longrightarrow \mathbb{N}$

Model Selection

Procedure

Formula/Data
Selection Example

Operating Conditions

Enumerate the operating conditions considering the mounting position and workpiece configuration.

- Model to be used
- Type of cushion
- Mounting orientation
- Average speed Va (mm/s)
- Load mass W (kg)
- Overhang (mm)

Load Mass

Find the collision speed $V(\mathrm{~mm} / \mathrm{S})$.

Confirm that the load mass W (kg) does not exceed the value in the graph.
$\mathbf{V}=\underset{*}{\mathbf{1 . 4}} \cdot \mathbf{V a} *$ Correction factor (Reference value)
Graph (1)
$V=1.4 \times 100=140$
Confirm that $\mathrm{V}=140$ and $\mathrm{W}=0.1$ do not exceed the values in Graph (1).

Applicable because it does not exceed the value in Graph (1).

Load Factor

3-1 Load Factor of Static Moment

Find the static moment $\mathrm{M}(\mathrm{N} \cdot \mathrm{m})$.
Find the allowable static moment Ma ($\mathrm{N} \cdot \mathrm{m}$).

Find the load factor of the static moment.
$M=W \times 9.8(\mathrm{Ln}+\mathrm{An}) / 1000$
Corrected value of moment center position
distance An: Table (1)
Pitch, Yaw moment: Graph (2)
Roll moment: Graph (3)
$\alpha_{1}=\mathrm{M} / \mathrm{Ma}$

3-2 Load Factor of Dynamic Moment

Find the dynamic moment Me ($\mathrm{N} \cdot \mathrm{m}$).

Find the allowable dynamic moment Mea ($\mathrm{N} \cdot \mathrm{m}$) from graph.

Find the load factor of the dynamic moment.

3-3 Sum of Load Factors

$$
M e=1 / 3 \cdot W e \times 9.8(L n+A n) / 1000
$$ mass equivalent to impact $\mathrm{We}=\delta \cdot \mathrm{W} \cdot \mathrm{V}$

δ : Bumper coefficient
Rubber stopper: 4/100
Metal stopper: 16/100
Corrected value of moment center position distance An: Table (1)

Pitch, Yaw moment: Graph (2)
$\alpha_{2}=\mathrm{Me} / \mathrm{Mea}$

Possible to use if the sum of the load factors does not

$$
\alpha_{1}+\alpha_{2}<1
$$

Examine Mr.
$\mathrm{Mr}=0.1 \times 9.8(40+3) / 1000=0.042$
A2 $=3$
Obtain Mar $=0.6$ from $\mathrm{Va}=100$ in Graph (3).

Examine Mep.

Mep $=1 / 3 \times 0.56 \times 9.8 \times(40+3) / 1000=0.078$
$\mathrm{We}=4 / 100 \times 0.1 \times 140=0.56$
A3 $=3$
Obtain Meap $=1.1$ from $V=140$ in Graph (2).
$\alpha_{2}=0.078 / 1.1=0.07$

Examine Mey.
Mey $=1 / 3 \times 0.56 \times 9.8 \times(50+11) / 1000=0.116$
$W e=0.56$
A3 $=11$
Obtain Meay =1.1 from V=140 in Graph (2).
$\alpha_{2^{\prime}}=0.116 / 1.1=0.1$

$\alpha_{1}+\alpha_{2}+\alpha_{2}^{\prime}=$
Applicable because
$0.07+0.07+0.1=0.24<1$

Series MXJ

Fig. (1) Overhang: Ln (mm), Correction Value of Moment Center Position Distance: An (mm)

	Pitch moment	Yaw moment	Roll moment
			-

Note) Static moment: Moment generated by gravity
Dynamic moment: Moment generated by impact when colliding with stopper

Note) Use the average speed when calculating static moment.
Use the collision speed when calualaing dyramic moment.refér to page 177. . Table (1) Correction Value of Moment Center Position Distance: An (mm)

Model	Corrected value of moment center position distance (Refer to Fig. 2.)		
	A1	A2	A3
MXJ4	10	3	10
MXJ6	10	3	11
MXJ8	12	4	13

Graph (3) Allowable Moment Roll Moment: Mar

Table (2) Max. Allowable Load Mass: Wmax (kg)

Model	Max. allowable load mass	
	Rubber stopper	Metal stopper
MXJ4	0.1	0.08
MXJ6	0.2	0.14
MXJ8	0.35	0.25

The above value represents the maximum value for each allowable load mass. For the maximum allowable load mass for each piston speed, please refer to Graph (1).

