

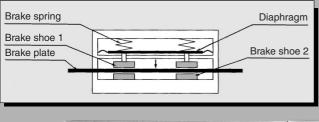
Series ML1C

ø25, ø32, ø40

Brake mechanism has been compactly integrated into the slide table which enables intermediate stops of the rodless cylinder.

Large holding brake force

Force from 4 brake springs hold slide tightly.


• Holding force ø25 — 320 N

ø32 — 500 N

ø40 — 800 N

Brake construction is designed not to allow loads on guide.

Spring force works directly on the brake-shoe and the brake plate is caught between brake shoes from top and bottom so that the slide table can stop without compromising guide performance. The brake show yields long service life due to special friction resistant material.

Stroke adjustment unit combines a shock absorber and stopper bolt.

Stroke adjusting unit
Shock absorber can
absorb small to large

absorb small to large impacts without adjustments due to self compensation.

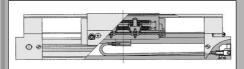
Stop is possible at the arbitrary position.

Locking in both directions is possible.

Locking in either side of cylinder stroke is possible, too.

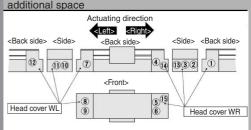
Numerous applicable auto switches

Reed switch—D-E7□A, D-E80A Solid state switch—D-M5 2-color indication—D-M5□W Timer equipped solid switch—D-M5□TL


Cam follower guide type

Cam follower is adopted for the guide section.

Trafficability is excellent in moment resistance.


External air piping for brake release not required.

Brake releasing air flows from head cover to slide table through air tube in cylinder body. There is no restriction on piping requirements because piping to the outside of the slide table is not necessary.

"High degree of freedom"

Air connections can be done at one end for additional space

Piping port		Side table direction	Piping port no.	
Α	Actuating port	Left	3457810	
В	Actuating port	Right	12691112	
C	Brake release port	_	(13/14/15)	

There are 6 actuating ports and 3 brake release ports at head cover WR, and 6 actuating ports on the head cover WL.

The most suitable piping position can be selected by choosing each 1 port from A, B, C and combining them. CL CL1

MLGC

CNG

MNB

CNA

CNS

CLS

CLQ

MLGP

RLQ

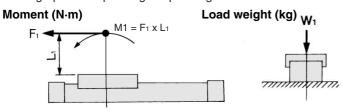
MLU

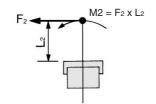
ML1C

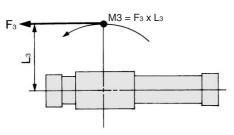
D--X

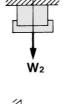
20-

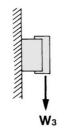
Before Operation

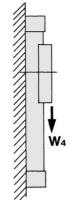

Maximum Allowable Moment/Maximum Load Weight

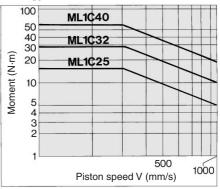

Model	Allowable moment (N·m)			Maximum load weight (kg)			
Model	M1	M2	МЗ	W1	W2	W3	W4
ML1C25	14.7	4.90	4.90	20	12	3	10
ML1C32	29.4	9.80	9.80	32	19	5	16
ML1C40	58.8	19.6	19.6	50	30	8	25

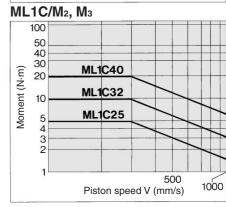

Caution on Design


Allowable moment and load Weight Maximum


Allowable moment and Maximum load weight varies depending on mounting orientation, piston speed, etc. Therefore use the cylinder within the range shown in the graph corresponding to operating conditions.







Maximum Allowable Moment

Select the moment within the limits shown in the graphs below. Note that the maximum payload value in some cases may exceed maximum allowable payload despite being within the limit shown in the graph; therefore, payload on the operating conditions should be checked.

ML1C/M₁

(How to calculate the load ratio)

- A. Consider (1) max. load weight, (2) static moment, (3) dynamic moment (when stopper collides) when calculating the max. allowable moment and load weight.
 - * Evaluate (1) and (2) as va (average speed), and (3) as v (collision speed v = 1.4 va). Calculate (1) (Wmax) from the graph of max. payload (W1, W2, W3) and calculate (2) and (3) (Mmax) from the maximum allowable moment graph (M1, M2, M3).

Sum of $\nabla_{\mathcal{C}}$	Load weight [m]	Static moment [M]Note 1)	Dynamic moment [ME]Note 2)
the load factors $\angle \alpha =$	Maximum load weight [m·max]	Static allowable moment [Mmax] +	Dynamic allowable moment [MEmax] ≤ 1

Note 1) Moment generated by load, etc. when the cylinder stops.

Note 2) Moment generated by load equivalent to impact at stroke end (when stopper collides).

Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors $(\Sigma \alpha)$ is the total of all such moments.

B. Reference formula [Dynamic moment at impact]

Refer to following calculation for dynamic moment considering the impact when stopper collides.

W: Weight (kg)

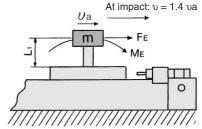
F:Load(N)

F_E: Load equivalent to impact (N)

 v_a : Average speed (mm/s)

M : Static moment (N·m)

 $v = 1.4 \text{ va (mm/s)} \text{ Fe} = \frac{1.4}{100} \text{ va} \cdot \text{g} \cdot \text{W}$

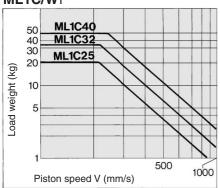

 $\therefore M_E = \frac{1^{Note 4}}{3} \cdot F_E \cdot L_1 = 0.05 \text{vagWL}_1 \text{ (N·m)}$

 υ : Collision speed (mm/s)

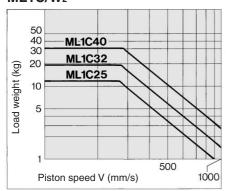
 $L_{\scriptscriptstyle 1}\,$: Distance to the center of load gravity (m)

M_E: Dynamic moment (N⋅m)

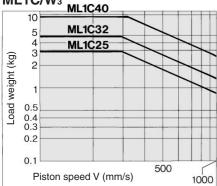
g : Gravitational acceleration (9.8 m/s²)

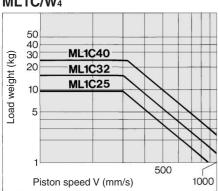


Note 4) Average load coefficient (This coefficient is meant to average the maximum load moment at the time of impact with stopper in the light of calculating the service life.)

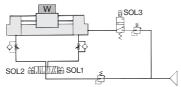

Maximum Load Weight

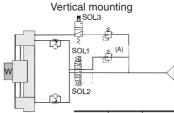
Select the maximum load weight to be applied within the limits shown in the graph. Note that the maximum allowable moment may in some cases exceed Maximum allowable moment despite being within the limit shown in the graph: therefore, allowable moment on operating conditions should be checked.


ML1C/W₁


ML1C/W₂

ML1C/W₃


ML1C/W₄


Caution on Pneumatic Circuit Design

Operating pneumatic circuit

Horizontal, Lateral mounting

* Be sure to use the circuit above. Please consult with SMC in case of using

SOL1	SOL2	SOL3	Actuation
OFF	OFF	OFF	Stop
ON	OFF	ON	To left
OFF	ON	ON	To right

Solenoid Valve for Driving and Braking

<Solenoid valve for driving>

Horizontal, lateral mounting orientation Use pressure center style valve.

Control the operation with a meter-out system. Vertical

Use exhaust center style valve (external pilot style or direct operated style).

<Solenoid valve for braking>

· Use the solenoid valve for braking which has the effective area equivalent to the one of solenoid valve for driving. If the effective area is smaller, it may encounter an unexpected sudden slide table movement.

Air Balance

On both above mentioned circuit, the air balance is made by pressurizing to both sides of cylinder on the condition of the intermediaté stop.

In the case of the vertical orientation, reduce the pressure of the upside by regulator (A) to keep the balance is not made, it may cause unexpected sudden slide table movements after the intermediate stop operation, once the reverse operation occurs, resulting in compromised accuracy of the cylinder.

· Install a solenoid valve for braking as close to the cylinder as possible. If there is a long distance between the cylinder and valve, it may cause fluctuations in the stop accuracy or unexpected sudden slide movements.

<Recommended solenoid valve example>

	Horizontal, lateral mounting	Vertical		
Solenoid valve for driving	VFS2500	VFS2400R		
Solenoid valve for braking	VP300 or VFS2100			

* Determine the size of the solenoid valve according to the operating cylinder speed.