Table (3) Maximum Allowable Moment: Mmax ($\mathrm{N} \cdot \mathrm{m}$)

Model	Pitch/Yaw moment: Mpmax/Mymax	Roll moment: Mrmax
MXJ4	1.1	0.6
MXJ6	1.1	0.6
MXJ8	1.5	1.0

The above value represents the maximum value of allowable moment. For the maximum allowable moment for each piston speed, please refer to Graph (2) and (3).

Symbol

Symbol	Definition	Unit	Symbol	Definition	Unit
An ($\mathrm{n}=1$ to 3)	Corrected value of moment center position distance	mm	F	Allowable static load	N
$\mathbf{L n}(\mathrm{n}=1$ to 3)	Overhang	mm	V	Collision speed (Average speed \times 1.4)	mm / s
M (Mp, My, Mr)	Static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	Va	Average speed	mm/s
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	w	Load mass	kg
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$	Wa	mass equivalent to impact	kg
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$	Wmax	Max. allowable load mass	kg
Mmax (Mpmax, Mymax, Mrmax)	Max. allowable moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$	α	Load factor	-

Air Slide Table
 Series MXJ
 ø4, ø6, ø8

How to Order

MXH

Applicable Auto Switches/Refer to pages 1719 through to 1827 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model Electrical entry direction		Lead wire length (m)				Pre-wired connector	Applicable load	
					DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} \hline 1 \\ (\mathrm{M}) \end{gathered}$	$\begin{gathered} 3 \\ \text { (L) } \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$			
		Grommet	Yes	3-wire (NPN)	24 V	$\begin{array}{r} 5 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$	-	M9NV	M9N	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	IC circuit	Relay, PLC
				3-wire (PNP)				M9PV	M9P	\bullet	\bullet	-	\bigcirc	\bigcirc		
				2-wire		12 V		M9BV	M9B	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	-	
				3-wire (NPN)		$\begin{array}{r} 5 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$		F8N	-	\bullet	-	\bullet	\bigcirc	-	IC circuit	
				3-wire (PNP)				F8P		\bullet	-	\bullet	\bigcirc			
				2-wire		12 V		F8B		\bullet	-	\bullet	\bigcirc			
	Diagnostic			3-wire (NPN)		$\begin{array}{r} 5 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$		M9NWV	M9NW	\bullet	\bullet	-	\bigcirc	\bigcirc	IC circuit	
	indication (2-color			3-wire (PNP)				M9PWV	M9PW	\bullet	\bullet	\bullet	\bigcirc	\bigcirc		
	indication)			2-wire		12 V		M9BWV	M9BW	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	-	
	-	Grommet	Yes	3-wire (NPN equivalent)	-	5 V	-	A96V	A96	-	-	\bullet	-	-	$\begin{gathered} \text { ICC } \\ \text { circuit } \end{gathered}$	-
				2-wire	24 V	12 V	100 V	A93V	A93	\bullet	-	\bullet	-	-	-	Relay,
			-			$5 \mathrm{~V}, 12 \mathrm{~V}$	100 V or less	A90V	A90	\bullet	-	\bullet	-	-	$\begin{gathered} \text { IC } \\ \text { circuit } \end{gathered}$	PLC

* Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW * Solid state auto switches marked with "O" are produced upon receipt of order.

| $1 \mathrm{~m} \cdots \ldots \ldots$. | M |
| :--- | :--- | (Example) M9NWM

* Refer to page 185 for applicable auto switches in addition to those listed above.
* For details on auto switches with a pre-wired connector, refer to page 1784 and 1785.

\triangle Caution

When an auto switch is not mounted properly, it can cause a malfunction. Refer to page 185 "Auto Switch Mounting".

Clean Series

11 - MXJ Standard model no.
 Clean Series
 11: Vacuum type * External dimensions are identical to the standard model.
 Model

Model	Adjuster option	Grade	Intake flow e/min (ANR)*
11-MXJ4(L)	Without adjuster	Grade 3 (Class 100 or equivalent)	
	Metal stopper	Grade 4 (Class 1000 or equivalent)	
11-MXJ6(L)	Without adjuster	Grade 3 (Class 100 or equivalent)	
	Metal stopper	Grade 4 (Class 1000 or equivalent)	
11-MXJ8(L)	Without adjuster	Grade 3 (Class 100 or equivalent)	
	Metal stopper	Grade 4 (Class 1000 or equivalent)	

Intensive vacuum suction prevents the particles from discharging inside a clean room.