Supply Pressure

- the release brake may occur.
- If line pressure is used directly as supply pressure, any fluctuation in pressure will appear in the form of changes in cylinder characteristics. Therefore, make sure to use a pressure regulator to convert line pressure into supply pressure for the actuating valve and the brake valve. In order to actuate multiple cylinders at once, use a pressure regulator that can handle a large air flow volume and also consider installing a surge

Set the supply pressure at 0.25 to 0.5 MPa. If setting at less than 0.25 MPa, malfunction of

Precautions

Be sure to read before handling. For Safety Instructions and Actuator Precautions, refer to pages 9-19-3 to 9-19-6.

Adjustment

⚠ Caution

- 1. Even though Hy-rodless cylinder can be loaded within the max. allowable payload, precise alignment is required if connected to a payload which has external support structure. The longer the stroke is, the larger the declination of axis center is. Thus, take the connecting method (floating mechanism) into consideration, so that misalignment could be absorbed prior to operation.
- 2. Due to factory pre-adjusted guide and brake plate, re-adjustment is not required under normal operating conditions. Accordingly, do not change the setting on adjustment section.
- 3. Do not operate the cylinder in an environment in which the cylinder will be exposed to cutting chips, dust (paper debris, lint, etc.), spatter or cutting fluid (gas oil, water, warm water, etc.), which could lead to operational problems.

- 4. It is recommended that grease be applied periodically to the sliding portion of the bearing and to the dust seal band to increase their service life.
- **5.** Take precautions under operating conditions in which negative pressure is increased inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt.

Caution on Mounting

⚠ Caution

- 1. Take care not to mark or damage the outside surface of the cylinder tube. This may result in damaged bearings or scraper, which will cause cylinder malfunction.
- 2. Take care not to apply any loads to the dust proof cover. It can cause a cylinder malfunction.
- 3. Because the slider is supported by precision bearings, take care not to apply strong impacts or excessive moments to the table when loading a workpiece.

9-14-3

CL₁ **MLGC**

CNG

MNB

CNA

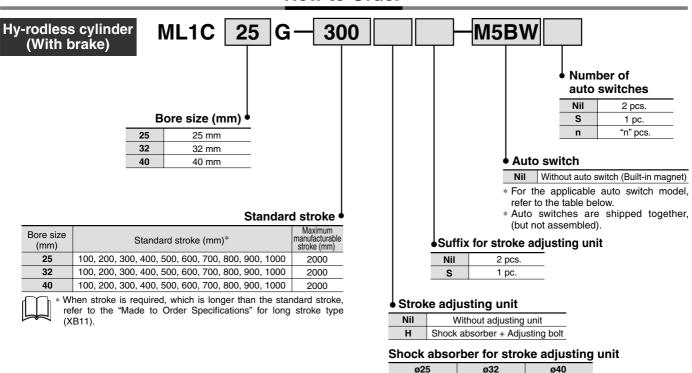
CNS

CLS

CLQ

MLGP

RLQ MLU


ML1C

-X

20-

ø25, ø32, ø40

Applicable Auto Switch/Refer to page 9-15-1 for further information on auto switches.

			ight			Load volta	age		Lead wire	length	(m)*				
Type Special function		Electrical entry		Wiring (Output)		DC	AC	Auto switch model	0.5 (Nil)	3 (L)	5 (Z)	Pre-wire connector	Applio	cable load	
Reed	_	Grommet	, les	3-wire (NPN equivalent)	_	5 V	1	E76A	•	•	_	_	IC circuit	_	
⊞ 8				2-wire	24 V	12 V	100 V	E73A	•	•	_	_	_	Relay, PLC	
	_			3-wire (NPN)	EV	5 V, 12 V	M5N	•	•	•	0	IC			
5				3-wire (PNP) 2-wire				M5P	•	•	•	0	circuit		
switch						12 V		M5B	•	•	•	0	_		
	D			1	1	တ	3-wire (NPN)		51/ 401/	M5NW	•	•	•	0	IC
sta	Diagnostic indication	Grommet	rommet 8	3-wire (PNP)	コンム・ハ	5 V, 12 V	_	M5PW	•	•	•	0	circuit	PLC	
Solid state	(2-color indication)			2-wire		12 V		M5BW	•	•	•	0	_	1	
	VACIAL Aline au	1		3-wire (NPN)		5 V 40 V		M5NT		•	•	0	IC	1	
	With timer			3-wire (PNP)		5 V, 12 V		M5PT		•	•	0	circuit		

RB1412

RB2015

RB2015

Lead wire length symbols: 0.5 m······Nil (Example) E76A
 3 m······L (Example) E76AL
 5 m·····Z (Example) M5NTZ

st Solid state switches marked with "O" are produced upon receipt of order.

[•] Since there are other applicable auto switches than listed, refer to page 9-14-11 for details.

[•] For details about auto switches with pre-wire connector, refer to page 9-15-66.

Cylinder Specifications

Brake Specifications

Lock operation

Braking direction

Fluid

Во	ore size (mm)	25	32	40	
Guide type		Cam follower guide type			
Fluid			Air		
Action			Double acting		
Operating pressure ran	ge (MPa)		0.1 to 0.8		
Proof pressure (MPa)		1.2			
Ambient and fluid temp	erature	5 to 60°C (No freezing)			
Piston speed (mm/s)		100 to 1000			
Cushion		Air cushion on both ends (Standard)			
Lubrication		Non-lube			
Stroke length tolerance	(mm)	+1.8			
Port size Rc	size Rc Front port, Side port, Bottom por		/8	1/4	

CL

CL₁

MLGC

CNG

MNB

CNA

Spring locking (Exhaust lock)

Air

0.5

0.25

0.18

Both directions

CNS

MLGP

RLQ

MLU

ML1C

D--X

20-

Data

CLS

CLQ

Stroke Adjusting Unit Specifications

Maximum operating pressure (MPa)

Brake releasing pressure (MPa)

Brake activating pressure (MPa)

Applicable cylinder size (mm)		25	32	40		
Stroke adjustment r	ange	Any p	Any position on the entire stroke			
Stroke fine adjusting	g range (mm)	0 to −11.5	0 to −12	0 to −16		
Shock absorber mo	del	RB1412	RB2015	RB2015		
Max. absorbing ene	Max. absorbing energy (J)		58.8	58.8		
Stroke absorption (r	Stroke absorption (mm)		15	15		
Max. collision speed	I (mm/s)	1000	1000	1000		
Max. operating frequ	uency (cycle/min)	45	25	25		
On the state of All	When extended	6.86	8.34	8.34		
Spring force (N)	When retracted	15.98	20.50	20.50		
Operating temperate	ure range	5 to 60°C				

Made to Order Specifications

(For details, refer to page 9-16-1.)

Symbol	Specifications
-XB11	Long stroke
-X416	Holder mounting bracket I
-X417	Holder mounting bracket II

Stroke Adjusting Unit Part No.

Bore size (mm)	25	32	40	
Unit no.	ML1-A25H	ML1-A32H	ML1-A40H	

Side Support Part No.

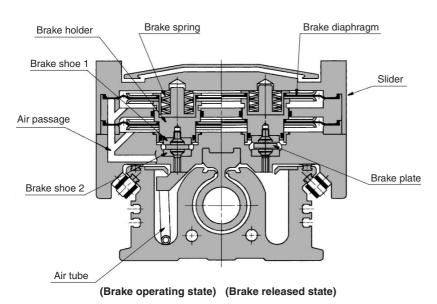
Bore size (mm) Type	25	32	40	
Side support A	MY-S25A	MY-S32A	MY-S40A	
Side support B	MY-S25B	MY-S32B	MY-S40B	

For details about dimensions, etc., refer to page 9-14-9.

Auto Switch Mounting Bracket Part No.

Bore size (mm)	Mounting bracket part no.	Note	Auto switch part no.
	BMY1 -025	• Switch mounting screw M2.5 x 10 ℓ • Switch mounting nut	D-E73A/ 76A/80A
25 32 40	BMY2 -025	◆ Switch mounting screw M2.5 x 12ℓ • Switch mounting nut	D-M5N/ M5P/M5B D-M5NW/ M5PW/ M5BW D-M5NTL/ M5PTL

Weight


(kg) Side support Basic weight Per each 50mm of stroke Stroke adjustment Bore size weight (per set) unit weight (per unit) (mm) Type A Type B 25 3.86 0.275 0.015 0.016 0.25 32 0.041 6.05 0.425 0.040 0.41 40 8.38 0.545 0.076 0.080 0.50

Theoretical Output

Piston area			Operatin	g pressur	e (MPa)		
(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
490	98	147	196	245	294	343	392
804	161	241	322	402	483	563	643
1256	251	377	502	628	754	879	1005
	(mm²) 490 804	(mm²) 0.2 490 98 804 161	(mm²) 0.2 0.3 490 98 147 804 161 241	(mm²) 0.2 0.3 0.4 490 98 147 196 804 161 241 322	(mm²) 0.2 0.3 0.4 0.5 490 98 147 196 245 804 161 241 322 402	(mm²) 0.2 0.3 0.4 0.5 0.6 490 98 147 196 245 294 804 161 241 322 402 483	(mm²) 0.2 0.3 0.4 0.5 0.6 0.7 490 98 147 196 245 294 343 804 161 241 322 402 483 563

(N)

Construction Principle of Brake

[Anatomy of Brake Operation]

Brake force is generated by a brake spring acting on a brake shoe 1 attached to brake holder, brake rails and holds brake plate between brake shoe 1 and brake shoe 2 fixed to slider side so that slider will stop.