Series MXJ

Specifications

Model	MXJ4	MXJ6	MXJ8
Bore size (mm)	4.5	6	8
Piping port size	M3 x 0.5		
Fluid	Air		
Action	Double acting		
Operating pressure	0.15 to 0.7 MPa		
Proof pressure	1.05 MPa		
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$		
Operating speed range	50 to $500 \mathrm{~mm} / \mathrm{s}$ (Metal stopper: 50 to $200 \mathrm{~mm} / \mathrm{s}$)		
Cushion	Rubber bumper (Metal stopper: Without cushion)		
Lubrication	Non-lube		
Stroke adjuster	Standard equipment		
Stroke adjusting range (metal stopper)	Both ends each 0 to 5 mm		
Auto switch	Reed auto switch (2-wire, 3-wire) Solid state auto switch (2-wire, 3-wire) 2-color indication solid state auto switch (2-wire, 3-wire)		
Stroke length tolerance	${ }_{0}^{+1} \mathrm{~mm}$		

Standard Stroke

Model	Standard stroke (mm)
MXJ4	5,10
MXJ6	$5,10,15$
MXJ8	$5,10,15,20$

Option

Adjuster option	Metal stopper	Extension end (CS)	Stroke adjustment range 0 to 5 mm
		Retraction end (CT)	
		Both ends (C)	
Functional option	Axial piping type (P)		Stroke adjuster is mountable on the axial piping.

Theoretical Output

\qquad

Model	Bore size (mm)	Rod size (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)					
					0.2	0.3	0.4	0.5	0.6	0.7
MXJ4	4.5	2	OUT	16	3	5	6	8	10	11
			IN	13	3	4	5	6	8	9
MXJ6	6	3	OUT	28	6	8	11	14	17	20
			IN	21	4	6	8	11	13	15
MXJ8	8	4	OUT	50	10	15	20	25	30	35
			IN	38	8	11	15	19	23	26

[^0]
Mass

Basic Style (Without switch rail) MXJ $\square \square-\square \square{ }^{-1}$

Model	Standard stroke (mm)			Additional mass of adjuster option		
	5	10	15	20	Extension end	Retraction end
MXJ4	40	40	-	-	2	6
MXJ6	50	50	55	-	2	8
MXJ8	70	70	90	90	2	12

Axial Piping Type (Without switch rail) MXJロロ- $\square \square P \mathrm{PN}$

Model	Standard stroke (mm)			Additional mass of adjuster option		
	5	10	15	20	Extension end	Retraction end
MXJ4	50	50	-	-	2	
MXJ6	60	60	65	-	2	
MXJ8	85	85	110	110	2	

Additional Mass of Switch Rail

(g)

Model	Standard stroke (mm)			
	5	10	15	20
MXJ4	5	5	-	-
MXJ6	5	5	6	-
MXJ8	5	5	7	7

B side parallelism to A side	0.03
B side traveling parallelism to A side	0.005
C side perpendicularity to A side	0.01
M dimension tolerance	± 0.05
Radial clearance ($\mu \mathrm{m}$)	$0^{\text {Note) }}$
Non-rotating table accuracy (deg)	$0^{\text {Note) }}$

Note) In theory, radial clearance and non-rotating table accuracy are zero by the preloaded specification. However, in some actual cases, a moment can be applied and can cause deflection in an individual part. Therefore, refer to the table displacement amount on page 176.

Optional Specifications

Rail assembly for mounting auto switch
When auto switch is mounted on air slide table without rail (MXJ $\square-\square \mathrm{N}$),
this assembly is used.

Stepped positioning pin
MXJ-LP

Use the optional stepped positioning pin that is provided because the positioning pin hole for the table is a through hole.
Stepped Positioning Pin

Part no.	Note
MXJ-LP	Common for all models

Series MXJ

Table Deflection (Reference Values)

Table displacement due to pitch moment load
Table displacement when loads are applied to the section marked with the arrow at the full stroke.