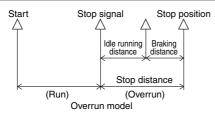
[Brake releasing]

Air pressure supplied from the head cover side goes to the slide table through the air tube and acts on the brake diaphragm, reducing the spring.

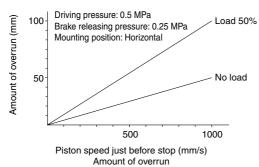
Brake Capacity

Holding Force (Maximum static load)

Bore size (mm)	25	32	40			
Holding force	320 N	500 N	800 N			


- 1. The holding force is the lock's ability to hold a static load that does not involve vibrations or shocks, after it is locked without a load. Therefore, to use the cylinder near the upper limit of the constant holding force, be aware of the following:
 - Select the cylinder bore size so that the load is less than 80% of the holding force.
 - If slipping occurs when the load is over holding force, the brake shoe will be damaged, and it is possible the holding force will become smaller or the cylinder life shortened.

Allowable Kinetic Energy


Bore size (mm)	25	32	40
Allowable kinetic energy (J)	0.43	0.68	1.21

Overrun

Overrun

When cylinder is stopped at intermediate strokes, "idle running distance" is from detection of stop signal to beginning of brake operation and "braking distance" is from beginning of brake operation to the stop of slider.

The graph above shows the relation between piston speed and overrun. (The length of overrun is changed, dependent on piston speed, load, piping conditions and control method. Be sure to adjust the stop signal position, etc. by trial operation with the actual machine.)

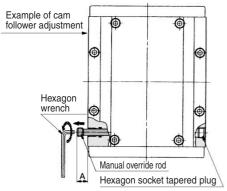
Stop dispersion

When cylinder is stopped at intermediate stroke, there is dispersion of stop position. Dispersion of stop position is changed dependent on piston speed, load, piping condition and control method. Use values in the table below as reference.

Stopping Accuracy

Piston speed (mm/s)	100	300	500	800	1000
Stopping accuracy (mm)	±0.5	±1.0	±2.0	±3.0	±4.0

Conditions Driving pressure: 0.5 MPa


Brake releasing pressure: 0.25 MPa

Load: 25%

Solenoid valve for releasing brake is connected to cylinder directly. Dispersion of the control system is not included.

Manual Operation

⚠ Warning

In the case of manual operation, be sure to supply air for brake releasing.

If not, this may result in damage to the brake, which will cause a cylinder malfunction.

[Brake releasing]

- Supply the air for releasing the brake to the braking air port on the head cover. This should be 0.4 to 0.5 MPa.
- Loosen the manual override (nickel plated) rod on the slide table, and draw the rod until it reaches to the end. The size of the hexagon wrench should be 3 mm (ML1C25, 32) or 4 mm (ML1C40).
- 3. Exhaust the air to release the brake.

Manual Rod Drawing Dimensions

Model	Α
ML1C25	23
ML1C32	27
ML1C40	32

[Brake operation]

- Supply the air for releasing the brake to the braking air port on the head cover. This should be 0.4 to 0.5 MPa.
- **2.** Push the manual rod and then screw it until it is housed inside a slider completely.
- 3. Exhaust the air to release the brake.

Cushion Capacity

Cushion selection

<Air cushion>

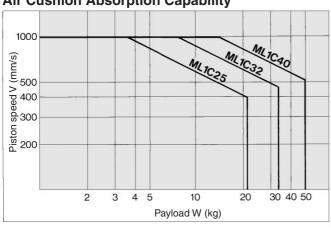
Air cushion is standard on Hy-rodless cylinder. The air cushion mechanism is incorporated to prevent excessive impact of the piston at the stroke end during high speed operation.

Air cushion is not applied for slow piston operation around the stroke end.

A range of the weights and speeds that an air cushion can absorb is within the limits shown in the graph, "Air Cushion Absorbing Kapacity".

<Stroke adjustment unit with shock absorber>

Use this unit to decelerate the cylinder when weight and speed are beyond the air cushion limit lines or when the stroke adjustment causes limited or no cushion engagement.


Note)

- Adjust the shock absorber so that stroke will be fully utilized to near the limit of allowable energy, because absorption capacity becomes extremely small if the absorber's effective stroke is short due to a stroke adjustment.
- When the shock absorber is used within the air cushion stroke range, almost open the air cushion needle (about 1 turn from the fully closed position).

Air Cushion Stroke

Bore size (mm)	Cushion stroke
25	15
32	19
40	24

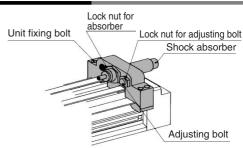
Air Cushion Absorption Capability

Stroke Adjusting Unit with Shock Absorber/ Calculation of Absorbed Energy

	Horizontal collision	Vertical (Downward)	Vertical (Upward)
Type of impact	w s v - v - v - v - v - v - v - v - v - v	v w s	t w
Kinetic energy E ₁		$\frac{W}{2 g} \cdot V^2$	
Thrust energy E ₂	F⋅s	F⋅s + W⋅s	F·s – W·s
Absorbed energy E		E ₁ + E ₂	

Symbol

/: Impact speed (m/s)


g: Gravitational acceleration (m/s²)

W: Impact object weight (kg) F: Cylinder thrust (N)

s: Stroke length of shock absorber (m)

Note) The speed of the impact object is measured at the moment of impact with the shock absorber.

Adjusting Procedure

<Moving and fixing unit>

Remove the dust proof cover, loosen the four fixing bolts to move the unit body.

The unit body can be fixed by tightening four holding bolts evenly at an arbitrary position. However, there is a possibility that the adjustment mechanism will be tilted due to high impact energy. Since the holder mounting bracket for adjustment is available as an option for -X416, -X417, we recommend that you use it. Please refer to holder mounting bracket in Made to Order Specifications (2). If any other length is desired, please consult with SMC.

<Stroke adjustment of adjusting bolt>

After loosening the lock nut for adjusting bolt, adjust the stroke with hexagon wrench. Then, tighten lock nut.

<Stroke adjusting of shock absorber>

After loosening the lock nut for the shock absorber, adjust the stroke by rotating shock absorber, then fix the shock absorber by tightening lock nut. Do not over tighten the lock nut.

9-14-7

CL CL1

MLGC

CNG

MNB

CNA

CNS

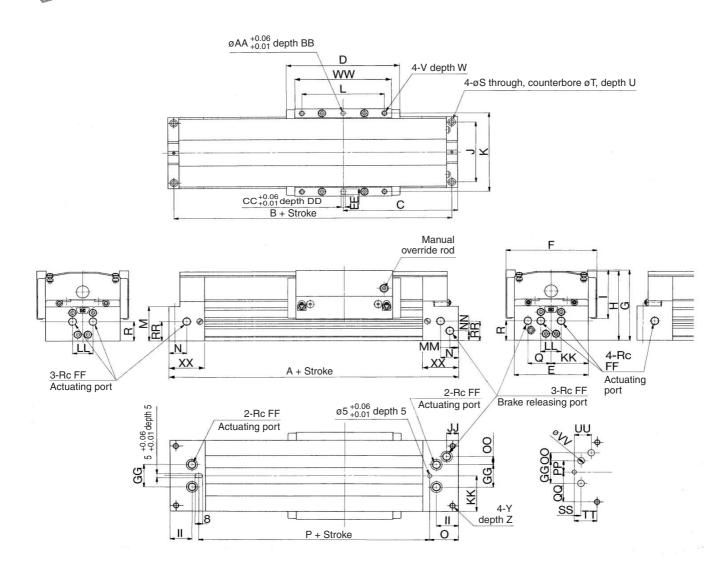
CLS

CLQ

MLGP RLQ

MLU

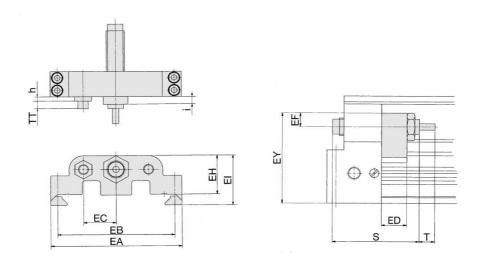
ML1C D-


-X

20-

Series ML1C

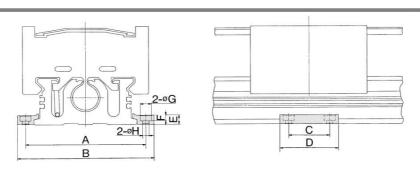
Basic Type

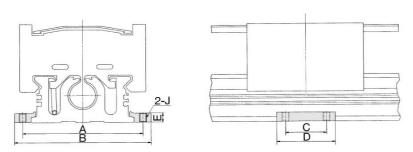

Bottom Side Piping Port Size

(Mounting side should be processed according to the dimensions below.) (mm) Model OO PP QQ RR SS TT **UU VV** Applicable gasket ML1C25 10 14 37 24 8 27 20 8 C11.2 ML1C32 46 32 22 8 C11.2 16.5 18 30 | 12 ML1C40 17 23.5 53 26 40 | 12.5 | 34 10 C14