MXJ4

MXJ6

MXJ8

The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable mass. Refer to the Model Selection for the loadable mass.

Table displacement due to yaw moment load

Table displacement when loads are applied to the section marked with the arrow at the full stroke.

MXJ4

MXJ6

MXJ8

Table displacement due to roll moment load

Table displacement when loads are applied to the section marked with the arrow with the slide table retracted.

MXJ4

MXJ6

MXJ8

Dimensions

Basic style (Without switch rail)

MXJ4- $\square \square \mathrm{N}$

Vacuum port M3 $\times 0.5$ (Plugged when the product is a symmetric type.) (Not plugged in the case of the clean series)

Note 1) Use an optional stepped positioning pin. (See page 175.) Note 2) Since the body and table are constructed with a magnetic substance, it becomes magnetized when magnets, etc. are attached to them, and this may cause the auto switch malfunction.
Note 3) If workpiece holding bolts are used, they can touch the body and cause malfunctions, etc. Refer to the Specific Product Precautions.

Series MXJ

Dimensions

With stroke adjuster
With adjuster on both ends

With adjuster on extension end MXJ4-■CSN

With adjuster on retraction end MXJ4-■CTN

Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

Axial piping
MXJ4-■■PN

With switch rail MXJ4

Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

When all the available options are mounted (switch rail, stroke adjuster, with axial piping).

Standard type
 MXJ4- \square CP

Symmetric type
MXJ4L- \square CP

Dimensions

Basic style (Without switch rail)

MXJ6- $\square \square \mathbf{N}$

Vacuum port M3 $\times 0.5$ (Plugged when the product is a symmetric type.)
(Not plugged in the case of the clean series)

Note 1) Use an optional stepped positioning pin. (See page 175.) Note 2) Since the body and table are constructed with a magnetic substance, it becomes magnetized when magnets, etc. are attached to them, and this may cause the auto switch malfunction.
Note 3) If workpiece holding bolts are used, they can touch the body and cause malfunctions, etc. Refer to the Specific Product Precautions.

Vacuum port M3 x 0.5 (Plugged when the product is not symmetric type.) (Not plugged in the case of the clean series)

A-A

Series MXJ

Dimensions
With stroke adjuster
With adjuster on both ends
MXJ6- $\square \mathbf{C} \square \mathbf{N}$

With adjuster on extension end MXJ6- \square CS \square N

With adjuster on retraction end MXJ6- $\square \square$ CTN

Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

Axial piping
 MXJ6- $\square \square$ PN

With switch rail MXJ6

Note) Use caution because the height of the end plate's top surface will be higher than the table's top surface.

When all the available options are mounted (switch rail, stroke adjuster, with axial piping)

Standard type MXJ6- \square CP

Symmetric type
MXJ6L- \square CP

Dimensions

Basic style (Without switch rail)

MXJ8- $\square \square \square$

Vacuum port M3 $\times 0.5$ (Plugged when the product is a symmetric type.) (Not plugged in the case of the clean series)

Note 1) Use an optional stepped positioning pin (See page 175.)
Note 2) Since the body and table are constructed with a magnetic substance, it becomes magnetized when magnets, etc. are attached to them, and this may cause the auto switch malfunction.
Note 3) If workpiece holding bolts are used, they can touch the body and cause
malfunctions, etc.
Refer to the Specific Product Precautions.

Model	G	GA	H	I	J	K	M	Z	ZZ
MXJ8-5	12	18	17	6	17	28.5	44.5	38	45
MXJ8-10	12	18	17	6	17	28.5	44.5	38	45
MXJ8-15	19	28	20	8	25	39.5	54.5	48	55
MXJ8-20	19	28	20	8	25	39.5	54.5	48	55

A-A

Series MXJ

Dimensions

With stroke adjuster
With adjuster on both ends MXJ8- $\square \mathbf{C} \square \mathbf{N}$
 $\div 1$

With adjuster on extension end MXJ8- \square CS \square N

With adjuster on retraction end MXJ8-■CTN

Axial piping
 MXJ8-■■PN

With switch rail MXJ8

it is located on the opposite surface.