Model	Α	В	С	D	Е	F	G	Н	ı	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	Υ	Z
ML1C25	274	260	137	140	88	108	87	85.5	60	74	97	100	42.5	26	34	206	28	24	5.6	9	5.5	M5 x 0.8	8.5	M6 x 1	9.5
ML1C32	322	306	161	160	108	131	101	99.5	64	92	118	120	53.5	28	40	242	36.5	30	6.8	11	6.6	M6 x 1	12	M8 x 1.25	16
ML1C40	372	354	186	190	124	158	118	116.5	73	106	144	140	64	30.5	43	286	40.5	35	8.6	14	8.5	M8 x 1.25	14	M10 x 1.5	15

Model	AA	ВВ	СС	DD	EE	FF	GG	II	JJ	KK	LL	ММ	NN	ww	XX
ML1C25	5	5	5	5	7	1/8	28	26	14	44	20	16	12.5	120	42
ML1C32	6	5	6	5	8	1/8	36	28	18	54	36	18	12.5	140	48
ML1C40	6	5	6	5	8	1/4	47	30.5	17	62	30	22	16.5	170	51


Stroke Adjusting Unit


Part no.	Applicable bore (mm)	EA	EB	EC	ED	EF	EY	S	Т	EH	EI	TT	h	i	Shock absorber model
ML1-A25H	ML1C25	101	90	25	20	11	72	67.3	12	31	39.5	Max. 16.5	4.5	3	RB1412
ML1-A32H	ML1C32	120	107	30	25	16	93	73.2	15	38	49	Max. 20	5.5	6	DDOOLE
ML1-A40H	ML1C40	147	129	30	31	16	105.5	73.2	15	40.5	54.5	Max. 25	5.5	6	RB2015

Side Support

Side support A

Side support B

Part no.	Applicable bore (mm)	Α	В	С	D	E	F	G	Н	J
MY-S25 A	ML1C25	103	117	35	50	8	5	9.5	5.5	M6 x 1
MY-S32 A	ML1C32	128	146	45	64	11.7	6	11	6.6	M8 x 1.25
MY-S40 ^A _B	ML1C40	148	170	55	80	14.8	5	14	9	M10 x 1.5