When all the available options are mounted (switch rail, stroke adjuster, with axial piping)

Standard type
MXJ8- \square CP

Symmetric type
MXJ8L- \square CP

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Martensitic stainless steel	Heat treated
$\mathbf{2}$	Table	Martensitic stainless steel	Heat treated
$\mathbf{3}$	Rod	Stainless steel	
$\mathbf{4}$	Piston	Brass	Electroless nickel plated
$\mathbf{5}$	Rod cover	Resin	
$\mathbf{6}$	Head cap	Resin	
$\mathbf{7}$	Floating bushing A	Stainless steel	
$\mathbf{8}$	Floating bushing B	Stainless steel	
9	Roller stopper A	Stainless steel	
$\mathbf{1 0}$	Roller stopper B	Stainless steel	
$\mathbf{1 1}$	Rod bumper	Polyurethane	
$\mathbf{1 2}$	Plate	Stainless steel	
$\mathbf{1 3}$	Plug	Steel + Fluorine	Nickel plated
$\mathbf{1 4}$	Piston seal	NBR	
$\mathbf{1 5}$	Rod seal	NBR	
$\mathbf{1 6}$	O-ring	NBR	
$\mathbf{1 7}$	Steel balls	High carbon chrome bearing steel	

Note) Use caution because the martensitic stainless steel is inferior in corrosiveness when compaed with austenitic stainless steel.

With Magnet, Rail

No.	Description	Material	Note
$\mathbf{1 8}$	Switch rail	Aluminum alloy	Hard anodized
$\mathbf{1 9}$	Magnet	-	
$\mathbf{2 0}$	Magnet holder	Stainless steel	

With Stroke Adjuster

No.	Description	Material	Note
$\mathbf{2 1}$	End plate	Stainless steel	
$\mathbf{2 2}$	Stopper pin	Steel	Heat treated, Trivalent chromated
$\mathbf{2 3}$	Adjustment bolt	Steel	Heat treated Note), Nickel plated
$\mathbf{2 4}$	Adjustment nut	Steel	Nickel plated
Note) Only the MXJ8 series is heat treated			

Axial Piping Type

No.	Description	Material	Note
$\mathbf{2 5}$	Axial piping plate	Aluminum alloy	Hard anodized
$\mathbf{2 6}$	Stud	Brass	Electroless nickel plated
$\mathbf{2 7}$	Gasket	Stainless steel + NBR	
$\mathbf{2 8}$	O-ring	NBR	

D- \square
$-\mathrm{X} \square$
Individual

- X \square

Series MXJ

Auto Switch Proper Mounting Position (Detection at Stroke End)

Reed auto switch

 D-A9 \squareSolid state auto switch
D-M9 \square
D-M9 \square W

* Figures in the table above are used as a reference when mounting the auto switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation.

Reed Auto Switch: D-A9 \square
(mm)

Model	A				B				C			
	Stroke				Stroke				Stroke			
	5	10	15	20	5	10	15	20	5	10	15	20
MXJ4	9	4	-	-	14	14	-	-	0.5	0.5	-	-
MXJ6	9	4	3	-	14	14	18	-	0.5	0.5	-0.5	-
MXJ8	9	4	10	5	14	14	25	25	-0.5	-0.5	0.5	0.5

Solid State Auto Switch, 2-Color Indication Solid State Auto Switch: D-M9 \square, D-M9 \square W

Model	A				B				C			
	Stroke				Stroke				Stroke			
	5	10	15	20	5	10	15	20	5	10	15	20
MXJ4	13	8	-	-	18	18	-	-	4.5	4.5	-	-
MXJ6	13	8	7	-	18	18	22	-	4.5	4.5	3.5	-
MXJ8	13	8	14	9	18	18	29	29	3.5	3.5	4.5	4.5

Reed auto switch D-A9■V
 Solid state auto switch
 D-M9 $\square V$
 D-M9■WV
 D-F8■

* Figures in the table above are used as a reference when mounting the auto Lead wire, perpendicular entry switches for stroke end detection. In the case of actually setting the auto switches, adjust them after confirming their operation.

Reed Auto Switch: D-A9 \square V

Model	A				D			
	Stroke				Stroke			
	5	10	15	20	5	10	15	20
MXJ4	9	4	-	-	1.5	1.5	-	-
MXJ6	9	4	3	-	1.5	1.5	2.5	-
MXJ8	9	4	10	5	2.5	2.5	1.5	1.5

Solid State Auto Switch, 2-Color Indication Solid State Auto Switch: D-M9■V, D-M9■WV (mm)

Model	A				D				
	Stroke				Stroke				
	5	10	15	20	5	10	15	20	
MXJ4	13	8	-	-	5.5	5.5	-	-	
MXJ6	13	8	7	-	5.5	5.5	6.5	-	
MXJ8	13	8	14	9	6.5	6.5	5.5	5.5	

Solid State Auto Switch: D-F8 \square

Model	A				D			
	Stroke				Stroke			
	5	10	15	20	5	10	15	20
MXJ4	11	6	-	-	3.5	3.5	-	-
MXJ6	11	6	5	-	3.5	3.5	4.5	-
MXJ8	11	6	12	7	4.5	4.5	3.5	3.5

Operating Range

(mm)				
Auto switch model		Applicable bore size (mm)		
	$\varnothing 4$	$\varnothing 6$	$\varnothing 8$	
D-A9 $\square /$ A9 $\square \mathbf{V}$	4	4	4	
D-F8 \square	2	2	2	
D-M9 $\square /$ M9 $\square \mathbf{V}$ D-M9W $\square /$ M9W $\square \mathbf{V}$	2	2.5	2.5	

* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30 \%$ dispersion). It may vary substantially depending on an ambient environment.

Auto Switch Mounting

\triangle Caution

Auto Switch Mounting Tool

- When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle about 5 to 6 mm in diameter.

Tightening Torque

Tightening Torque of Auto Switch

Mounting Screw	(N.m)
Auto switch model	Tightening torque
D-F8 \square D-A9 $\square(V)$	0.10 to 0.20
D-M9 $\square(V)$ D-M9 $\square \mathbf{W}(V)$	0.05 to 0.15

Caution on handling symmetric type

\triangle Caution

1. Maintain a minimum space if standard type and symmetric type are used side by side.

If the space is insufficient, it may cause auto switches to malfunction.

L Dimension

Without shielding plate	8 mm
With shielding plate	3 mm

Placing in the shield plate (0.2 to 0.3 mm iron plate) between the products allows the distance to be smaller.

[^1]
D-

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Selection
 © Caution

1. Operate loads within the range of the operating limits.
Select the model considering maximum loading mass and allowable moment. For details, refer to "Model Selection" on pages 171 and 172. When actuator is used outside of operating limits, eccentric loads on guide will be in excess of this causing vibration on guide, inaccuracy, and shortened life.
2. If intermediate stops by external stopper is done, avoid ejection.
If lurching occurs, damage can result. When making an inermediate stop with an external stopper to be followed by continued forward movement, first supply pressure to momentarily reverse the table, then retract the intermediate stopper, and finally apply pressure to the opposite port to operate the table again.
3. Do not use it in such a way that excessive external force or impact force could work on it.
This could result in damage.

Mounting
 \triangle Caution

1. Do not scratch or dent on the mounting side of body, table and end plate.
The damage will result in a decrease in parallelism, vibration of guide and an increase in moving part resistance.
2. Do not scratch or dent on the forward side of the rail or guide.
This could result in looseness and increased operating resistance, etc.

Mounting

© Caution

3. Do not apply excessive power and load when work is mounted.
If the external force more than the allowable moment were applied, looseness of the guide unit or increased operating resistance could take place.
4. Flatness of mounting surface should be 0.02 mm or less.
Poor parallelism of the workpiece mounted on the body, the base, and other parts can cause vibration in the guide unit and increased operating resistance, etc.
5. Select the proper connection with the load which has external support and/or guide mechanism on the outside, and align it properly.
6. Avoid contact with the body during operation.
Hands, etc. may get caught in the stroke adjuster. Install a cover as a safety measure if there are instances to be near the slide table during operation.
7. Keep away from objects which are influenced by magnets.
Since a body has magnets built-in, do not allow close contact with magnetic disks, magnetic cards or magnetic tapes. Data may be erased.

8. Do not attach magnets to the body and table section.
Since the body and table are constructed with a magnetic substance, it becomes magnetized when magnets, etc.
are attached to them, and this may cause malfunction of auto switches, etc.
9. When mounting the body, use appropriate length of screws and do no exceed the maximum tightening torque.
Tightening with a torque above the limit could malfunction. Whereas tightening insufficiently could result in misalignment or come to a drop.

10. Use the below speed controllers and fittings.
If other speed controllers and fittings are used, they can interfere with the mounting surface.