CL1

CL

MLGC

CNG

MNB

CNA

CNS

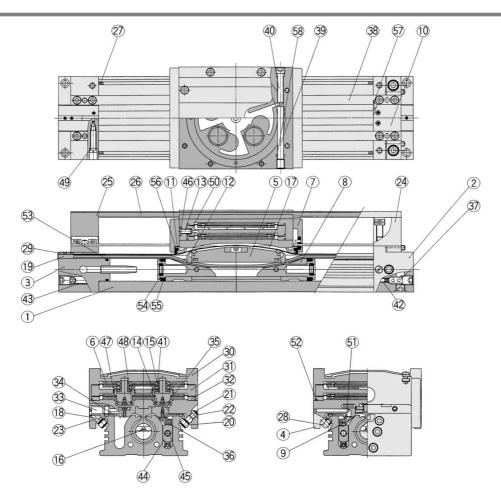
CLS

CLQ

MLGP

RLQ

ML1C


D-

-X

20-

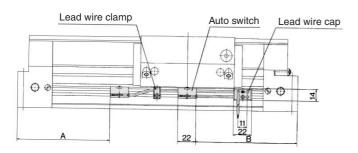
Series ML1C

Construction

Component Parts

	•		
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR assembly	Aluminum alloy	Hard anodized
3	Head cover WL assembly	Aluminum alloy	Hard anodized
4	Slide table	Aluminum alloy	Hard anodized
5	Piston assembly	Aluminum alloy	Hard anodized
6	Brake diaphragm assembly	_	
7	End Cover	Chrome molybdenum steel	Nickel plated
8	Wear ring	Special resin	
9	Air joint assembly	_	
10	Plate tensile table	Rolled steel	Nickel plated
11)	Backup plate	Special resin	
12	Belt separator	Special resin	
13	Port joint	Stainless steel	
14)	Brake holder assembly	Carbon steel	Gas soft nitrided
15	Spring holder	Carbon steel	Gas soft nitrided
16	Seal belt	Special resin	
17	Dust seal band	Stainless steel	
18	Rail	Hard steel wire material	
19	Belt clamp	Special resin	
20	Cam follower	_	
21)	Eccentric screw cap	Stainless steel	
22	Lock nut	Stainless steel	
23	Bushing	Stainless steel	
24)	Dust proof cover mountable R	Aluminum alloy	Hard anodized
25	Dust proof cover mountable L	Aluminum alloy	Hard anodized
26	Dust cover	Aluminum alloy	Hard anodized
27)	End spacer	Special resin	
28	Magnet assembly	Aluminum alloy	Anodized
29	Seal lock plate	Rolled steel	Nickel plated
30	Slider cover assembly	Aluminum alloy	Hard anodized
31)	Diaphragm plate assembly	Aluminum alloy	Chromated
32	Diaphragm ring	Aluminum alloy	Chromated (ø25 only)

No.	Description	Material	Note
33	Cam follower cap	Aluminum alloy	Hard anodized
34)	Tube cover	Aluminum alloy	Hard anodized
35	Brake shoe	Special friction material	
36	Joint ring	Stainless steel	
37)	Air coupler 2	Stainless steel	
38	Brake plate	Stainless steel	Hard chrome plated
39	Manual rod 1	Carbon steel	
40	Manual rod 2	Carbon steel	
<u>41</u>	Brake spring		
42	Air tube	Special resin	
43	Cable	Stainless steel	
44	Tube guide assembly		
45)	Guide rod	Stainless steel	


Seal List

Part no.	Description	Material	ML1C25G	ML1C32G	ML1C40G
46	O-ring	NBR	C-7	C-7	C-7
47)	O-ring	NBR	SO-015-22	SO-015-24	SO-020-31
48	O-ring	NBR	SO-015-16	SO-016-9	SO-015-20
49	Needle gasket	NBR	8.3 x 4.5 x 1.9	C-4	C-4
50	O-ring	NBR	SO-010-16	SO-010-16	SO-010-16
(51)	O-ring	NBR	SO-010-16	C-6	C-8
52	O-ring	NBR	C-100	AS568-048	C-150
53	Tube gasket	NBR	TMY-25	TMY-32	TMY-40
54)	Cushion seal	NBR	RCS-8	RCS-10	RCS-12
55	Piston seal	NBR	GMY25	GMY32	GMY40
56	Scraper	NBR	M1L025-17A82076C	M1L032-17A82077C	M1L040-17A82078C
57	Bypass gasket	NBR	C-6	C-7	C-9
58	O-ring	NBR	P-6	P-6	P-8

Proper Auto Switch Mounting Position (Detection at stroke end)

D-E7□**A**, **D-E80A**

D-M5□ D-M5□W D-M5□TL

Lead wire clamp

Auto switch Lead wire cap

Note) Position auto switch's indicator sight toward the slide table side.

Lead Wire Clamp/Lead Wire Cap (Option)

Lead Wife Clamp/Lead Wife Cap (Option)					
Series	Lead wire clamp	Lead wire cap			
ML1C	LC-01	LP-01			

CLS

CL

CL₁

MLGC

CNG

MNB

CNA

CNS

CLQ

MLGP

RLQ

MLU

ML1C

D-

-X

20-

				(mn
Series	Mounting position	ø25	ø32	ø40
ML1C	Α	124.8	148.8	173.8
IVILIO	В	113.2	137.2	162.2

Lead Wire Clamp/Lead Wire Cap (Option)

Minimum Stroke for Auto Switch Mounting

No. of auto

switches mounted

1 pc.

2 pcs.

Series	Lead wire clamp	Lead wire cap	
ML1C	LC-01	LP-01	

Series	Mounting position	ø25	ø32	ø40
ML1C	Α	128.5	152.5	177.5
IVILIO	В	123.5	147.5	172.5

Operating Range

(mm)

Auto switch model	Bore size (mm)		
Auto switch model	25	32	40
D-E7□A/E80A	6	6	6
D-M5□/M5□W/M5□TL	4	4	4

Besides the models listed in "How to Order", the following auto switches are applicable. For detailed

D-E7□A, D-E80A

10

15

Applicable auto switch

D-M5□, D-M5□W, D-M5□TL

specifications, refer to page 9-15-1.						
Type Model		Electrical entry	Features			
Reed switch	D-E80A	Grommet	Without indicator light			

 \ast Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately $\pm 30\%$ dispersion.)

There may be the case it will vary substantially depending on an ambient environment.