Model	Side piping port	Axial piping port	Vacuum port
MXJ4	AS1200-M3	AS1200-M3 AS1201F-M3 AS1301F-M3	Miniature fittings M3 series
MXJ6	AS1200-M3		
MXJ8	AS1201F-M3		

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Mounting

\triangle Caution

\triangle Caution To prevent the workpiece holding bolts from touching the guide block, use bolts that are at least shorter than the maximum screwin depth. If longer bolts are used, they can touch the guide and cause a malfunction.

Model	Bolt	Maximum tightening torque $(\mathrm{N} \cdot \mathrm{m})$	Maximum screw-in depth $\ell(\mathrm{mm})$
MXJ4	$\mathrm{M} 3 \times 0.5$	1.14	3.5
MXJ6	$\mathrm{M} 3 \times 0.5$	1.14	3.5
MXJ8	$\mathrm{M} 3 \times 0.5$	1.14	3.5

2. Top mounting

@ CautionTo prevent the workpiece holding bolts from touching the guide block, use bolts that are at least shorter than the maximum screw- in depth. If longer bolts are used, they can touch the guide and cause a malfunction.			
Model	Bolt	Maximum tightening torque (N.m)	Maximum screw-in depth (mm)
MXJ4	M3 $\times 0.5$	1.14	4
MXJ6	M3 $\times 0.5$	1.14	4
MXJ8	M3 $\times 0.5$	1.14	5.5

1. Use a stepped positioning pin that is provided optionally because the positioning pin hole for the table is through.
(Refer to page 175.)

Operating Environment

© Caution

1. Do not use in an environment, where the product could be exposed to liquids such as cutting oil, etc.
Using in an environment where the product could be exposed to cutting oil, coolant, oil, etc. could result in looseness, increased operating resistance, air leakage, etc.
2. Do not use in an environment, where the product could be exposed directly to foreign materials such as powder dust, blown dust, cutting chips, spatter, etc.
This could result in looseness, increased operating resistance, air leakage, etc.
Contact us regarding use in this kind of environment.
3. Do not use in direct sunlight.
4. When there are heat sources in the surrounding area, block off them off.
When there are heat sources in the surrounding area, radiated heat may cause the product's temperature to rise and exceed the operating temperature range. Block off the heat with a cover, etc.
5. Do not subject it to excessive vibration and/or impact.
Contact us regarding use in this kind of environment, since this can cause damage or a malfunction.
6. Be careful about the corrosion resistance of the linear guide.
Be careful that the body and table use martensitic stainless steel, which is inerior to austenitic stainless steel in terms of corrosion resistance. Rust may result especially in an environment that allows water drops from condensation to stay on the surface.

Caution on Adjuster Option

Stroke Adjuster

Caution

MXH

1. Refer to the below table for lock nut tightening torque.
Insufficient torque will cause a decrease in the positioning accuracy.

Model	Thread size	Tightening torque (N•m)
MXJ4	$\mathrm{M} 2.5 \times 0.45$	0.36
MXJ6	$\mathrm{M} 2.5 \times 0.45$	0.36
MXJ8	$\mathrm{M} 3 \times 0.5$	0.63

2. When sroke adjuster is adjusted, do not hit the table with a wrench, etc.
This could result in looseness.
MXJ

Series MXJ Specific Product Precautions 3

Be sure to read before handling. Refer to front matters 42 and 43 for Safety Instructions and pages 3 to 11 for Actuator and Auto Switch Precautions.

Caution on replacing standard type to symmetric type, and vice versa

\triangle Caution

Switch rail, axial piping plate and port location can be changed symmetrically. In the event of replacing them, secure with the tightening torque below.

Thread	Thread size	Tightening torque (N.m)
Cross-recessed head machine screw	$\mathrm{M} 1.7 \times 0.35$	0.1
Stud	$\mathrm{M} 3 \times 0.5$	0.3
Dedicated plug	$\mathrm{M} 3 \times 0.5$	0.3
Hexagon socket set screw	$\mathrm{M} 3 \times 0.5$	0.3

* No need to applying sealant to the dedicated plug, and stud when exchanging.

[^0]: Note) Theoretical output $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$

[^1]: Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted.

 * Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) and a solid state auto switch (D-F8) are also available. Refer to pages 1745 and 1746 for details.

